Search results for: early detection of violence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7287

Search results for: early detection of violence

5037 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 102
5036 Analyzing and Determining the Ideal Response Force for Combatting Terrorist Groups

Authors: Erhan Turgut, Salih Ergün, Abdülkadir Öz

Abstract:

Terror is a modern war strategy which uses violence as a means of communication in order to achieve political objectives. In today’s security environment narrowing the propaganda field of terrorist organization is the primary goal for the security forces. In this sense, providing and maintaining public support is the most necessary ability for security units. Rather than enemy and threat-oriented approach, homeland security oriented approach is essential to ensure public support. In this study, terror assumed as a homeland security issue and assigning the law enforcement forces with military status is analyzed.

Keywords: terrorism, counter-terrorism, military status law-enforcement, terrorist groups

Procedia PDF Downloads 459
5035 High-Resolution Computed Tomography Imaging Features during Pandemic 'COVID-19'

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

By the development of new coronavirus (2019-nCoV) pneumonia, chest high-resolution computed tomography (HRCT) has been one of the main investigative implements. To realize timely and truthful diagnostics, defining the radiological features of the infection is of excessive value. The purpose of this impression was to consider the imaging demonstrations of early-stage coronavirus disease 2019 (COVID-19) and to run an imaging base for a primary finding of supposed cases and stratified interference. The right prophetic rate of HRCT was 85%, sensitivity was 73% for all patients. Total accuracy was 68%. There was no important change in these values for symptomatic and asymptomatic persons. These consequences were besides free of the period of X-ray from the beginning of signs or interaction. Therefore, we suggest that HRCT is a brilliant attachment for early identification of COVID-19 pneumonia in both symptomatic and asymptomatic individuals in adding to the role of predictive gauge for COVID-19 pneumonia. Patients experienced non-contrast HRCT chest checkups and images were restored in a thin 1.25 mm lung window. Images were estimated for the existence of lung scratches & a CT severity notch was allocated separately for each patient based on the number of lung lobes convoluted.

Keywords: COVID-19, radiology, respiratory diseases, HRCT

Procedia PDF Downloads 141
5034 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 159
5033 Comparative Study of Mutations Associated with Second Line Drug Resistance and Genetic Background of Mycobacterium tuberculosis Strains

Authors: Syed Beenish Rufai, Sarman Singh

Abstract:

Background: Performance of Genotype MTBDRsl (Hain Life science GmbH Germany) for detection of mutations associated with second-line drug resistance is well known. However, less evidence regarding the association of mutations and genetic background of strains is known which, in the future, is essential for clinical management of anti-tuberculosis drugs in those settings where the probability of particular genotype is predominant. Material and Methods: During this retrospective study, a total of 259 MDR-TB isolates obtained from pulmonary TB patients were tested for second-line drug susceptibility testing (DST) using Genotype MTBDRsl VER 1.0 and compared with BACTEC MGIT-960 as a reference standard. All isolates were further characterized using spoligotyping. The spoligo patterns obtained were compared and analyzed using SITVIT_WEB. Results: Of total 259 MDR-TB isolates which were screened for second-line DST by Genotype MTBDRsl, mutations were found to be associated with gyrA, rrs and emb genes in 82 (31.6%), 2 (0.8%) and 90 (34.7%) isolates respectively. 16 (6.1%) isolates detected mutations associated with both FQ as well as to AG/CP drugs (XDR-TB). No mutations were detected in 159 (61.4%) isolates for corresponding gyrA and rrs genes. Genotype MTBDRsl showed a concordance of 96.4% for detection of sensitive isolates in comparison with second-line DST by BACTEC MGIT-960 and 94.1%, 93.5%, 60.5% and 50% for detection of XDR-TB, FQ, EMB, and AMK/CAP respectively. D94G was the most prevalent mutation found among (38 (46.4%)) OFXR isolates (37 FQ mono-resistant and 1 XDR-TB) followed by A90V (23 (28.1%)) (17 FQ mono-resistant and 6 XDR-TB). Among AG/CP resistant isolates A1401G was the most frequent mutation observed among (11 (61.1%)) isolates (2 AG/CP mono-resistant isolates and 9 XDR-TB isolates) followed by WT+A1401G (6 (33.3%)) and G1484T (1 (5.5%)) respectively. On spoligotyping analysis, Beijing strain (46%) was found to be the most predominant strain among pre-XDR and XDR TB isolates followed by CAS (30%), X (6%), Unique (5%), EAI and T each of 4%, Manu (3%) and Ural (2%) respectively. Beijing strain was found to be strongly associated with D94G (47.3%) and A90V mutations by (47.3%) and 34.8% followed by CAS strain by (31.6%) and 30.4% respectively. However, among AG/CP resistant isolates, only Beijing strain was found to be strongly associated with A1401G and WT+A1401G mutations by 54.5% and 50% respectively. Conclusion: Beijing strain was found to be strongly associated with the most prevalent mutations among pre-XDR and XDR TB isolates. Acknowledgments: Study was supported with Grant by All India Institute of Medical Sciences, New Delhi reference No. P-2012/12452.

