Search results for: residency training
1690 The Effect Study of Meditation Music in the Elderly
Authors: Metee Pigultong
Abstract:
The research aims at 1) composition of meditation music, 2) study of the meditation time reliability. The population is the older adults who meditated practitioners in the Thepnimitra Temple, Don Mueang District, Bangkok. The sample group was the older persons who meditated practitioners from the age of 60 with five volunteers. The research methodology was time-series to conduct the research progression. The research instruments included: 1) meditation music, 2) brain wave recording form. The research results found that 1) the music combines the binaural beats suitable for the meditation of the older persons, consisting of the following features: a) The tempo rate of the meditation music is no more than 60 beats per minute. b) The musical instruments for the meditation music arrangement include only 4-5 pieces. c) The meditation music arrangement needs to consider the nature of the right instrument. d) Digital music instruments are suitable for composition. e) The pure-tone sound combined in music must generate a brain frequency at the level of 10 Hz. 2) After the researcher conducted a 3-weeks brain training procedure, the researcher performed three tests for the reliability level using Cronbach's Alpha method. The result showed that the meditation reliability had the level = .475 as a moderate concentration.Keywords: binaural beats, music therapy, meditation, older person, the Buddhist meditated practitioners
Procedia PDF Downloads 1911689 Classical Physics against New Physics in Teaching Science
Authors: Patricio Alberto Cullen
Abstract:
Teaching Science in high school has been decreasing its quality for several years, and it is an obvious theme of discussion over more than 30 years. As a teacher of Secondary Education and a Professor of Technological University was necessary to work with some projects that attempt to articulate the different methodologies and concepts between both levels. Teaching Physics in Engineering Career is running between two waters. Disciplinary content and inconsistent training students got in high school. In the heady times facing humanity, teaching Science has become a race against time, and this is where it is worth stopping. Professor of Physics has outdated teaching tools against the relentless growth of knowledge in the Academic World. So we have raised from a pedagogical point of view the following question: Laboratory practices must continue to focus on traditional physics or should develop alternatives between old practices and new physics methodologies. Faced with this paradox, we stopped to try to answer from our experience, and our teaching and learning practice. These are one of the greatest difficulties presented in the Engineering work. The physics team will try to find new methodologies that are appealing to the population of students in the 21st century. Currently, the methodology used is question students about their personal interests. Once discovered mentioned interests, will be held some lines of action to facilitate achieving the goals.Keywords: high school and university, level, students, physics, teaching physics
Procedia PDF Downloads 3151688 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 531687 Use of Computer and Machine Learning in Facial Recognition
Authors: Neha Singh, Ananya Arora
Abstract:
Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.Keywords: facial action, action units, coding, machine learning
Procedia PDF Downloads 1061686 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining
Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva
Abstract:
Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining
Procedia PDF Downloads 1681685 Design and Implementation of Image Super-Resolution for Myocardial Image
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction
Procedia PDF Downloads 3751684 Glocalization of Journalism and Mass Communication Education: Best Practices from an International Collaboration on Curriculum Development
Authors: Bellarmine Ezumah, Michael Mawa
Abstract:
Glocalization is often defined as the practice of conducting business according to both local and global considerations – this epitomizes the curriculum co-development collaboration between a journalism and mass communications professor from a university in the United States and the Uganda Martyrs University in Uganda where a brand new journalism and mass communications program was recently co-developed. This paper presents the experiences and research result of this initiative which was funded through the Institute of International Education (IIE) under the umbrella of the Carnegie African Diaspora Fellowship Program (CADFP). Vital international and national concerns were addressed. On a global level, scholars have questioned and criticized the general Western-module ingrained in journalism and mass communication curriculum and proposed a decolonization of journalism curricula. Another major criticism is the concept of western-based educators transplanting their curriculum verbatim to other regions of the world without paying greater attention to the local needs. To address these two global concerns, an extensive assessment of local needs was conducted prior to the conceptualization of the new program. The assessment of needs adopted a participatory action model and captured the knowledge and narratives of both internal and external stakeholders. This involved review of pertinent documents including the nation’s constitution, governmental briefs, and promulgations, interviews with governmental officials, media and journalism educators, media practitioners, students, and benchmarking the curriculum