Search results for: density functional theoretical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9039

Search results for: density functional theoretical

6789 The Approach of New Urbanism Model to Identify the Sustainability of 'Kampung Kota'

Authors: Nadhia Maharany Siara, Muammal, Ilham Nurhakim, Rofifah Yusadi, M. Adie Putra Tanggara, I. Nyoman Suluh Wijaya

Abstract:

Urbanization in urban areas has impact to the demand of land use for housing, and it began to occur development in the high-density area called Kampung Kota. Kampung Kota grows and develops without planning or organically. The existence of Kampung Kota, becoming identity of the city development in Indonesia, gives self-identity to the city planning in Indonesia, but the existence of Kampung Kota in the development of the city in Indonesia is often considered as a source of environment, health, and social problems. This cause negative perception about the sustainability of Kampung Kota. This research aims to identify morphology and sustainability level of Kampung Kota in Polehan Sub-District, Blimbing District, Malang City. So far, there have not been many studies that define sustainability of Kampung Kota especially from the perspective of Kampung Kota morphology as a part of urban housing areas. This research took place in in Polehan Sub-District, Blimbing District, Malang City which is one of the oldest Kampung Kota in Malang City. Identification of the sustainability level in this research is done by defining the morphology of Kampung Kota in Polehan Sub-District, Blimbing District, Malang City with a descriptive approach to the observation case (Kampung Kota Polehan Sub-District). After that, definition of sustainability level is defined by quantifying the spatial structure by using the criteria from the new urbanism model which consist of buildings and populations density, compactness, diversity and mix land uses and sustainable transportation. In this case, the use of new urbanism model approach is very appropriate. New Urbanism is a design-driven strategy that is based on traditional forms to minimize urban sprawl in the suburbs. The result obtained from this study is the hometown of the level of sustainability in Polehan Sub-District, Blimbing District, Malang City of 3.2 and can be considered to have a good sustainability.

Keywords: Kampung Kota, new urbanism model, sustainability, urban morphology

Procedia PDF Downloads 275
6788 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB

Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir

Abstract:

The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.

Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability

Procedia PDF Downloads 493
6787 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication

Authors: Krish Jhurani

Abstract:

The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.

Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties

Procedia PDF Downloads 100
6786 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher

Authors: Ebtisam Alqahtani

Abstract:

The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practice

Keywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR

Procedia PDF Downloads 113
6785 A Study of the Use of Arguments in Nominalizations as Instanciations of Grammatical Metaphors Finished in -TION in Academic Texts of Native Speakers

Authors: Giovana Perini-Loureiro

Abstract:

The purpose of this research was to identify whether the nominalizations terminating in -TION in the academic discourse of native English speakers contain the arguments required by their input verbs. In the perspective of functional linguistics, ideational metaphors, with nominalization as their most pervasive realization, are lexically dense, and therefore frequent in formal texts. Ideational metaphors allow the academic genre to instantiate objectification, de-personalization, and the ability to construct a chain of arguments. The valence of those nouns present in nominalizations tends to maintain the same elements of the valence from its original verbs, but these arguments are not always expressed. The initial hypothesis was that these arguments would also be present alongside the nominalizations, through anaphora or cataphora. In this study, a qualitative analysis of the occurrences of the five more frequent nominalized terminations in -TION in academic texts was accomplished, and thus a verification of the occurrences of the arguments required by the original verbs. The assembling of the concordance lines was done through COCA (Corpus of Contemporary American English). After identifying the five most frequent nominalizations (attention, action, participation, instruction, intervention), the concordance lines were selected at random to be analyzed, assuring the representativeness and reliability of the sample. It was possible to verify, in all the analyzed instances, the presence of arguments. In most instances, the arguments were not expressed, but recoverable, either in the context or in the shared knowledge among the interactants. It was concluded that the realizations of the arguments which were not expressed alongside the nominalizations are part of a continuum, starting from the immediate context with anaphora and cataphora; up to a knowledge shared outside the text, such as specific area knowledge. The study also has implications for the teaching of academic writing, especially with regards to the impact of nominalizations on the thematic and informational flow of the text. Grammatical metaphors are essential to academic writing, hence acknowledging the occurrence of its arguments is paramount to achieve linguistic awareness and the writing prestige required by the academy.