Keywords: tuberculosis, line probe assay, XDR TB, drug susceptibility

Procedia PDF Downloads 140
5032 High Impact Biosratigraphic Study Of Amama-1 and Bara-1 Wells In Parts of Anambra Basin

Authors: J. O. Njoku, G. C. Soronnadi-ononiwu, E. J. Acrra, C. C. Agoha, T. C. Anyawu

Abstract:

The High Impact Biostratigrapgic Study of parts of Anambra basin was carried out using samples from two exploration wells (Amama-1 and Bara-1), Amama-1 (219M–1829M) and Bara-1 (317M-1594M). Palynological and Paleontological analyses were carried out on 100 ditch cutting samples. The faunal and floral succession were of terrestrial and marine origin as described and logged. The well penetrated four stratigraphic units in Anambra Basin (the Nkporo, Mamu, Ajali and Nsukka) the wells yielded well preserved formanifera and palynormorphs. The well yielded 53 species of foram and 69 species of palynomorphs, with 12 genera Bara-1 (25 Species of foram and 101 species of palynormorphs). Amama-1permitted the recognition of 21 genera with 31 formainiferal assemblage zones, 32 pollen and 37 spores assemblage zones, and dinoflagellate cyst, biozonation, ranging from late Campanian – early Paleocene. Bara-1 yielded (60 pollen, 41 spore assemblage zone and 18 dinoflagellate cyst).The zones, in stratigraphically ascending order for the foraminifera and palynomorphs are as follows. Amama Biozone A-Globotruncanella havanensis zone: Late Campanian –Maastrichtian (695 – 1829m) Biozone B-Morozovella velascoensis zone: Early Paleocene(165–695m) Bara-1 Biozone A-Globotruncanella havanensis zone: Late Campanian(1512m) Biozone B-Bolivina afra, B. explicate zone: Maastrichtian (634–1204m) Biozone C - Indeterminate (305 – 634m) palynomorphs Amama-1 A.Ctenolophonidites costatus zone:Early Maastrichtian (1829m) B-Retidiporites miniporatus Zone: Late Maastrichtian (1274m) Constructipollenites ineffectus Zone: Early Paleocene(695m) Bara-1 Droseridites senonicus Zone: Late Campanian (994– 1600m) B. Ctenolophonidites costatus Zone: Early Maastrichtian (713–994m) C. Retidiporites miniporatus Zone: Late Maastrichtian (305 –713m) The paleo – environment of deposition were determined to range from non-marine to outer netritic. A detailed categorization of the palynormorphs into terrestrially derived palynormorphs and marine derived palynormorphs based on the distribution of three broad vegetational types; mangrove, fresh water swamps and hintherland communities were used to evaluate sea level fluctuations with respect to sediments deposited in the basins and linked with a particular depositional system tract. Amama-1 recorded 4 maximum flooding surface(MFS) at depth 165-1829, dated b/w 61ma-76ma and three sequence boundary(SB) at depth1048m - 1533m and 1581 dated b/w 634m - 1387m, dated 69.5ma - 82ma and four sequence boundary(SB) at 552m-876m, dated 68ma-77.5ma respectively. The application of ecostratigraphic description is characterised by the prominent expansion of the hinterland component consisting of the Mangrove to Lowland Rainforest and Afromontane – Savannah vegetation.