of other tertiary institutions in the nation. Information gathered through this process served as blueprint and frame of reference for all design decisions. In the area of local needs, four key factors were addressed. First, the realization that most media personnel in Uganda are both academically and professionally unqualified. Second, the practitioners with academic training were found lacking in experience. Third, the current curricula offered at several tertiary institutions are not comprehensive and lack local relevance. The project addressed these problems thus: first, the program was designed to cater to both traditional and non-traditional students offering opportunities for unqualified media practitioners to get their formal training through evening and weekender programs. Secondly, the challenge of inexperienced graduates was mitigated by designing the program to adopt the experiential learning approach which many refer to as the ‘Teaching Hospital Model’. This entails integrating practice to theory - similar to the way medical students engage in hands-on practice under the supervision of a mentor. The university drew a Memorandum of Understanding (MoU) with reputable media houses for students and faculty to use their studios for hands-on experience and for seasoned media practitioners to guest-teach some courses. With the convergence functions of media industry today, graduates should be trained to have adequate knowledge of other disciplines; therefore, the curriculum integrated cognate courses that would render graduates versatile. Ultimately, this research serves as a template for African colleges and universities to follow in their quest to glocalize their curricula. While the general concept of journalism may remain western, journalism curriculum developers in Africa through extensive assessment of needs, and focusing on those needs and other societal particularities, can adjust the western module to fit their local needs.Keywords: curriculum co-development, glocalization of journalism education, international journalism, needs assessment
Procedia PDF Downloads 1291683 Identifying the Level of Awareness on Value Management Practice amongst Construction Practitioners in Nigeria
Authors: Alhassan Dahiru
Abstract:
Value management is widely accepted technique of eliminating unnecessary cost at different stages of project development that maximizes the functional value of a project by managing its evolution and development from concept to completion. Many construction industry practitioners are not aware of Value Management practice, and its use is less widespread in Nigeria. The aim of this research is to identify the level of awareness on value management practice amongst construction practitioners with a view to contribute to the improvement of the implementation of value management practice in the Nigerian construction industry. In this study, construction practitioners have been chosen as respondents from the 6 geopolitical zones of the federation including FCT Abuja. Through the survey, a total number of 360 semi-structured questionnaires were administered and 284 were returned and remained good for the analysis. The results indicate that most of the respondents were aware of the value management concept and issues surrounding construction industry in Nigeria, while about 32% of the respondents were not aware of its potential benefits. Therefore, organisations should review their techniques and processes from time to time for improvement on effective service delivery. Additionally, a change management strategy should also be part of every organization to ease the introduction of new techniques such as value management. There is also the need for more value management training workshops and seminars in order to enlighten the participants of the construction industry on the principles, concept, and techniques involved in the value management process.Keywords: sustainability, value management, construction practitioners, Nigeria
Procedia PDF Downloads 2311682 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 4291681 The Challenges of Decentralised Education Policy for Teachers in Indonesian Contexts
Authors: Ahmad Ardillah Rahman
Abstract:
The decentralisation policy in education has been a trend in some countries in the last two decades. In Indonesia, the implementation of the policy has been introduced since 2003 with the occurrence of School-Based Management policy. The reform has affected the way principals and teachers should involve in school practices in which more autonomies and flexibilities are given to teachers in conducting their teaching practices. Almost 13 years since the policy was firstly introduced, the government and teachers in Indonesia still face some obstacles in maximising the potential benefits of the implementation of the decentralised education system. This study, thus, critically analyses the challenges of decentralised education policy for teachers in Indonesian education context. The purposes of this study are threefold. Firstly, it will explore the history of policy transformation from a centralised to a decentralised education policy. Secondly, it points out the advantages of the decentralised policy implementation. The last, it provides a comprehensive description of challenges faced by Indonesian teachers with the new roles in designing and implementing a curriculum. By using data from existing surveys and research, this study concludes that to successfully implement the transformation in the educational reform of Indonesia, continual and gradual teachers’ training, professional career pathway, and local monitoring for teachers should be developed and strengthened.Keywords: curriculum design, decentralisation, school-based management, teachers’ autonomy