Keywords: corpus, functional linguistics, grammatical metaphors, nominalizations, academic English

Procedia PDF Downloads 132
6784 Efficient Study of Substrate Integrated Waveguide Devices

Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand

Abstract:

This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.

Keywords: convergence study, HFSS, modal decomposition, SIW circuits, WCIP method

Procedia PDF Downloads 489
6783 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 172
6782 Integrated Business Model Innovation in Nigerian Higher Education: Challenges and Prospects

Authors: Nonso Ochinanwata, Patrick Oseloka Ezepue

Abstract:

This paper explores challenges and prospects in Nigerian higher education. The paper develops an integrated business model that aimed to innovate Nigeria higher education system. A survey and semi-structured interview among Nigerian higher education academics, students and graduates are used to explore the challenges and prospects. The study provides a comparison between lecturers, students and graduates opinions to evaluate challenges and prospects in Nigerian higher institutions. The study found to achieve efficient and effectiveness innovation in Nigerian higher education, there is a need for higher institutions to collaborate with industry professionals and other stakeholders such as company management, and government policy makers in designing higher education institutions curricula. The study found that the curriculum design and delivery need to blend theoretical understanding and real-life experience from industry, and with social cultural influences related to Nigerian environment. This will enable lecturers to organise their teaching and assessments such that students can learn around theoretical and practical study themes. The curriculum design and delivery need to link the core ideas to challenging problems in society, nationally and globally. Hence, this approach will support business start-ups and social entrepreneurship which resolve key societal problems. The study suggests that higher education executives, directors, deans, head of departments, and even individual academics need to emulate innovative business managers to create value-adding products and services from innovative research and academic work.

Keywords: higher education, curriculum innovation, business model innovation, teaching and research excellence, economic development

Procedia PDF Downloads 257
6781 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory

Authors: Marilei Amadeu Sabino

Abstract:

The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).

Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology

Procedia PDF Downloads 322
6780 Remarks on the Lattice Green's Function for the Anisotropic Face Cantered Cubic Lattice

Authors: Jihad H. Asad

Abstract:

An expression for the Green’s function (GF) of anisotropic face cantered cubic (IFCC) lattice is evaluated analytically and numerically for a single impurity problem. The density of states (DOS), phase shift and scattering cross section are expressed in terms of complete elliptic integrals of the first kind.

Keywords: lattice Green's function, elliptic integral, physics, cubic lattice

Procedia PDF Downloads 455
6779 Reflections of Narrative Architecture in Transformational Representations on the Architectural Design Studio

Authors: M. Mortas, H. Asar, P. Dursun Cebi

Abstract:

The visionary works of architectural representation in the 21st century's present situation, are practiced through the methodologies which try to expose the intellectual and theoretical essences of futurologist positions that are revealed with this era's interactions. Expansions of conceptual and contextual inputs related to one architectural design representation, depend on its deepness of critical attitudes, its interactions with the concepts such as experience, meaning, affection, psychology, perception and aura, as well as its communication with spatial, cultural and environmental factors. The purpose of this research study is to be able to offer methodological application areas for the design dimensions of experiential practices into architectural design studios, by focusing on the architectural representative narrations of 'transformation,' 'metamorphosis,' 'morphogenesis,' 'in-betweenness', 'superposition' and 'intertwine’ in which they affect and are affected by the today’s spatiotemporal hybridizations of architecture. The narrative representations and the visual theory paradigms of the designers are chosen under the main title of 'transformation' for the investigation of these visionary and critical representations' dismantlings and decodings. Case studies of this research area are chosen from Neil Spiller, Bryan Cantley, Perry Kulper and Dan Slavinsky’s transformative, morphogenetic representations. The theoretical dismantlings and decodings which are obtained from these artists’ contemporary architectural representations are tried to utilize and practice in the structural design studios as alternative methodologies when to approach architectural design processes, for enriching, differentiating, diversifying and 'transforming' the applications of so far used design process precedents. The research aims to indicate architectural students about how they can reproduce, rethink and reimagine their own representative lexicons and so languages of their architectural imaginations, regarding the newly perceived tectonics of prosthetic, biotechnology, synchronicity, nanotechnology or machinery into various experiential design workshops. The methodology of this work can be thought as revealing the technical and theoretical tools, lexicons and meanings of contemporary-visionary architectural representations of our decade, with the essential contents and components of hermeneutics, etymology, existentialism, post-humanism, phenomenology and avant-gardism disciplines to re-give meanings the architectural visual theorists’ transformative representations of our decade. The value of this study may be to emerge the superposed and overlapped atmospheres of futurologist architectural representations for the students who need to rethink on the transcultural, deterritorialized and post-humanist critical theories to create and use the representative visual lexicons of themselves for their architectural soft machines and beings by criticizing the now, to be imaginative for the future of architecture.