Keywords: formanifera, palynomorphs. campanian, maastritchian, ecostratigraphic, anambra

Procedia PDF Downloads 12
5031 Enhancing the Sensitivity of Antigen Based Sandwich ELISA for COVID-19 Diagnosis in Saliva Using Gold Conjugated Nanobodies

Authors: Manal Kamel, Sara Maher

Abstract:

Development of sensitive non-invasive tests for detection of SARS-CoV-2 antigens is imperative to manage the extent of infection throughout the population, yet, it is still challenging. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swapswere collected from 170 PCR-confirmed positive and negative cases. Gold nanoparticles (AuNPs) were conjugated with S1protein receptor binding domain (RBD) nanobodies. Recombinant S1 monoclonal antibodies (S1mAb) as primery antibody and gold conjugated nanobodies as secondary antibody were employed in sandwich ELISA. Our developed system were optimized to achieve 87.5 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% for nasopharyngeal swaps, respectively. This means that saliva could be a suitable replacement for nasopharyngeal swaps No cross reaction was detected with other corona virus antigens. These results revealed that our developed ELISAcould be establishedas a new, reliable, sensitive, and non-invasive test for diagnosis of SARS-CoV-2 infection, using the easily collected saliva samples.

Keywords: COVID 19, diagnosis, ELISA, nanobodies

Procedia PDF Downloads 133
5030 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces

Authors: Shih-Yu Lo

Abstract:

Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.

Keywords: gender stereotype, object recognition, signal detection theory, weapon

Procedia PDF Downloads 207
5029 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network

Authors: Muhammad R. Ahmed, Mohammed Aseeri

Abstract:

Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.

Keywords: internal attack, wireless sensor network, network security, entropy

Procedia PDF Downloads 454
5028 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 125
5027 The Labyrinth - Circular Choral Chant of Dithyramb in the 7th BC, Mirroring the Conjuction of the Planets and the Milky Way Circle

Authors: Kleopatra Chatzigiosi

Abstract:

The paper delves into the spatial and mythological examination of the choral chant of Dithyramb in the 7th BC, its connections to Dionysus, and its role in the origin of drama, exploring harmonious and symbolic aspects of early Greek culture. The primary aim is to analyze the development of Dithyramb in relation to harmonic systems and early musical scales, linking them to circular time and celestial movements. Additionally, the study seeks to unveil the mythological ties of Dithyramb with ancient rituals worshipping Mother Earth Cybele. The methodology involves researching etymology and mythology related to Dithyramb based on Pindar's works and proposing a harmonious design for the performance space of Dithyramb through harmonic spirals inspired by ancient practices. Ιt is also included a comparative study with similar choral traditions from other ancient cultures, providing a broader context for the findings of the work. The research uncovers the symbolic significance of Dithyramb as a dramatized representation of harmonic phenomena, leading to human deification within a context of Sacred Architecture, highlighting the intricate connections between music, rituals, and divine worship in ancient Greek culture. The study enriches understanding of the harmonic and symbolic underpinnings of ancient Greek choral traditions, shedding light on the complex interplay between music, mythology, and ritual practices in the development of early theatrical performances. Data was collected through an in-depth analysis of ancient texts, specifically Pindar's Dithyrambs, to trace the etymology and mythological origins of Dithyramb and its associated symbolism. The analysis involved scrutinizing ancient sources to draw connections between Dithyramb, harmonic systems, celestial movements, and mythological narratives, culminating in a comprehensive exploration of the cultural and symbolic significance of this choral tradition. The study addresses how the choral chant of Dithyramb evolved harmoniously within the ancient Greek cultural framework, its connections to celestial phenomena and ritual practices, and the symbolic implications of its mythological associations within a sacred architectural context. The research illuminates the profound cultural, symbolic, and harmonic dimensions of the choral chant of Dithyramb, offering valuable insights into the intersections between music, mythology, and ritual in ancient Greece, enriching scholarly understanding of early theatrical traditions.

Keywords: circular choral chant of dithyramb, “exarchon”( leader), great “eniautos” (year), harmony labyrinth

Procedia PDF Downloads 20
5026 3D Vision Transformer for Cervical Spine Fracture Detection and Classification

Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi

Abstract:

In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.

Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score

Procedia PDF Downloads 114
5025 A Novel Method for Face Detection

Authors: H. Abas Nejad, A. R. Teymoori

Abstract:

Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.

Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model

Procedia PDF Downloads 336
5024 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 249
5023 Assessing Teachers’ Interaction with Children in Early Childhood Education (ECE). Cambodian Preschool Teachers’ Beliefs and Intensions

Authors: Shahid Karim, Alfredo Bautista, Kerry Lee

Abstract:

The association between teachers’ beliefs and practices has been extensively studied across the levels of education. Yet, there is a lack of context-specific evidence on the relationship between teachers’ beliefs and intentions regarding their interaction with children in early childhood education settings. Given the critical role of teachers’ beliefs in their practices, the present study examined Cambodian preschool teachers’ beliefs and intentions related to their interaction with children and what factors affect the relationship. Data was collected through a self-reported Beliefs and Intentions Questionnaire (BTQ) from preschool teachers teaching at different types of preschools in Cambodia. Four hundred nine preschool teachers teaching in public, private and community schools participated in the study through an online survey administered on Qualtrics. The quantitative analysis of the data revealed that teachers’ beliefs predict their intentions in preschool. Teachers’ teaching experience, level of education and professional training moderated the relationship between their beliefs and intentions. Differences existed between the groups of teachers teaching in different types of preschools and genders. Implications of the findings related to policy and preschool teachers’ professional development are discussed.

Keywords: teacher-child interaction, teaching beliefs, teaching intentions, preschool teaching accreditations, Cambodia

Procedia PDF Downloads 92
5022 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments

Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie

Abstract:

Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.

Keywords: antibody engineering, biosensor, phage display, unnatural amino acids

Procedia PDF Downloads 145
5021 Designing a Combined Outpatient and Day Treatment Eating Disorder Program for Adolescents and Transitional Aged Youth: A Naturalistic Case Study

Authors: Deanne McArthur, Melinda Wall, Claire Hanlon, Dana Agnolin, Krista Davis, Melanie Dennis, Elizabeth Glidden, Anne Marie Smith, Claudette Thomson

Abstract:

Background and significance: Patients with eating disorders have traditionally been an underserviced population within the publicly-funded Canadian healthcare system. This situation was worsened by the COVID-19 pandemic and accompanying public health measures, such as “lockdowns” which led to increased isolation, changes in routine, and other disruptions. Illness severity and prevalence rose significantly with corresponding increases in patient suffering and poor outcomes. In Ontario, Canada, the provincial government responded by increasing funding for the treatment of eating disorders, including the launch of a new day program at an intermediate, regional health centre that already housed an outpatient treatment service. The funding was received in March 2022. The care team sought to optimize this opportunity by designing a program that would fit well within the resource-constrained context in Ontario. Methods: This case study will detail how the team consulted the literature and sought patient and family input to design a program that optimizes patient outcomes and supports for patients and families while they await treatment. Early steps include a review of the literature, expert consultation and patient and family focus groups. Interprofessional consensus was sought at each step with the team adopting a shared leadership and patient-centered approach. Methods will include interviews, observations and document reviews to detail a rich description of the process undertaken to design the program, including evaluation measures adopted. Interim findings pertaining to the early stages of the program-building process will be detailed as well as early lessons and ongoing evolution of the program and design process. Program implementation and outcome evaluation will continue throughout 2022 and early 2023 with further publication and presentation of study results expected in the summer of 2023. The aim of this study is to contribute to the body of knowledge pertaining to the design and implementation of eating disorder treatment services that combine outpatient and day treatment services in a resource-constrained context.

Keywords: eating disorders, day program, interprofessional, outpatient, adolescents, transitional aged youth

Procedia PDF Downloads 107
5020 Gold Nanoprobes Assay for the Identification of Foodborn Pathogens Such as Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis

Authors: D. P. Houhoula, J. Papaparaskevas, S. Konteles, A. Dargenta, A. Farka, C. Spyrou, M. Ziaka, S. Koussisis, E. Charvalos

Abstract:

Objectives: Nanotechnology is providing revolutionary opportunities for the rapid and simple diagnosis of many infectious diseases. Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis are important human pathogens. Diagnostic assays for bacterial culture and identification are time consuming and laborious. There is an urgent need to develop rapid, sensitive, and inexpensive diagnostic tests. In this study, a gold nanoprobe strategy developed and relies on the colorimetric differentiation of specific DNA sequences based approach on differential aggregation profiles in the presence or absence of specific target hybridization. Method: Gold nanoparticles (AuNPs) were purchased from Nanopartz. They were conjugated with thiolated oligonucleotides specific for the femA gene for the identification of members of Staphylococcus aureus, the mecA gene for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus, hly gene encoding the pore-forming cytolysin listeriolysin for the identification of Listeria monocytogenes and the invA sequence for the identification of Salmonella enteritis. DNA isolation from Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis cultures was performed using the commercial kit Nucleospin Tissue (Macherey Nagel). Specifically 20μl of DNA was diluted in 10mMPBS (pH5). After the denaturation of 10min, 20μl of AuNPs was added followed by the annealing step at 58oC. The presence of a complementary target prevents aggregation with the addition of acid and the solution remains pink, whereas in the opposite event it turns to purple. The color could be detected visually and it was confirmed with an absorption spectrum. Results: Specifically, 0.123 μg/μl DNA of St. aureus, L.monocytogenes and Salmonella enteritis was serially diluted from 1:10 to 1:100. Blanks containing PBS buffer instead of DNA were used. The application of the proposed method on isolated bacteria produced positive results with all the species of St. aureus and L. monocytogenes and Salmonella enteritis using the femA, mecA, hly and invA genes respectively. The minimum detection limit of the assay was defined at 0.2 ng/μL of DNA. Below of 0.2 ng/μL of bacterial DNA the solution turned purple after addition of HCl, defining the minimum detection limit of the assay. None of the blank samples was positive. The specificity was 100%. The application of the proposed method produced exactly the same results every time (n = 4) the evaluation was repeated (100% repeatability) using the femA, hly and invA genes. Using the gene mecA for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus the method had a repeatability 50%. Conclusion: The proposed method could be used as a highly specific and sensitive screening tool for the detection and differentiation of Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis. The use AuNPs for the colorimetric detection of DNA targets represents an inexpensive and easy-to-perform alternative to common molecular assays. The technology described here, may develop into a platform that could accommodate detection of many bacterial species.

Keywords: gold nanoparticles, pathogens, nanotechnology, bacteria

Procedia PDF Downloads 340
5019 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
5018 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 155
5017 Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital

Authors: Ihn Sook Jeong, Eun Joo Lee, Jae Hyung Kim, Gun Ho Kim, Young Jun Hwang

Abstract:

This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner.

Keywords: intravenous infiltration, impedance, parameters, resistance, reactance

Procedia PDF Downloads 179
5016 High Impact Ecostratigraphic and Biostratigrapgic Study of Amama-1 and Bara-1 Wells in Parts of Anambra Basin

Authors: J. O. Njoku, G. C. Soronnadi-Ononiwu, E. J. Acrra, C. C. Agoha, T. C. Anyawu

Abstract:

The high impact ecostratigraphic and biostratigrapgic study of parts of Anambra basin was carried out using samples from two exploration wells (Amama-1 and Bara-1), Amama-1 (219M–1829M) and Bara-1 (317M-1594M). Palynological and paleontological analyses were carried out on 100 ditch-cutting samples. The faunal and floral succession were of terrestrial and marine origin as described and logged. The well penetrated four stratigraphic units in Anambra Basin (the Nkporo, Mamu, Ajali and Nsukka) the wells yielded well preserved formanifera and palynormorphs. The well yielded 53 species of foram and 69 species of palynomorphs, with 12 genera Bara-1 (25 Species of foram and 101 species of palynormorphs). Amama-1 permitted the recognition of 21 genera with 31 formainiferal assemblage zones, 32 pollen and 37 spores assemblage zones, and dinoflagellate cyst, biozonation, ranging from late Campanian – early Paleocene. Bara-1 yielded (60 pollen, 41 spore assemblage zone and 18 dinoflagellate cyst). The zones, in stratigraphically ascending order for the foraminifera and palynomorphs are as follows: Amama Biozone A-Globotruncanella havanensis zone: Late Campanian –Maastrichtian (695 – 1829m) Biozone B-Morozovella velascoensis zone: Early Paleocene(165–695m) Bara-1 Biozone A-Globotruncanella havanensis zone: Late Campanian(1512m) Biozone B-Bolivina afra, B. explicate zone: Maastrichtian (634–1204m) Biozone C - Indeterminate (305 – 634m) palynomorphs Amama-1 A. Ctenolophonidites costatus zone: Early Maastrichtian (1829m) B-Retidiporites miniporatus Zone: Late Maastrichtian (1274m) Constructipollenites ineffectus Zone: Early Paleocene(695m) Bara-1 Droseridites senonicus Zone: Late Campanian (994– 1600m) B. Ctenolophonidites costatus Zone: Early Maastrichtian (713–994m) C. Retidiporites miniporatus Zone: Late Maastrichtian (305 –713m) The paleo-environment of deposition were determined to range from non-marine to outer netritic. A detailed categorization of the palynormorphs into terrestrially derived palynormorphs and marine derived palynormorphs based on the distribution of three broad vegetational types; mangrove, fresh water swamps and hintherland communities were used to evaluate sea level fluctuations with respect to sediments deposited in the basins and linked with a particular depositional system tract. Amama-1 recorded 4 maximum flooding surface(MFS) at depth 165-1829, dated b/w 61ma-76ma and three sequence boundary(SB) at depth1048m - 1533m and 1581 dated b/w 634m - 1387m, dated 69.5ma - 82ma and four sequence boundary(SB) at 552m-876m, dated 68ma-77.5ma respectively. The application of ecostratigraphic description is characterised by the prominent expansion of the hinterland component consisting of the Mangrove to Lowland Rainforest and Afromontane – Savannah vegetation.