Procedia PDF Downloads 3211680 Investigating the Multipurpose, Usage, and Application of Bamboo in Abuja, Nigeria’s Federal Capital Territory
Authors: Michael Adedotun Oke
Abstract:
In Nigeria, Bamboo is one of the most socioeconomically beneficial farming crops, with yearly investment returns of up to N1.6 million. Growing bamboo is a fantastic long-term investment. It may self-renew for up to 70 years and is durable, long-lasting, and environmentally friendly; through an oral interview with the sellers, usage examples, and visual depiction to support those examples, The paper was able to discuss the different uses for bamboo. The various field observations in Federal Capital Territory, including the electric poles, buildings, paper production, and decoration, from picture frames to room dividing screens, bamboo can make some elegant and exotic decorations for the home, building, furniture, cooking, agriculture, instrument, in construction for flooring, roofing designing, scaffolding, garden planting, even to control erosion and slope stabilization in erosion are observed. The use of it is multiplexed with straightforward man-made technology, in contrast. 'This study wants more innovative practices that will be able to make it lucrative for business purposes and sustainability of the process. Although there are various uses and requirements for growing bamboo successfully, it is advised to receive the proper training and in-depth understanding of the growth and management procedures. Consult an experienced bamboo farmer for help.Keywords: bamboo, use, Nigeria, socioeconomically
Procedia PDF Downloads 671679 Do Career Expectancy Beliefs Foster Stability as Well as Mobility in One's Career? A Conceptual Model
Authors: Bishakha Majumdar, Ranjeet Nambudiri
Abstract:
Considerable dichotomy exists in research regarding the role of optimism and self-efficacy in work and career outcomes. Optimism and self-efficacy are related to performance, commitment and engagement, but also are implicated in seeing opportunities outside the firm and switching jobs. There is absence of research capturing these opposing strands of findings in the same model and providing a holistic understanding of how the expectancy beliefs operate in case of the working professional. We attempt to bridge this gap by proposing that career-decision self-efficacy and career outcome expectations affect intention to quit through the competitive mediation pathways of internal and external marketability. This model provides a holistic picture of the role of career expectancy beliefs on career outcomes, by considering perceived career opportunities both inside and outside one’s present organization. The understanding extends the application of career expectancy beliefs in the context of career decision-making by the employed individual. Further, it is valuable for reconsidering the effectiveness of hiring and retention techniques used by a firm, as selection, rewards and training programs need to be supplemented by interventions that specifically strengthen the stability pathway.Keywords: career decision self-efficacy, career outcome expectations, marketability, intention to quit, job mobility
Procedia PDF Downloads 6341678 Ecobiological Study of Olivier in the Northern Slopes of the Mountains of Tlemcen, Western Algeria
Authors: Hachemi Nouria
Abstract:
The olive tree is a Mediterranean tree, which belongs to the family Oleaceae. The Olea genus contains various species and subspecies, and the only species bearing edible fruit is Olea europaea. The desired issue in this study is to provide the current status of plant cover and especially the training in Olea europaea currently existing in the major centers of the region of Tlemcen. While based on the flora and biometric aspect of this plant germplasm. In order to make an assessment of the phytomass, we made measurements of the four parameters of the aerial part of the taxon: height, diameter, and canopy density to ten feet of the olive tree per station. The floristic analysis shows a certain floristic difference between the different stations. The vegetal formations reflect the biotic and abiotic conditions including climate affecting the ecosystem. Biometric study on the feet of Olea in the six study sites, has led us to conclude that the four measured parameters provides insight on the development or degradation of Olea feet depending on the layout of the stations and the factors environmental. We find that the terrains are havens for these assets. Also the local microclimate (Oued Thalweg) promotes the healthy development of this species.Keywords: olivier, ecology, biometrics, Tlemcen, Algeria
Procedia PDF Downloads 2961677 An In-Depth Study on the Experience of Novice Teachers
Authors: Tsafi Timor
Abstract:
The research focuses on the exploration of the unique journey that novice teachers experience in their first year of teaching, among graduates of re-training programs into teaching. The study explores the experiences of success and failure and the factors that underpin positive experiences, as well as the journey (process) of this year with reference to the comparison between novice teachers and new immigrants. The content analysis that was adopted in the study was conducted on texts that were written by the teachers and detailed their first year of teaching. The findings indicate that experiences of success are featured by personal satisfaction, constant need of feedback, high motivation in challenging situations, and emotions. Failure experiences are featured by frustration, helplessness, sense of humiliation, feeling of rejection, and lack of efficacy. Factors that promote and inhibit positive experiences relate to personal, personality, professional and organizational levels. Most teachers reported feeling like new immigrants, and demonstrated different models of the process of the first year of teaching. Further research is recommended on the factors that promote and inhibit positive experiences, and on 'The Missing Link' of the relationship between Teacher Education Programs and the practices in schools.Keywords: first-year teaching, novice teachers, school practice, teacher education programs