Keywords: architectural design studio, visionary lexicon, narrative architecture, transformative representation

Procedia PDF Downloads 127
6778 Qualitative Needs Assessment for Development of a Smart Thumb Prosthetic

Authors: Syena Moltaji, Stephanie Posa, Sander Hitzig, Amanda Mayo, Heather Baltzer

Abstract:

Purpose: To critically assess deficits following thumb amputation and delineate elements of an ideal thumb prosthesis from the end-user perspective. Methods: This was a qualitative study based on grounded theory. End-user stakeholder groups of thumb amputees and prosthetists were interviewed. Transcripts were reviewed whole first for familiarity. Data coding was then performed by two individual authors. Coded units were grouped by similarity and reviewed to reach a consensus. Codes were then analyzed for emergent themes by each author. A consensus meeting was held with all authors to finalize themes. Results: Three patients with traumatic thumb amputation and eight prosthetists were interviewed. Seven themes emerged. First was the significant impact of losing a thumb, in which codes of functional impact, mental impact, and occupational impact were included. The second theme was the unique nature of each thumb amputee, including goals, readiness for prosthesis, nature of the injury, and insurance. The third emergent theme was cost, surrounding government funding, insurability, and prosthetic pricing. The fourth theme was patient frustration, which included mismatches of prosthetic expectations and realities, activity limitations, and causes of devices abandonment. Themes five and six surrounded the strengths and weaknesses of current prosthetics, respectively. Theme seven was the ideal design for a thumb prosthetic, including abilities, suspension, and materials. Conclusions: Representative data from stakeholders mapped the current status of thumb prosthetics. Preferences for an ideal thumb prosthetic emerged, with suggestions for a simple, durable design. The ability to oppose, grasp and sense pressure was reported as functional priorities. Feasible cost and easy fitting emerged as systemic objectives. This data will be utilized in the development of a sensate thumb prosthetic.

Keywords: smart thumb, thumb prosthetic, sensate prosthetic, amputation

Procedia PDF Downloads 108
6777 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 335
6776 Technology Road Mapping in the Fourth Industrial Revolution: A Comprehensive Analysis and Strategic Framework

Authors: Abdul Rahman Hamdan

Abstract:

The Fourth Industrial Revolution (4IR) has brought unprecedented technological advancements that have disrupted many industries worldwide. In keeping up with the technological advances and rapid disruption by the introduction of many technological advancements brought forth by the 4IR, the use of technology road mapping has emerged as one of the critical tools for organizations to leverage. Technology road mapping can be used by many companies to guide them to become more adaptable and anticipate future transformation and innovation, and avoid being redundant or irrelevant due to the rapid changes in technological advancement. This research paper provides a comprehensive analysis of technology road mapping within the context of the 4IR. The objectives of the paper are to provide companies with practical insights and a strategic framework of technology road mapping for them to navigate the fast-changing nature of the 4IR. This study also contributes to the understanding and practice of technology road mapping in the 4IR and, at the same time, provides organizations with the necessary tools and critical insight to navigate the 4IR transformation by leveraging technology road mapping. Based on the literature review and case studies, the study analyses key principles, methodologies, and best practices in technology road mapping and integrates them with the unique characteristics and challenges of the 4IR. The research paper gives the background of the fourth industrial revolution. It explores the disruptive potential of technologies in the 4IR and the critical need for technology road mapping that consists of strategic planning and foresight to remain competitive and relevant in the 4IR era. It also highlights the importance of technology road mapping as an organisation’s proactive approach to align the organisation’s objectives and resources to their technology and product development in meeting the fast-evolving technological 4IR landscape. The paper also includes the theoretical foundations of technology road mapping and examines various methodological approaches, and identifies external stakeholders in the process, such as external experts, stakeholders, collaborative platforms, and cross-functional teams to ensure an integrated and robust technological roadmap for the organisation. Moreover, this study presents a comprehensive framework for technology road mapping in the 4IR by incorporating key elements and processes such as technology assessment, competitive intelligence, risk analysis, and resource allocation. It provides a framework for implementing technology road mapping from strategic planning, goal setting, and technology scanning to road mapping visualisation, implementation planning, monitoring, and evaluation. In addition, the study also addresses the challenges and limitations related to technology roadmapping in 4IR, including the gap analysis. In conclusion of the study, the study will propose a set of practical recommendations for organizations that intend to leverage technology road mapping as a strategic tool in the 4IR in driving innovation and becoming competitive in the current and future ecosystem.

Keywords: technology management, technology road mapping, technology transfer, technology planning

Procedia PDF Downloads 54
6775 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 219
6774 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 118
6773 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 116
6772 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS

Authors: David A. Harness

Abstract:

Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.

Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks

Procedia PDF Downloads 160
6771 Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge

Authors: I. Kamika, S. Azizi, M. Tekere

Abstract:

Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples.

Keywords: bacterial community, next generation, cerium oxide, wastewater, activated sludge, nanoparticles, nanotechnology

Procedia PDF Downloads 202
6770 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 329
6769 The Search for the Self in Psychotherapy: Findings from Relational Theory and Neuroanatomy

Authors: Harry G. Segal

Abstract:

The idea of the “self” has been essential ever since the early modern period in western culture, especially since the development of psychotherapy, but advances in neuroscience and cognitive theory challenge traditional notions of the self. More specifically, neuroanatomists have found no location of “the self” in the brain; instead, consciousness has been posited to be a rapid combination of perception, memory, anticipation of future events, and judgment. In this paper, a theoretical model is presented to address these neuroanatomical findings and to revise the historical understanding of “selfhood” in the practice of psychotherapy.

Keywords: the self, psychotherapy, the self and the brain

Procedia PDF Downloads 89
6768 Physiological Effects of Myrrh and Ginseng Extracts in Diabetic Rats

Authors: Ismail I. Abo-Ghanema, Faheim E. Wehaish, Rasha M. Saleh , Walaa F. Awadin, Mohamed F. Elshal

Abstract:

The antidiabetic activity of myrrh and ginseng ethanolic extracts were investigated in streptozotocin (STZ)-induced diabetic rats. Thirty male albino rats were divided into five groups, each consisted of six rats. The first group (G1) is the negative control that was fed basal diet, the second group (G2) was injected with STZ and received no treatment, the third group (G3) injected with STZ and received metformin (50 mg/kg, b.wt) as standard anti-diabetic drug, the fourth group (G4) injected with STZ and ginseng (50 mg/kg, b.wt), the fifth group (G5) injected with STZ and received myrrh (500 mg/kg, b.wt). As compared with G1-group, STZ injection increased blood concentrations of glucose (6.2 fold), glycated hemoglobin (HbA1c) (2.51 fold), aspartateaminotransferase (AST), and alanine aminotransferase (ALT) (2.64, 4.60 fold respectively), creatinine (2.91 fold), cholesterol (1.79 fold), triglycerides (2.06 fold), low density lipoprotein-cholesterol (LDL) (2.92 fold), nitric oxide (NO) (20.18 fold), and malondialdehyde (MDA) (2.25 fold), whereas it decreased blood insulin (0.40 fold), albumin (0.60 fold), high density lipoprotein-cholesterol (HDL) (0.33 fold), and reduced glutathione (GSH) (0.49 fold). Vascular permeability index (VPI as measured by Evan's Blue; EB extravasations test) was significantly increased in the skin of diabetic animals (9.6 fold) when compared with the G1-group. In addition, histological alterations in liver, pancreas, kidneys and heart were observed. After 4 weeks of treatment, rats in G4 and G5 showed significant corrections in the all measured parameters and indices. In conclusions, the ethanolic extracts of ginseng and myrrh exhibited promising and safe anti-diabetic activity especially on peripheral circulation as manifested by decreased vascular permeability and improved histopathological alterations of examined organs and insulin secretion. Hence, it may be pursued for their clinical usefulness in the management of diabetes mellitus (DM) and associated vascular complications.