Keywords: foraminifera, palynomorphs, Campanian, Maastritchian, ecostratigraphic, Anambra

Procedia PDF Downloads 24
5015 High Impact Ecostratigraphic and Biostratigrapgic Study of Amama-1 and Bara-1 Wells in Parts of Anambra Basin

Authors: J. O. Njoku, G. C. Soronnadi-ononiwu, E. J. Acrra, C. C. Agoha, T. C. Anyawu

Abstract:

The High Impact Ecostratigraphic And Biostratigrapgic Study of parts of Anambra basin was carried out using samples from two exploration wells (Amama-1 and Bara-1), Amama-1 (219M–1829M) and Bara-1 (317M-1594M). Palynological and Paleontological analyses were carried out on 100 ditch cutting samples. The faunal and floral succession were of terrestrial and marine origin as described and logged. The well penetrated four stratigraphic units in Anambra Basin (the Nkporo, Mamu, Ajali and Nsukka) the wells yielded well preserved formanifera and palynormorphs. The well yielded 53 species of foram and 69 species of palynomorphs, with 12 genera Bara-1 (25 Species of foram and 101 species of palynormorphs). Amama-1permitted the recognition of 21 genera with 31 formainiferal assemblage zones, 32 pollen and 37 spores assemblage zones, and dinoflagellate cyst, biozonation, ranging from late Campanian – early Paleocene. Bara-1 yielded (60 pollen, 41 spore assemblage zone and 18 dinoflagellate cyst).The zones, in stratigraphically ascending order for the foraminifera and palynomorphs are as follows. Amama Biozone A-Globotruncanella havanensis zone: Late Campanian –Maastrichtian (695 – 1829m) Biozone B-Morozovella velascoensis zone: Early Paleocene(165–695m) Bara-1 Biozone A-Globotruncanella havanensis zone: Late Campanian(1512m) Biozone B-Bolivina afra, B. explicate zone: Maastrichtian (634–1204m) Biozone C - Indeterminate (305 – 634m) palynomorphs Amama-1 A.Ctenolophonidites costatus zone:Early Maastrichtian (1829m) B-Retidiporites miniporatus Zone: Late Maastrichtian (1274m) Constructipollenites ineffectus Zone: Early Paleocene(695m) Bara-1 Droseridites senonicus Zone: Late Campanian (994– 1600m) B. Ctenolophonidites costatus Zone: Early Maastrichtian (713–994m) C. Retidiporites miniporatus Zone: Late Maastrichtian (305 –713m) The paleo – environment of deposition were determined to range from non-marine to outer netritic. A detailed categorization of the palynormorphs into terrestrially derived palynormorphs and marine derived palynormorphs based on the distribution of three broad vegetational types; mangrove, fresh water swamps and hintherland communities were used to evaluate sea level fluctuations with respect to sediments deposited in the basins and linked with a particular depositional system tract. Amama-1 recorded 4 maximum flooding surface(MFS) at depth 165-1829, dated b/w 61ma-76ma and three sequence boundary(SB) at depth1048m - 1533m and 1581 dated b/w 634m - 1387m, dated 69.5ma - 82ma and four sequence boundary(SB) at 552m-876m, dated 68ma-77.5ma respectively. The application of ecostratigraphic description is characterised by the prominent expansion of the hinterland component consisting of the Mangrove to Lowland Rainforest and Afromontane – Savannah vegetation.