Procedia PDF Downloads 2911676 The Readiness of English Communication Skills for Travel Agents to Enter the ASEAN Economic Community
Authors: Bavornluck Kuosuwan
Abstract:
The purpose of this research was to study the level of readiness of English communication skills for travel agents in the Silom road area of Bangkok in order to enter the ASEAN economic community in the year 2015. The multi-stage sampling method was utilized with 474 respondents from 79 travel agencies. An English Questionnaire was used to collect the data. Descriptive statistics included percentage, average, standard deviation and Pearson’s r coefficient. The findings revealed that the majority of respondents were not well prepared in terms of ASEAN knowledge including laws and regulations. The majority of respondents had not been well informed about the changes that will come with the coming of ASEAN economic community. Moreover, the level of English communication for most travel agents was between the poor and intermediate level and therefore improvement is needed, especially the speaking and listening skill. In other words, the majority of respondents needed more training in terms of communications skills. The correlation between the working environment and attitude of the staff was very positive. Moreover, the correlation between the background of staff and attitude of staff was also very positive and most of demographic factors had a positive correlation with attitude of staff, except gender.Keywords: ASEAN, communication skills, travel agents, media engineering
Procedia PDF Downloads 2521675 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 1001674 Development and Usability Assessment of a Connected Resistance Exercise Band Application for Strength-Monitoring
Authors: J. A. Batsis, G. G. Boateng, L. M. Seo, C. L. Petersen, K. L. Fortuna, E. V. Wechsler, R. J. Peterson, S. B. Cook, D. Pidgeon, R. S. Dokko, R. J. Halter, D. F. Kotz
Abstract:
Resistance exercise bands are a core component of any physical activity strengthening program. Strength training can mitigate the development of sarcopenia, the loss of muscle mass or strength and function with aging. Yet, the adherence of such behavioral exercise strategies in a home-based setting are fraught with issues of monitoring and compliance. Our group developed a Bluetooth-enabled resistance exercise band capable of transmitting data to an open-source platform. In this work, we developed an application to capture this information in real-time, and conducted three usability studies in two mixed-aged groups of participants (n=6 each) and a group of older adults with obesity participating in a weight-loss intervention (n=20). The system was favorable, acceptable and provided iterative information that could assist in future deployment on ubiquitous platforms. Our formative work provides the foundation to deliver home-based monitoring interventions in a high-risk, older adult population.Keywords: application, mHealth, older adult, resistance exercise band, sarcopenia
Procedia PDF Downloads 1741673 Research on the Status Quo and Countermeasures of Professional Development of Engineering Teachers in China
Authors: Wang Xiu Xiu
Abstract:
The professional development of engineering teachers in universities is the key to the construction of outstanding engineers in China, which is related to the quality and prospects of the entire engineering education. This study investigated 2789 teachers' professional development in different regions of China, which outlines the current situation of the professional development of engineering teachers from three perspectives: professional development needs, professional development methods and professional development effects. Data results show that engineering teachers have the strongest demand for the improvement of subject knowledge and teaching ability. Engineering faculty with 0-5 years of teaching experience, under 35 years of age and a doctorate degree have the strongest demand for development. The frequency of engineering teachers' participation in various professional development activities is low, especially in school-enterprise cooperation-related activities. There are significant differences in the participation frequency of professional development activities among engineering faculty with different teaching ages, ages, professional titles, degrees and administrative positions in schools. The professional development of engineering faculty has been improved to a certain extent and is positively affected by professional development needs and participation in professional development. In this regard, we can constantly improve the professional development system of engineering teachers from three aspects: training on demand, stimulating motivation, and optimizing resource allocation, to enhance the professional development level of engineering teachers.Keywords: engineering teachers in universities, professional development, status quo, countermeasures
Procedia PDF Downloads 171672 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier
Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho
Abstract:
Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.Keywords: classifier algorithm, diabetes, diagnostic model, machine learning