Keywords: diabetic rats, peripheral circulation, natural plants, myrrh, ginseng

Procedia PDF Downloads 633
6767 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 393
6766 Combined Effect of Therapeutic Exercises and Shock Wave versus Therapeutic Exercises and Phonophoresis in Treatment of Shoulder Impingement Syndrome: A Randomized Controlled Trial

Authors: Mohamed M. Mashaly, Ahmed M. F. El Shiwi

Abstract:

Background: Shoulder impingement syndrome is an encroachment of subacromial tissues, rotator cuff, subacromial bursa, and the long head of the biceps tendon, as a result of narrowing of the subacromial space. Activities requiring repetitive or sustained use of the arms over head often predispose the rotator cuff tendon to injury. Purpose: To compare between Combined effect therapeutic exercises and Shockwave therapy versus therapeutic exercises and phonophoresis in the treatment of shoulder impingement syndrome. Methods: Thirty patients diagnosed as shoulder impingement syndrome stage II Neer classification due to mechanical causes. Patients were randomly distributed into two equal groups. The first group consisted of 15 patients with a mean age of (45.46+8.64) received therapeutic exercises (stretching exercise of posterior shoulder capsule and strengthening exercises of shoulder muscles) and shockwave therapy (6000 shocks, 2000/session, 3 sessions, 2 weeks apart, 0.22mJ/mm^2) years. The second group consisted of 15 patients with a mean age of 46.26 (+ 8.05) received same therapeutic exercises and phonophoresis (3 times per week, each other day, for 4 consecutive weeks). Patients were evaluated pretreatment and post treatment for shoulder pain severity, shoulder functional disability, shoulder flexion, abduction and internal rotation motions. Results: Patients of both groups showed significant improvement in all the measured variables. In between groups difference the shock wave group showed a significant improvement in all measured variables than phonophoresis group. Interpretation/Conclusion: Combined effect of therapeutic exercises and shock wave were more effective than therapeutic exercises and phonophoresis on decreasing shoulder pain severity, shoulder functional disability, increasing in shoulder flexion, abduction, internal rotation in patients with shoulder impingement syndrome.

Keywords: shoulder impingement syndrome, therapeutic exercises, shockwave, phonophoresis

Procedia PDF Downloads 461
6765 Beyond Diagnosis: Innovative Instructional Methods for Children with Multiple Disabilities

Authors: Patricia Kopetz

Abstract:

Too often our youngest children with disabilities receive diagnostic labels and accompanying treatment plans based upon perceptions that the children are of limited aptitude and/or ambition. However, children of varied-ability levels who are diagnosed with ‘multiple disabilities,’ can participate and excel in school-based instruction that aligns with their desires, interests, and fortitude – criteria components not foretold by scores on standardized assessments. The paper represents theoretical work in Special Education Innovative Instruction, and includes presenting research materials, some developed by the author herself. The majority of students with disabilities are now served in general education settings in the United States, embracing inclusive practices in our schools. ‘There is now a stronger call for special education to step up and improve efficiency, implement evidence-based practices, and provide greater accountability on key performance indicators that support successful academic and post-school outcomes for students with disabilities.’ For example, in the United States, the Office of Special Education Programs (OSEP) is focusing on results-driven indicators to improve outcomes for students with disabilities. School personnel are appreciating the implications of research-driven approaches for students diagnosed with multiple disabilities, and aim to align their practices toward such focus. The paper presented will provide updates on current theoretical principles and perspectives, and explore advancements in latest, evidence-based and results-driven instructional practices that can motivate children with multiple disabilities to advance their skills and engage in learning activities that as nonconventional, innovative, and proven successful.