Keywords: formanifera, palynomorphs. Campanian, Maastritchian, Ecostratigraphic, Anambra

Procedia PDF Downloads 17
5014 Urban Slum Communities Engage in the Fight Against TB in Karnataka, South India

Authors: N. Rambabu, H. Gururaj, Reynold Washington, Oommen George

Abstract:

Motivation: Under the USAID Strengthening Health Outcomes through Private Sector (SHOPS-TB) initiative, Karnataka Health Promotion Trust (KHPT) with technical support of Abt associates is implementing a TB prevention and care model in Karnataka State, South India. KHPT is the interface agency between the public and private sectors, and providers and the target community facilitating early TB case detection and enhancing treatment compliance through private health care providers (pHCP) engagement in RNTCP. The project coverage is 0.84 million urban poor from 663 slums in 12 districts of Karnataka. Problem Statement: India with the highest burden of global TB (26%) and two million cases annually, accounts for approximately one fifth of the global incidence. WHO estimates 300,000 people die from TB annually in India. India expanded the coverage of Directly Observed Treatment, Short-course chemotherapy (DOTS) to the entire country as early as 2006. However, the performance of RNTCP has not been uniform across states. While the national annual new smear-positive (NSP) case notification rate is 53, it is much lower at 47 in Karnataka. A third of TB patients in India reside in urban slums. Approach: Under SHOPS, KHPT actively engages with communities through key opinion leaders and community structures. Interpersonal communication, by Outreach workers through house-to-house visits and at aggregation points, is the primary method used for communication about TB and its management and to increase demand for sputum examination and DOTS. pHCP are mapped, trained and mentored by KHPT. ORWs also provide patient and family counseling on TB treatment, side effects and adherence, screen close contacts of index patients especially children under 6 years of age and screen co-morbidities including HIV, diabetes and malnutrition and risk factors including alcoholism, tobacco use, occupational hazards making appropriate accompanied or documented referrals. A treatment ‘buddy’ system for the patients involving close friends or family members, ICT-based support, DOTS Prerana (inspiration) groups of TB patients, family members and community, DOTS Mitra (friend) helpline services are also used for care and support services. Results: The intervention educated 39988 slum dwellers, referred 1731 chest symptomatics, tested 1061 patients and initiated 248 patients on anti-TB treatment within three months of intervention through continuous community engagement. Conclusions: The intervention’s potential to increase access to preferred health care providers, reduce patient and health system delays in diagnosis and initiation of treatment, improve health seeking behaviour and enhance compliance of pHCPs to standard treatment protocols is being monitored. Initial results are promising.

Keywords: DOTS, KHPT, health outcomes, public and private sector

Procedia PDF Downloads 314
5013 Hazardous Gas Detection Robot in Coal Mines

Authors: Kanchan J. Kakade, S. A. Annadate

Abstract:

This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel.

Keywords: Zigbee communication, various sensors, hazardous gases, mbed arm cortex M3 core controller

Procedia PDF Downloads 466
5012 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: conductive yarns, moisture textile sensor, industry, material

Procedia PDF Downloads 246
5011 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics

Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki

Abstract:

The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.

Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio

Procedia PDF Downloads 173
5010 Premature Departure of Active Women from the Working World: One Year Retrospective Study in the Tunisian Center

Authors: Lamia Bouzgarrou, Amira Omrane, Malika Azzouzi, Asma Kheder, Amira Saadallah, Ilhem Boussarsar, Kamel Rejeb

Abstract:

Introduction: Increasing the women’s labor force participation is a political issue in countries with developed economies and those with low growth prospects. However, in the labor market, women continue to face several obstacles, either for the integration or for the maintenance at work. This study aims to assess the prevalence of premature withdrawal from working life -due to invalidity or medical justified early retirement- among active women in the Tunisian center and to identify its determinants. Material and methods: We conducted a cross-sectional study, over one year, focusing on the agreement for invalidity or early retirement for premature usury of the body- delivered by the medical commission of the National Health Insurance Fund (CNAM) in the central Tunisian district. We exhaustively selected women's files. Data related to Socio-demographic characteristics, professional and medical ones, were collected from the CNAM's administrative and medical files. Results: During the period of one year, 222 women have had an agreement for premature departure of their professional activity. Indeed, 149 women (67.11%) benefit of from invalidity agreement and 20,27% of them from favorable decision for early retirement. The average age was 50 ± 6 years with extremes of 23 and 62 years, and 18.9% of women were under 45 years. Married women accounted for 69.4% and 59.9% of them had at least one dependent child in charge. The average professional seniority in the sector was 23 ± 8 years. The textile-clothing sector was the most affected, with 70.7% of premature departure. Medical reasons for withdrawal from working life were mainly related to neuro-degenerative diseases in 46.8% of cases, rheumatic ones in 35.6% of cases and cardiovascular diseases in 22.1% of them. Psychiatric and endocrine disorders motivated respectively 17.1% and 13.5% of these departures. The evaluation of the sequels induced by these pathologies concluded to an average permanent partial disability equal to 61.4 ± 17.3%. The analytical study concluded that the agreement of disability or early retirement was correlated with the insured ‘age (p = 10-3), the professional seniority (p = 0.003) and the permanent partial incapacity (PPI) rate assessed by the expert physician (p = 0.04). No other social or professional factors were correlated with this decision. Conclusion: Despite many advances in labour law and Tunisian legal text on employability, women still exposed to several social and professional inequalities (payment inequality, precarious work ...). Indeed, women are often pushed to accept working in adverse conditions, thus they are more vulnerable to develop premature wear on the body and being forced to premature departures from the world of work. These premature withdrawals from active life are not only harmful to the concerned women themselves, but also associated with considerable costs for the insurance organism and the society. In order to ensure maintenance at work for women, a political commitment is imperative in the implementation of global prevention strategies and the improvement of working conditions, particularly in our socio-cultural context.

Keywords: Active Women , Early Retirement , Invalidity , Maintenance at Work

Procedia PDF Downloads 150
5009 Prevalence of Mycobacterium Tuberculosis Infection and Rifampicin Resistance among Presumptive Tuberculosis Cases Visiting Tuberculosis Clinic of Adare General Hospital, Southern Ethiopia

Authors: Degineh Belachew Andarge, Tariku Lambiyo Anticho, Getamesay Mulatu Jara, Musa Mohammed Ali

Abstract:

Introduction: Tuberculosis (TB) is a communicable chronic disease causedby Mycobacterium tuberculosis (MTB). About one-third of the world’s population is latently infected with MTB. TB is among the top 10 causes of mortality throughout the globe from a single pathogen. Objective: The aim of this study was to determine the prevalence of tuberculosis,rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis, and associated factors among presumptive tuberculosis cases attending the tuberculosis clinic of Adare General Hospital located in Hawassa city. Methods: A hospital-based cross-sectional study was conducted among 321 tuberculosis suspected patients from April toJuly 2018. Socio-demographic, environmental, and behavioral data were collected using a structured questionnaire. Sputumspecimens were analyzed using GeneXpert. Data entry was made using Epi info version 7 and analyzed by SPSS version 20. Logistic regression models were used to determine the risk factors. A p-value less than 0.05 was taken as a cut point. Results: In this study, the prevalence of Mycobacterium tuberculosis was 98 (30.5%) with 95% confidence interval (25.5–35.8), and the prevalence of rifampicin-resistant/multidrug-resistantMycobacterium tuberculosis among the 98 Mycobacteriumtuberculosis confirmed cases was 4 (4.1%). The prevalence of rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosisamong the tuberculosis suspected patients was 1.24%. Participants who had a history of treatment with anti-tuberculosisdrugs were more likely to develop rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis. Conclusions: This study identified relatively high rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis amongtuberculosis suspected patients in the study area. Early detection of drug-resistant Mycobacterium tuberculosis should be givenenough attention to strengthen the management of tuberculosis cases and improve direct observation therapy short-course and eventually minimize the spread of rifampicin-resistant tuberculosis strain in the community.

Keywords: rifampicin resistance, mycobacterium tuberculosis, risk factors, prevalence of TB

Procedia PDF Downloads 110
5008 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 145