Procedia PDF Downloads 3361671 The Mediation Role of Loneliness in the Relationship between Interpersonal Trust and Empathy
Authors: Ghazal Doostmohammadi, Susan Rahimzadeh
Abstract:
Aim: This research aimed to investigate the relationship between empathy and interpersonal trust and recognize the mediating role of loneliness between them in both genders. Methods: With a correlational descriptive design, 192 university students (130 female and 62 male) responded to the questionnaires on “empathy quotient,” “loneliness,” and “interpersonal trust” tests. These tests were designed and validated by experts in the field. Data were analysed using Pearson correlation and path analysis, which is a statistical technique that uses standard linear regression equations to determine the degree of conformity of a theoretical causal model with reality. Results: The data analysis showed that there was no significant correlation between interpersonal trust, both with loneliness (t=0.169) and empathy (t=0.186), while there was a significant negative correlation (t=0.359) between empathy and loneliness. This means that there is an inverse correlation between empathy and loneliness. The path analysis confirmed the hypothesis of the research about the mediating role of loneliness between empathy and interpersonal trust. But gender did not play a role in this relationship. Conclusion: As an outcome, clinical professionals and education trainers should pay more attention to interpersonal trust as a basic need and try to recreate and shape it to prevent people's social breakdown, and on the other hand, self-disclosure training (especially in Men), expression of feelings and courage should be given double importance to prevent the consequences of loneliness.Keywords: empathy, loneliness, interpersonal trust, gender
Procedia PDF Downloads 841670 Experience Level and Adoption of Interpretation Strategies by Iranian Interpreters
Authors: Niloofar Fathizaviyehkord
Abstract:
Just as two hands cannot make a good boxer, knowing two or more languages cannot make a skillful interpreter. Interpreting, either consecutive or simultaneous, is a cognitively demanding task requiring not only linguistic and discourse knowledge but also strategic competence. Moreover, experience level can play a very crucial role in the strategies interpreters may employ since translation and interpretation quality is a matter of experience, besides other factors, as well. With regard to the significance of strategic competence, this study investigated what strategies are mainly employed by interpreters, what strategies are employed more frequently, and whether experience level can affect the choice of strategies by interpreters or not. To collect the necessary data, the first retrospective interviews were held with 20 interpreters experienced more or less in simultaneous and consecutive interpretation to see what strategies other than those classified in the literature are employed by interpreters. Then, several classifications of strategies in literature were merged with those emerging from the retrospective interviews to come up with a comprehensive questionnaire on interpreting strategies. After seeking five experts’ opinions regarding the wording/content of the questionnaire, it was given to 60 interpreters. The statistical analysis of the questionnaire data and experience level through ANOVA showed experience level could affect the choice of strategies. This study closes with the theoretical/practical implications of the findings for interpreter training.Keywords: experience level, consecutive and simultaneous, interpretation strategies, translation
Procedia PDF Downloads 1381669 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network
Authors: Muhammad R. Ahmed, Mohammed Aseeri
Abstract:
Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.Keywords: internal attack, wireless sensor network, network security, entropy
Procedia PDF Downloads 4551668 Schoolwide Implementation of Schema-Based Instruction for Mathematical Problem Solving: An Action Research Investigation
Authors: Sara J. Mills, Sally Howell
Abstract:
The field of special education has long struggled to bridge the research to practice gap. There is ample evidence from research of effective strategies for students with special needs, but these strategies are not routinely implemented in schools in ways that yield positive results for students. In recent years, the field of special education has turned its focus to implementation science. That is, discovering effective methods of implementing evidence-based practices in school settings. Teacher training is a critical factor in implementation. This study aimed to successfully implement Schema-Based Instruction (SBI) for math problem solving in four classrooms in a special primary school serving students with language deficits, including students with Autism Spectrum Disorders (ASD) and Intellectual Disabilities (ID). Using an action research design that allowed for adjustments and modification to be made over the year-long study, two cohorts of teachers across the school were trained and supported in six-week learning cycles to implement SBI in their classrooms. The learning cycles included a one-day training followed by six weeks of one-on-one or team coaching and three fortnightly cohort group meetings. After the first cohort of teachers completed the learning cycle, modifications and adjustments were made to lesson materials in an attempt to improve their effectiveness with the second cohort. Fourteen teachers participated in the study, including master special educators (n=3), special education instructors (n=5), and classroom assistants (n=6). Thirty-one students participated in the study (21 boys and 10 girls), ranging in age from 