Search results for: Anomaly Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3574

Search results for: Anomaly Detection

1324 Observational Study Reveals Inverse Relationship: Rising PM₂.₅ Concentrations Linked to Decreasing Muon Flux

Authors: Yashas Mattur, Jensen Coonradt

Abstract:

Muon flux, the rate of muons reaching Earth from the atmosphere, is impacted by various factors such as air pressure, temperature, and humidity. However, the influence of concentrations of PM₂.₅ (particulate matter with diameters 2.5 mm or smaller) on muon detection rates remains unexplored. During the summer of 2023, smoke from Canadian wildfires (containing significant amounts of particulate matter) blew over regions in the Northern US, introducing huge fluctuations in PM₂.₅ concentrations, thus inspiring our experiment to investigate the correlation of PM₂.₅ concentrations and muon rates. To investigate this correlation, muon collision rates were measured and analyzed alongside PM₂.₅ concentration data over the periods of both light and heavy smoke. Other confounding variables, including temperature, humidity, and atmospheric pressure, were also considered. The results reveal a statistically significant inverse correlation between muon flux and PM₂.₅ concentrations, indicating that particulate matter has an impact on the rate of muons reaching the earth’s surface.

Keywords: Muon Flux, atmospheric effects on muons, PM₂.₅, airborne particulate matter

Procedia PDF Downloads 74
1323 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring

Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang

Abstract:

Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.

Keywords: building, image matching, temperature, unmanned aerial vehicle

Procedia PDF Downloads 292
1322 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 201
1321 Detection of Leishmania Mixed Infection from Phlebotomus papatasi in Central Iran

Authors: Nassibeh Hosseini-Vasoukolaei, Amir Ahmad Akhavan, Mahmood Jeddi-Tehrani, Ali Khamesipour, Mohammad Reza Yaghoobi Ershadi, Kamhawi Shaden, Valenzuela Jesus, Hossein Mirhendi, Mohammad Hossein Arandian

Abstract:

Zoonotic cutaneous leishmaniasis (ZCL) is an endemic disease in many rural areas of Iran. Sand flies were collected from rural areas of Esfahan province and were identified using valid identification keys. DNA was extracted from sand flies and Nested PCRs were done using specific primers. In this study, 44 out of 152 (28.9 %) sand flies were infected with L. majoralone. Eight sand flies showed mixed infection: four sand flies (2.6 %) were infected with L. major, L. turanicaand L. gerbili, one sand fly (0.7 %) was infected with L. major and L. turanica and three sand flies (2 %) were infected with L. turanicaand L. gerbili. Our results demonstrate the natural infection of P. papatasi sand fly with three species of L. major, L. turanica and L. gerbili which are circulating among R. opimusreservoir host and P. papatasi sand fly vector in central Iran.

Keywords: Phlebotomus papatasi, Leishmania major, Leishmania turanica, Leishmania gerbili, mixed infection, Iran

Procedia PDF Downloads 471
1320 Addressing Security and Privacy Issues in a Smart Environment by Using Block-Chain as a Preemptive Technique

Authors: Shahbaz Pervez, Aljawharah Almuhana, Zahida Parveen, Samina Naz, Hira Tariq, Seyed Hosseini, Muhammad Awais Azam

Abstract:

With the latest development in the field of cutting-edge technologies, there is a rapid increase in the use of technology-oriented gadgets. In a recent scenario of the tech era, there is increasing demand to fulfill our day-to-day routine tasks with the help of technological gadgets. We are living in an era of technology where trends have been changing, and a race to introduce a new technology gadget has already begun. Smart cities are getting more popular with every passing day; city councils and governments are under enormous pressure to provide the latest services for their citizens and equip them with all the latest facilities. Thus, ultimately, they are going more into smart cities infrastructure building, providing services to their inhabitants with a single click from their smart devices. This trend is very exciting, but on the other hand, if some incident of security breach happens due to any weaker link, the results would be catastrophic. This paper addresses potential security and privacy breaches with a possible solution by using Blockchain technology in IoT enabled environment.

