Search results for: mechanical strength prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8324

Search results for: mechanical strength prediction

6014 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 229
6013 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes

Authors: T. A. Sakr, Hanaa E. Abd-El-Mottaleb

Abstract:

Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significant to the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasis was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are sigbificantly enhanced while lesser drift improvements are observed.

Keywords: outrigger, shear wall, earthquake, nonlinear

Procedia PDF Downloads 283
6012 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 543
6011 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model

Authors: F. J. Ma, A. K. H. Kwan

Abstract:

Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.

Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect

Procedia PDF Downloads 419
6010 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 71
6009 Analyzing the Factors That Influence Students' Professional Identity Using Hierarchical Regression Analysis to Ease Higher Education Transition

Authors: Alba Barbara-i-Molinero, Rosalia Cascon Pereira, Ana Beatriz Hernandez Lara

Abstract:

Our general motivation in undertaking this study is to propose alternative measures to lighten students experienced tensions during the transitions from high school to higher education based on the concept of professional identity strength. In order to do so, we measured the influence that three different factors external motivational conditionals, educational experience conditionals and personal motivation conditionals exerted over students’ professional identity strength and proposed the measures considering the obtained results. By using hierarchical regression analysis we addressed this issue, across disciplines and bachelor degrees, allowing us to gain also deeper insight into first-year university students PID. Our findings suggest that students’ from the different disciplines are influenced by personal motivational conditionals; while students from sciences are also influenced by external motivational conditionals. Based on the obtained results we propose three different alternative educational and recruitment strategies which aim to increase students’ professional identity strength and reduce the tensions generated during high school-university transitions. From this study theoretical contributions regarding the differences in the influence of these factors on students from different bachelor degrees arise; and practical implications for universities, derived from the proposed strategies.

Keywords: professional identity, transitions, higher education, strategies

Procedia PDF Downloads 181
6008 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads

Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan

Abstract:

Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.

Keywords: stream speed, urban roads, machine learning, traffic flow

Procedia PDF Downloads 70
6007 Study of Rheological, Physic-Mechanical and Morphological Properties of Nitrile Butadiene Rubber Loaded with Organo-Bentonite

Authors: Doaa S. Mahmoud, Nivin M. Ahmed, Salwa H. El-Sabbagh

Abstract:

The rheometric characteristics and physicomechanical properties of bentonite / acrylonitrile-butadiene rubber (NBR) were investigated. The influences of adding bentonite (Bt) and / or modified bentonite (organo-Bt) to the rubber were observed. Scanning electron microscopy (SEM) showed that the rubber chains may be confined within the interparticle space and the Bt particles presented a physical dispersion in NBR matrix. Bentonite (Bt) was modified with tetra butyl phosphonium bromide (TBP) in order to produce organo-Bt. The modification was carried out at 0.5, 1 and 2 cation exchange capacity (CEC) of bentonite. Results showed that the maximum torque of organo-Bt / NBR composite increases at high bentonite loading. The scorch time (tS2) and cure time (tC90) of the organo-Bt / NBR composites decreased simultaneously relative to those of the neat NBR. The prepared composite exhibited significant improvement in mechanical compared with that of neat NBR.

Keywords: acrylonitrile-butadiene rubber, bentonite, composites, physico-mechanical properties

Procedia PDF Downloads 265
6006 Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete

Authors: Erjola Reufi, Jozefita Marku, Thomas Bier

Abstract:

Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values.

Keywords: compressive strength, polypropylene fiber, steel fiber, ultrasonic pulse velocity, volume, type of fiber

Procedia PDF Downloads 402
6005 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.

Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil

Procedia PDF Downloads 299
6004 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
6003 Modified Tendon Model Considered Structural Nonlinearity in PSC Structures

Authors: Yangsu Kwon, Hyo-Gyoung Kwak

Abstract:

Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams.