5 to 12 years (M = 9 years). Twenty-one students had a diagnosis of ASD, 20 had a diagnosis of mild or moderate ID, with 13 of these students having both ASD and ID. The remaining students had diagnosed language disorders. To evaluate the effectiveness of the implementation approach, both student and teacher data was collected. Student data included pre- and post-tests of math word problem solving. Teacher data included fidelity of treatment checklists and pre-post surveys of teacher attitudes and efficacy for teaching problem solving. Finally, artifacts were collected throughout the learning cycle. Results from cohort 1 and cohort 2 revealed similar outcomes. Students improved in the number of word problems they answered correctly and in the number of problem-solving steps completed independently. Fidelity of treatment data showed that teachers implemented SBI with acceptable levels of fidelity (M = 86%). Teachers also reported increases in the amount of time spent teaching problem solving, their confidence in teaching problem solving and their perception of students’ ability to solve math word problems. The artifacts collected during instruction indicated that teachers made modifications to allow their students to access the materials and to show what they knew. These findings are in line with research that shows student learning can improve when teacher professional development is provided over an extended period of time, actively involves teachers, and utilizes a variety of learning methods in classroom contexts. Further research is needed to evaluate whether these gains in teacher instruction and student achievement can be maintained over time once the professional development is completed.Keywords: implementation science, mathematics problem solving, research-to-practice gap, schema based instruction
Procedia PDF Downloads 1251667 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 2411666 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks
Authors: Juan Sebastián Hernández
Abstract:
The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR
Procedia PDF Downloads 1021665 The Search of Possibility of Running Six Sigma Process in It Education Center
Authors: Mohammad Amini, Aliakbar Alijarahi
Abstract:
This research that is collected and title as ‘ the search of possibility of running six sigma process in IT education center ‘ goals to test possibility of running the six sigma process and using in IT education center system. This process is a good method that is used for reducing process, errors. To evaluate running off six sigma in the IT education center, some variables relevant to this process is selected. These variables are: - The amount of support from organization master boss to process. - The current specialty. - The ability of training system for compensating reduction. - The amount of match between current culture whit six sigma culture . - The amount of current quality by comparing whit quality gain from running six sigma. For evaluation these variables we select four question and to gain the answers, we set a questionnaire from with 28 question and distribute it in our typical society. Since, our working environment is a very competition, and organization needs to decree the errors to minimum, otherwise it lasts their customers. The questionnaire from is given to 55 persons, they were filled and returned by 50 persons, after analyzing the forms these results is gained: - IT education center needs to use and run this system (six sigma) for improving their process qualities. - The most factors need to run the six sigma exist in the IT education center, but there is a need to support.Keywords: education, customer, self-action, quality, continuous improvement process
Procedia PDF Downloads 3401664 China’s Participation in WorldSkills Competition for 14 Years: Experience, Problems and Prospects
Authors: Wang Di, Luo Shengqiang, Chen Yanjie
Abstract:
Vocational skill competition is an effective means to test and improve the quality of engineering education personnel training and provides a high-level practice platform for practical teaching in engineering education. Since China participated in the WorldSkills Competition in 2011, it has achieved very good results in the past 14 years. This study provides a group portrait of China's participation in the WorldSkills Competition, including competitors, competition managers and, Chinese laborers, etc. Meanwhile, through in-depth research on the basic process of launching the WorldSkills Competition in China, the experience and main problems of China's participation in skills competition are summarized. Including China's remarkable practices in institutional mechanisms, team management, promoting world skills development, and boosting social equity and gender equality, it puts forward specific ideas for developing countries to strengthen engineering education and participate in skills competitions. Centering on the value concept of a community with a shared future for mankind proposed by China, we envision how to reinforce skills development in China and take concrete actions to support the United Nations Sustainable Development Goals (SDGs).Keywords: WorldSkills competition, engineering education, TVET, Chinese experience
Procedia PDF Downloads 81663 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 3461662 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach
Authors: Utkarsh A. Mishra, Ankit Bansal
Abstract:
At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks
Procedia PDF Downloads 2231661 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System
Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim
Abstract:
For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member
Procedia PDF Downloads 188