Keywords: blockchain, cybersecurity, DDOS, intrusion detection, IoT, RFID, smart devices security, smart services

Procedia PDF Downloads 119
1319 Evaluation of Biochemical Parameters in the Blood of Dromedary (Camelus Dromedarius)

Authors: M. Titaouine, T. Meziane, K. Deghnouche

Abstract:

The purpose of this study was to determine reference serum biochemistry values from dromedary (Camelus dromedarius) in Algeria and to evaluate potential sources of physiological variability such as the sex, age and season on serum data. Usual serum biochemistry values were determined in blood samples from 26 apparently healthy dromedaries, 11 males and 15 females, divided into 3 lots (ender 4years), (between 5 and 10 years), (up 10 years). Parametric reference ranges and physiological variations are determined for calcium (Ca), organic phosphate (P), magnesium (Mg), natrium (Na), potassium (K), iron (Fe), glucose, triglycerides (TG), cholesterol, urea, creatinine, total proteins and albumin. The results demonstrate: * Values which agreed with literature * Significant statistically differences (Anova test, p < 0.05) depending on: -the sex for Na, glucose, TG, cholesterol, urea, creatinine, albumin, -the age for Ca, P, K, Mg, glucose, TG, b and g globulin, -and season for Fe, urea, total proteins, TG, cholesterol and glucose. These reference ranges for serum biochemical analysis can be used for metabolic and nutritional disorders detection in dromedary.

Keywords: age, biochemistry, dromadery, season, sex

Procedia PDF Downloads 375
1318 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 466
1317 Novel NIR System for Detection of Internal Disorder and Quality of Apple Fruit

Authors: Eid Alharbi, Yaser Miaji

Abstract:

The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.

Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology

Procedia PDF Downloads 386
1316 Biodiversity of Pathogenic and Toxigenic Fungi Associated with Maize Grains Sampled across Egypt

Authors: Yasser Shabana, Khaled Ghoneem, Nehal Arafat, Younes Rashad, Dalia Aseel, Bruce Fitt, Aiming Qi, Benjamine Richard

Abstract:

Providing food for more than 100 million people is one of Egypt's main challenges facing development. The overall goal is to formulate strategies to enhance food security in light of population growth. Two hundred samples of maize grains from 25 governates were collected. For the detection of seed-borne fungi, the deep-freezing blotter method (DFB) and washing method (ISTA 1999) were used. A total of 41 fungal species was recovered from maize seed samples. Weather data from 30 stations scattered all over Egypt and covering the major maize growing areas were obtained. Canonical correspondence analysis of data for the obtained fungal genera with temperature, relative humidity, precipitation, wind speed, or solar radiation revealed that relative humidity, temperature and wind speed were the most influential weather variables.

Keywords: biodiversity, climate change, maize, seed-borne fungi

Procedia PDF Downloads 161
1315 Simple Ecofriendly Cyclodextrine-Surfactant Modified UHPLC Method for Quantification of Multivitamins in Pharmaceutical and Food Samples

Authors: Hassan M. Albishri, Abdullah Almalawi, Deia Abd El-Hady

Abstract:

A simple and ecofriendly cyclodextrine-surfactant modified UHPLC (CDS-UPLC) method for rapid and sensitive simultaneous determination of multi water-soluble vitamins such as ascorbic acid, pyridoxine hydrochloride and thiamine hydrochloride in commercial pharmaceuticals and milk samples have been firstly developed. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by a mixture of β-cyclodextrine (β-CD) and cationic surfactant under acidic conditions as an eco-friendly isocratic mobile phase at 0.02 mL/min flow rate. The proposed CDS- UHPLC method has been validated for the quantitative determination of multivitamins within 8 min in food and pharmaceutical samples. The method showed excellent linearity for analytes in a wide range of 10-1000 ng/µL. The repeatability and reproducibility of data were about 2.14 and 4.69 RSD%, respectively. The limits of detection (LODs) of analytes ranged between 0.86 and 5.6 ng/µL with a range of 81.8 -115.8% recoveries in tablets and milk samples. The current first CDS- UHPLC method could have vast applications for the precise analysis of multivitamins in complicated matrices.

Keywords: ecofriendly, cyclodextrine-surfactant, multivitamins, UHPLC

Procedia PDF Downloads 273
1314 Optimization of Solar Tracking Systems

Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer

Abstract:

In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.

Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers

Procedia PDF Downloads 192
1313 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector

Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi

Abstract:

In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.

Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture

Procedia PDF Downloads 432
1312 Study of Phenotypic Polymorphism and Detection of Genotypic Polymorphism in Menochilus sexmaculatus (Coleoptera: Insecta) Using RAPD PCR

Authors: Huma Balouch

Abstract:

Menochilus sexmaculatus commonly known as six spotted zig zag ladybird, is an aphidophagus and the most misidentified Coccinellids due to the occurrence of numerous color variants. The correct identification of Menochilus sexmaculatus and its strains is necessary to implement the use of biological control. In the present study phenotypic and genotypic polymorphism was investigated in Menochilus sexmaculatus collected from Punjab, NWFP and Sindh provinces of Pakistan. Six different morphs of the species were distinguished by analyzing its Elytral color and spot pattern and then Polymerase Chain Reaction was used to generate random amplification of polymorphic DNA (RAPD) from six different types of Menochilus sexmaculatus. Forty primers (OPA & OPC Kit) were used to perform RAPD PCR on six different types of Menochilus sexmaculatus of which, seven primers revealed different patterns related to the Menochilus sexmaculatus types. These seven primers (OPA-04, OPA-09, OPA-18, OPC-04, OPC-12, OPC-15 and OPC-18) produced 111 clear polymorphic bands and 6 scorable strain specific markers. The cluster analysis applied to RAPD data showed high polymorphism among six types and it can be concluded that these six types are six polymorphic strains of the same species.