Keywords: bond-slip, prestressed concrete, tendon, ultimate strength

Procedia PDF Downloads 493
6002 Development of Adhesive from Prosopis african Seed Endosperm (OKPEYI)

Authors: Florence Chinyere Nwangwu, Rosemary Ene

Abstract:

An experimental study was carried out to develop an adhesive from Prosopis africana seed endosperm. The Prosopis seeds for this work were obtained from Enugu State in the South East part of Nigeria. The Prosopis seeds were prepared by separating the Prosopis endosperm from the seed coat and cotyledon. The dry adhesive gotten from the endosperm was later dissolved to get the adhesive solution. Confirmatory tests like viscosity, density, pH, and binding strength were carried out. The effect of time, temperature, concentration on the yield and properties of the adhesive were investigated. The results obtained showed that increase in concentration, time, temperature decreases the viscosity of the Prosopis adhesive and yield of Prosopis endosperm. It was also deduced that increase in viscosity increases the binding strength of the Prosopis adhesive. The percentage of the adhesive yield from Prosopis endosperm showed that the commercialization of the seed in Nigeria will be possible and profitable.

Keywords: adhesive, Prosopis, viscosity, endosperm

Procedia PDF Downloads 309
6001 Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can, Damla Gunel

Abstract:

This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement.

Keywords: multimetallic, forging, experimental, numerical

Procedia PDF Downloads 278
6000 Shear Strength Envelope Characteristics of LimeTreated Clays

Authors: Mohammad Moridzadeh, Gholamreza Mesri

Abstract:

The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.

Keywords: Brenna clay, friction resistance, lime treatment, residual

Procedia PDF Downloads 159
5999 Impact of Alkaline Activator Composition and Precursor Types on Properties and Durability of Alkali-Activated Cements Mortars

Authors: Sebastiano Candamano, Antonio Iorfida, Patrizia Frontera, Anastasia Macario, Fortunato Crea

Abstract:

Alkali-activated materials are promising binders obtained by an alkaline attack on fly-ashes, metakaolin, blast slag among others. In order to guarantee the highest ecological and cost efficiency, a proper selection of precursors and alkaline activators has to be carried out. These choices deeply affect the microstructure, chemistry and performances of this class of materials. Even if, in the last years, several researches have been focused on mix designs and curing conditions, the lack of exhaustive activation models, standardized mix design and curing conditions and an insufficient investigation on shrinkage behavior, efflorescence, additives and durability prevent them from being perceived as an effective and reliable alternative to Portland. The aim of this study is to develop alkali-activated cements mortars containing high amounts of industrial by-products and waste, such as ground granulated blast furnace slag (GGBFS) and ashes obtained from the combustion process of forest biomass in thermal power plants. In particular, the experimental campaign was performed in two steps. In the first step, research was focused on elucidating how the workability, mechanical properties and shrinkage behavior of produced mortars are affected by the type and fraction of each precursor as well as by the composition of the activator solutions. In order to investigate the microstructures and reaction products, SEM and diffractometric analyses have been carried out. In the second step, their durability in harsh environments has been evaluated. Mortars obtained using only GGBFS as binder showed mechanical properties development and shrinkage behavior strictly dependent on SiO2/Na2O molar ratio of the activator solutions. Compressive strengths were in the range of 40-60 MPa after 28 days of curing at ambient temperature. Mortars obtained by partial replacement of GGBFS with metakaolin and forest biomass ash showed lower compressive strengths (≈35 MPa) and shrinkage values when higher amount of ashes were used. By varying the activator solutions and binder composition, compressive strength up to 70 MPa associated with shrinkage values of about 4200 microstrains were measured. Durability tests were conducted to assess the acid and thermal resistance of the different mortars. They all showed good resistance in a solution of 5%wt of H2SO4 also after 60 days of immersion, while they showed a decrease of mechanical properties in the range of 60-90% when exposed to thermal cycles up to 700°C.

Keywords: alkali activated cement, biomass ash, durability, shrinkage, slag

Procedia PDF Downloads 325
5998 Intelligent Platform for Photovoltaic Park Operation and Maintenance

Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou

Abstract:

A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.

Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance

Procedia PDF Downloads 49
5997 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method

Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada

Abstract:

The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.

Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation

Procedia PDF Downloads 367
5996 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia

Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak

Abstract:

Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.

Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification

Procedia PDF Downloads 78
5995 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture

Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou

Abstract:

Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.

Keywords: concrete, mineral admixture, hydration, structure

Procedia PDF Downloads 326
5994 Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt

Authors: O. M. Omar, G. D. Abd Elhameed, A. M. Heniegal, H. A. Mohamadien

Abstract:

Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa.

Keywords: geopolymer, molarity, sodium hydroxide, sodium silicate

Procedia PDF Downloads 291
5993 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials

Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo

Abstract:

Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.

Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength

Procedia PDF Downloads 389
5992 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior

Authors: Burak Bal

Abstract:

Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.

Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure

Procedia PDF Downloads 154
5991 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel

Authors: Etienne Bonnaud, David Lindell

Abstract:

Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.

Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture

Procedia PDF Downloads 70
5990 Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: injection moulding, tensile strength, poly-propylene, Taguchi

Procedia PDF Downloads 288
5989 Deep Cryogenic Treatment With Subsequent Aging Applied to Martensitic Stainless Steel: Evaluation of Hardness, Tenacity and Microstructure

Authors: Victor Manuel Alcántara Alza

Abstract:

The way in which the application of the deep cryogenic treatment DCT(-196°C) affects, applied with subsequent aging, was investigated, regarding the mechanical properties of hardness, toughness and microstructure, applied to martensitic stainless steels, with the aim of establishing a different methodology compared to the traditional DCT cryogenic treatment with subsequent tempering. For this experimental study, a muffle furnace was used, first subjecting the specimens to deep cryogenization in a liquid Nitrogen bath/4h, after being previously austenitized at the following temperatures: 1020-1030-1040-1050 (°C) / 1 hour; and then tempered in oil. A first group of cryogenic samples were subjected to subsequent aging at 150°C, with immersion times: 2.5 -5- 10 - 20 - 50 – 100 (h). The next group was subjected to subsequent tempering at temperatures: 480-500-510-520-530-540 (°C)/ 2h. The hardness tests were carried out under standards, using a Universal Durometer, and the readings were made on the HRC scale. The Impact Resistance tests were carried out in a Charpy machine following the ASTM E 23 – 93ª standard. Measurements were taken in joules. Microscopy was performed at the optical level using a 1000X microscope. It was found: For the entire aging interval, the samples austenitized at 1050°C present greater hardness than austenitized at 1040°C, with the maximum peak aged being at 30h. In all cases, the aged samples exceed the hardness of the tempered samples, even in their minimum values. In post-tempered samples, the tempering temperature hardly have effect on the impact strength of material. In the Cryogenic Treatment: DCT + subsequent aging, the maximum hardness value (58.7 HRC) is linked to an impact toughness value (54J) obtained with aging time of 39h, which is considered an optimal condition. The higher hardness of steel after the DCT treatment is attributed to the transformation of retained austenite into martensite. The microstructure is composed mainly of lath martensite; and the original grain size of the austenite can be appreciated. The choice of the combination: Hardness-toughness, is subject to the required service conditions of steel.

Keywords: deep cryogenic treatment; aged precipitation; martensitic steels;, mechanical properties; martensitic steels, hardness, carbides precipitaion

Procedia PDF Downloads 74
5988 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 92
5987 Stabilization of Medical Waste Incineration Fly Ash in Cement Mortar Matrix

Authors: Tanvir Ahmed, Musfira Rahman, Rumpa Chowdhury

Abstract:

We performed laboratory experiments to assess the suitability of using medical waste incineration fly ash in cement as a construction material based on the engineering properties of fly ash-cement matrix and the leaching potential of toxic heavy metals from the stabilized mix. Fly ash-cement samples were prepared with different proportions of fly ash (0%, 5%, 10%, 15% and 20% by weight) in the laboratory controlled conditions. The solidified matrix exhibited a compressive strength from 3950 to 4980 psi when fly ash is mixed in varying proportions. The 28-day compressive strength has been found to decrease with the increase in fly ash content, but it meets the minimum requirement of compressive strength for cement-mortar. Soundness test results for cement-mortar mixes having up to 15% fly ash. Final and initial setting times of cement have been found to generally increase with fly ash content. Water requirement (for normal consistency) also increased with the increase in fly ash content in cement. Based on physical properties of the cement-mortar matrix it is recommended that up to 10% (by weight) medical waste incineration fly ash can be incorporated for producing cement-mortar of optimum quality. Leaching behaviours of several targeted heavy metals (As, Cu, Ni, Cd, Pb, Hg and Zn) were analyzed using Toxicity Characteristics Leaching Procedure (TCLP) on fly ash and solidified fly ash-cement matrix. It was found that the leached concentrations of As, Cu, Cd, Pb and Zn were reduced by 80.13%, 89.47%, 33.33% and 23.9% respectively for 10% fly ash incorporated cement-mortar matrix compared to that of original fly ash. The leached concentrations of heavy metals were from the matrix were far below the EPA land disposal limits. These results suggest that the solidified fly ash incorporated cement-mortar matrix can effectively confine and immobilize the heavy metals contained in the fly ash.

Keywords: cement-mortar, fly ash, leaching, waste management

Procedia PDF Downloads 172
5986 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 358
5985 Preparation and Properties of Chloroacetated Natural Rubber Rubber Foam Using Corn Starch as Curing Agent

Authors: Ploenpit Boochathum, Pitchayanad Kaolim, Phimjutha Srisangkaew

Abstract:

In general, rubber foam is produced based on the sulfur curing system. However, the remaining sulfur in the rubber product waste is burned to sulfur dioxide gas causing the environment pollution. To avoid using sulfur as curing agent in the rubber foam products, this research work proposes non-sulfur curing system by using corn starch as a curing agent. The ether crosslinks were proposed to be produced via the functional bonding between hydroxyl groups of the starch molecules and chloroacetate groups added on the natural rubber molecules. The chloroacetated natural rubber (CNR) latex was prepared via the epoxidation reaction of the concentrated natural rubber latex, subsequently, epoxy rings were attacked by chloroacetic acid to produce hydroxyl groups and chloroacetate groups on the rubber molecules. Foaming agent namely NaHCO3 was selected to add in the CNR latex due to the low decomposition temperature at about 50°C. The appropriate curing temperature was assigned to be 90°C that is above gelatinization temperature; 60-70°C, of starch. The effect of weight ratio of starch, i.e., 0 phr, 3 phr and 5 phr, on the physical properties of CNR rubber foam was investigated. It was found that density reduced from 0.81 g/cm3 for 0 phr to 0.75 g/cm3 for 3 phr and 0.79 g/cm3 for 5 phr. The ability to return to its original thickness after prolonged compressive stresses of CNR rubber foam cured with starch loading of 5 phr was found to be considerably better than that of CNR rubber foam cured with starch 3 phr and CNR rubber foam without addition of starch according to the compression set that was determined to decrease from 66.67% to 40% and 26.67% with the increase loading of starch. The mechanical properties including tensile strength and modulus of CNR rubber foams cured using starch were determined to increase except that the elongation at break was found to decrease. In addition, all mechanical properties of CNR rubber foams cured with the starch 3 phr and 5 phr were found to be slightly different and drastically higher than those of CNR rubber foam without the addition of starch. This research work indicates that starch can be applicable as a curing agent for CNR rubber. This is confirmed by the increase of the elastic modulus (G') of CNR rubber foams that was cured with the starch over the CNR rubber foam without curing agent. This type of rubber foam is believed to be one of the biodegradable and environment-friendly product that can be cured at low temperature of 90°C.

Keywords: chloroacetated natural rubber, corn starch, non-sulfur curing system, rubber foam

Procedia PDF Downloads 319