Keywords: childhood special education, educational technology , innovative instruction, multiple disabilities

Procedia PDF Downloads 233
6764 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis

Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin

Abstract:

With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.

Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism

Procedia PDF Downloads 254
6763 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 75
6762 Effect of In-Season Linear Sprint Training on Sprint Kinematics of Amateur Soccer Players

Authors: Avinash Kharel

Abstract:

Background: - Linear sprint training is one possible approach to developing sprint performance, a crucial skill to focus on in soccer. Numerous methods, including various on-field training options, can be employed to attain this goal. However, the effect of In-season linear sprint training on sprint performance and related kinetics changes are unknown in a professional setting. The study aimed to investigate the effect of in-season linear sprint training on the sprint kinematics of amateur soccer players. Methods: - After familiarization, a 4-week training protocol was completed with sprint performance and Force Velocity (FV) profiles was compared before and after the training. Eighteen amateur soccer male players (Age 22 ± 2 years: Height: 178 ± 7cm; body-mass: 74 ± 8 Kg, 30-m split-time: 4.398 ± s) participated in the study. Sprint kinematics variables, including maximum Sprint Velocity (V0), Theoretical Maximum Force (F0), Maximum Force Output per kilogram of body weight (N/KG), Maximum Velocity (V(0)), Maximum Power Output (P MAX (W)), Ratio of Force to Velocity (FV), and Ratio of Force to Velocity at Peak power were measured. Results: - Results showed significant improvements in Maximum Sprint Velocity (p<0.01, ES=0.89), Theoretical Maximum Force (p<0.05, ES=0.50), Maximum Force Output per kilogram of body weight (p<0.05, ES=0.42), Maximum Power Output (p<0.05, ES=0.52), and Ratio of Force to Velocity at Peak Power (RF PEAK) (p<0.05, ES=0.44) post-training. There were no significant changes in the ratio of Force to Velocity (FV) and Maximum Velocity V (0) post-training (p>0.05). Conclusion: - These findings suggest that In-season linear sprint training can effectively improve certain sprint kinematics variables in amateur soccer players. Coaches and players should consider incorporating linear sprint training into their in-season training programs to improve sprint performance.

Keywords: sprint performance, training intervention, soccer, kinematics

Procedia PDF Downloads 61
6761 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 313
6760 Low-Impact Development Strategies Assessment for Urban Design

Authors: Y. S. Lin, H. L. Lin

Abstract:

Climate change and land-use change caused by urban expansion increase the frequency of urban flooding. To mitigate the increase in runoff volume, low-impact development (LID) is a green approach for reducing the area of impervious surface and managing stormwater at the source with decentralized micro-scale control measures. However, the current benefit assessment and practical application of LID in Taiwan is still tending to be development plan in the community and building site scales. As for urban design, site-based moisture-holding capacity has been common index for evaluating LID’s effectiveness of urban design, which ignore the diversity, and complexity of the urban built environments, such as different densities, positive and negative spaces, volumes of building and so on. Such inflexible regulations not only probably make difficulty for most of the developed areas to implement, but also not suitable for every different types of built environments, make little benefits to some types of built environments. Looking toward to enable LID to strength the link with urban design to reduce the runoff in coping urban flooding, the research consider different characteristics of different types of built environments in developing LID strategy. Classify the built environments by doing the cluster analysis based on density measures, such as Ground Space Index (GSI), Floor Space Index (FSI), Floors (L), and Open Space Ratio (OSR), and analyze their impervious surface rates and runoff volumes. Simulate flood situations by using quasi-two-dimensional flood plain flow model, and evaluate the flood mitigation effectiveness of different types of built environments in different low-impact development strategies. The information from the results of the assessment can be more precisely implement in urban design. In addition, it helps to enact regulations of low-Impact development strategies in urban design more suitable for every different type of built environments.

Keywords: low-impact development, urban design, flooding, density measures

Procedia PDF Downloads 319