Search results for: reconstruction optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3850

Search results for: reconstruction optimization

1540 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 372
1539 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 342
1538 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 17
1537 Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control

Authors: Ruben Lopez-Rodriguez

Abstract:

In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy.

Keywords: microgrids, mixed logical dynamical systems, mixed-integer optimization, model predictive control

Procedia PDF Downloads 51
1536 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface

Authors: Aleš Kratochvíl, Svatomír Slavík

Abstract:

The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.

Keywords: active damping, finite element method, flutter, tailplane model

Procedia PDF Downloads 289
1535 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 315
1534 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 78
1533 Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity

Authors: Arash Rahmani, Ahmad Ghanbari, Abbas Baghernezhad, Babak Safaei

Abstract:

In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved.

Keywords: hybrid manipulator, spatial isotropy, genetic algorithm, optimum design

Procedia PDF Downloads 334
1532 Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis

Authors: Krzysztof Rafał, Weronika Radziszewska, Hubert Biedka, Oskar Grabowski, Krzysztof Mik

Abstract:

We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles.

Keywords: energy storage, hybrid energy storage, cost-benefit analysis, microgrid, battery sizing

Procedia PDF Downloads 217
1531 Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study

Authors: B. Guezzen, M. A. Didi, B. Medjahed

Abstract:

An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.

Keywords: adsorption, dye, factorial design, kinetic, organo-bentonite

Procedia PDF Downloads 196
1530 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices

Procedia PDF Downloads 186
1529 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography

Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk

Abstract:

The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.

Keywords: grains, permeability, pores, pressure distribution

Procedia PDF Downloads 251
1528 Development of a New Method for T-Joint Specimens Testing under Shear Loading

Authors: Radek Doubrava, Roman Ruzek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology

Procedia PDF Downloads 441
1527 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain

Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji

Abstract:

A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.

Keywords: frying, moisture loss, modelling, oil uptake

Procedia PDF Downloads 446
1526 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 269
1525 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.

Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model

Procedia PDF Downloads 506
1524 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.

Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures

Procedia PDF Downloads 227
1523 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 61
1522 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.

Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin

Procedia PDF Downloads 184
1521 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems

Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian

Abstract:

This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.

Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems

Procedia PDF Downloads 373
1520 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton

Procedia PDF Downloads 229
1519 Adjustable Counter-Weight for Full Turn Rotary Systems

Authors: G. Karakaya, C. Türker, M. Anaklı

Abstract:

It is necessary to test to see if optical devices such as camera, night vision devices are working properly. Therefore, a precision biaxial rotary system (gimbal) is required for mounting Unit Under Test, UUT. The Gimbal systems can be utilized for precise positioning of the UUT; hence, optical test can be performed with high accuracy. The weight of UUT, which is placed outside the axis of rotation, causes an off-axis moment to the mounting armature. The off-axis moment can act against the direction of movement for some orientation, thus the electrical motor, which rotates the gimbal axis, has to apply higher level of torque to guide and stabilize the system. Moreover, UUT and its mounting fixture to the gimbal can be changed, which causes change in applied resistance moment to the gimbals electrical motor. In this study, a preloaded spring is added to the gimbal system for minimizing applied off axis moment with the help of four bar mechanism. Two different possible methods for preloading spring are introduced and system optimization is performed to eliminate all moment which is created by off axis weight.

Keywords: adaptive, balancing, gimbal, mechanics, spring

Procedia PDF Downloads 120
1518 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)

Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi

Abstract:

Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.

Keywords: copper, leaching, CCD, rate constant

Procedia PDF Downloads 240
1517 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 175
1516 Predictive Analysis of Personnel Relationship in Graph Database

Authors: Kay Thi Yar, Khin Mar Lar Tun

Abstract:

Nowadays, social networks are so popular and widely used in all over the world. In addition, searching personal information of each person and searching connection between them (peoples’ relation in real world) becomes interesting issue in our society. In this paper, we propose a framework with three portions for exploring peoples’ relations from their connected information. The first portion focuses on the Graph database structure to store the connected data of peoples’ information. The second one proposes the graph database searching algorithm, the Modified-SoS-ACO (Sense of Smell-Ant Colony Optimization). The last portion proposes the Deductive Reasoning Algorithm to define two persons’ relationship. This study reveals the proper storage structure for connected information, graph searching algorithm and deductive reasoning algorithm to predict and analyze the personnel relationship from peoples’ relation in their connected information.