Keywords: Menochilus sexmaculatus, aphidophagus, coccinellids, phenotypic and genotypic polymorphism, RAPD-PCR, strain specific markers

Procedia PDF Downloads 495
1311 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 105
1310 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 387
1309 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 353
1308 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks

Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge

Abstract:

Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.

Keywords: heavy metal contamination, locally manufactured, quality, soft drinks

Procedia PDF Downloads 147
1307 Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: M. Naeimi, H. Aghazadeh, E. Afjei, A. Siadatan

Abstract:

In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity.

Keywords: synchronous reluctance motor (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM), finite element method, static eccentricity, fault analysis

Procedia PDF Downloads 311
1306 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 130
1305 Natural Radioactivity in Foods Consumed in Turkey

Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt

Abstract:

This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.

Keywords: foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey

Procedia PDF Downloads 454
1304 Clinical and Molecular Characterization of Mycoplasmosis in Sheep in Egypt

Authors: Walid Mousa, Mohamed Nayel, Ahmed Zaghawa, Akram Salama, Ahmed El-Sify, Hesham Rashad, Dina El-Shafey

Abstract:

Mycoplasmosis in small ruminants constitutes a serious contagious problem in smallholders causing severe economic losses worldwide. This study was conducted to determine the clinical, Minimum Inhibitory Concentration (MIC) and molecular characterization of Mycoplasma species associated in sheep breeding herds in Menoufiya governorate, Egypt. Out of the examination of 400 sheep, 104 (26%) showed respiratory manifestations, nasal discharges, cough and conjunctivitis with systemic body reaction. Meanwhile, out of these examined sheep, only 56 (14%) were positive for mycoplasma isolation onto PPLO(Pleuropneumonia-like organisms) specific medium. The MIC for evaluating the efficacy of sensitivity of Mycoplasma isolates against different antibiotics groups revealed that both the Linospectin and Tylosin with 2ug, 0.25ug/ml concentration were the most effective antibiotics for Mycoplasma isolates. The application of PCR was the rapid, specific and sensitive molecular approach for detection of M. ovipneumoniae, and M. arginine at 390 and 326 bp, respectively, in all tested isolates. In conclusion, the diagnosis of Mycoplsamosis in sheep is important to achieve effective control measures and minimizing the disease dissemination among sheep herds.

Keywords: MIC, mycoplasmosis, PCR, sheep

Procedia PDF Downloads 228
1303 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 103
1302 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 132
1301 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 308
1300 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo

Authors: Li Minghui, Min Shaorong, Zhang Jun

Abstract:

This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.

Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability

Procedia PDF Downloads 455
1299 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining

Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi

Abstract:

Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.

Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory

Procedia PDF Downloads 403
1298 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 173
1297 miCoRe: Colorectal Cancer miRNAs Database

Authors: Rahul Agarwal, Ashutosh Singh

Abstract:

Colorectal cancer (CRC) also refers as bowel cancer or colon cancer. It involves the development of abnormal growth of cells in colon or rectum part of the body. This work leads to the development of a miRNA database in colorectal cancer. We named this database- miCoRe. This database comprises of all validated colon-rectal cancer miRNAs information from various published literature with an effectual knowledge based information retrieval system. miRNAs have been collected from various published literature reports. MySQL is used for main-framework of miCoRe while the front-end was developed in PHP script. The aim of developing miCoRe is to create a comprehensive central repository of colorectal carcinoma miRNAs with all germane information of miRNAs and their target genes. The current version of miCoRe consists of 238 miRNAs which are known to be implicated in malignancy of CRC. Alongside with miRNA information, miCoRe also contains the information related to the target genes of these miRNA. miCoRe furnishes the information about the mechanism of incidence and progression of the disease, which would further help the researchers to look for colorectal specific miRNAs therapies and CRC specific targeted drug designing. Moreover, it will also help in development of biomarkers for the better and early detection of CRC and will help in better clinical management of the disease.

Keywords: colorectal cancer, database, miCoRe, miRNAs

Procedia PDF Downloads 278
1296 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 115
1295 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 142