Keywords: personnel information, graph storage structure, graph searching algorithm, deductive reasoning algorithm

Procedia PDF Downloads 450
1515 Integration of Smart Grid Technologies with Smart Phones for Energy Monitoring and Management

Authors: Arjmand Khaliq, Pemra Sohaib

Abstract:

There is increasing trend of use of smart devices in the present age. The growth of computing techniques and advancement in hardware has also brought the use of sensors and smart devices to a high degree during the course of time. So use of smart devices for control, management communication and optimization has become very popular. This paper gives proposed methodology which involves sensing and switching unite for load, two way communications between utility company and smart phones of consumers using cellular techniques and price signaling resulting active participation of user in energy management .The goal of this proposed control methodology is active participation of user in energy management with accommodation of renewable energy resource. This will provide load adjustment according to consumer’s choice, increased security and reliability for consumer, switching of load according to consumer need and monitoring and management of energy.

Keywords: cellular networks, energy management, renewable energy source, smart grid technology

Procedia PDF Downloads 412
1514 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach

Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh

Abstract:

Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.

Keywords: activated carbon, POME based lipase, immobilization, adsorption

Procedia PDF Downloads 241
1513 The Anesthesia Considerations in Robotic Mastectomies

Authors: Amrit Vasdev, Edwin Rho, Gurinder Vasdev

Abstract:

Robotic surgery has enabled a new spectrum of minimally invasive breast reconstruction by improving visualization, surgeon posturing, and improved patient outcomes.1 The DaVinci robot system can be utilized in nipple sparing mastectomies and reconstructions. The process involves the insufflation of the subglandular space and a dissection of the mammary gland with a combination of cautery and blunt dissection. This case outlines a 35-year-old woman who has a long-standing family history of breast cancer and a diagnosis of a deleterious BRCA2 genetic mutation. She has decided to proceed with bilateral nipple sparing mastectomies with implants. Her perioperative mammogram and MRI were negative for masses, however, her left internal mammary lymph node was enlarged. She has taken oral contraceptive pills for 3-5 years and denies DES exposure, radiation therapy, human replacement therapy, or prior breast surgery. She does not smoke and rarely consumes alcohol. During the procedure, the patient received a standardized anesthetic for out-patient surgery of propofol infusion, succinylcholine, sevoflurane, and fentanyl. Aprepitant was given as an antiemetic and preoperative Tylenol and gabapentin for pain management. Concerns for the patient during the procedure included CO2 insufflation into the subcutaneous space. With CO2 insufflation, there is a potential for rapid uptake leading to severe acidosis, embolism, and subcutaneous emphysema.2To mitigate this, it is important to hyperventilate the patient and reduce both the insufflation pressure and the CO2 flow rate to the minimal acceptable by the surgeon. For intraoperative monitoring during this 6-9 hour long procedure, it has been suggested to utilize an Arterial-Line for end-tidal CO2 monitoring. However, in this case, it was not necessary as the patient had excellent cardiovascular reserve, and end-tidal CO2 was within normal limits for the duration of the procedure. A BIS monitor was also utilized to reduce anesthesia burden and to facilitate a prompt discharge from the PACU. Minimal Invasive Robotic Surgery will continue to evolve, and anesthesiologists need to be prepared for the new challenges ahead. Based on our limit number of patients, robotic mastectomy appears to be a safe alternative to open surgery with the promise of clearer tissue demarcation and better cosmetic results.

Keywords: anesthesia, mastectomies, robotic, hypercarbia

Procedia PDF Downloads 110
1512 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 62
1511 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 86