Search results for: high pressure and high temperature microfluidics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25895

Search results for: high pressure and high temperature microfluidics

3185 Adsorption and Kinetic Studies on Removal of NH3-N from Wastewater onto 2 Different Nanoparticles Loaded Coconut Coir

Authors: Khushboo Bhavsar, Nisha K. Shah, Neha Parekh

Abstract:

The status of wastewater treatment needs a novel and quick method for treating the wastewater containing ammoniacal nitrogen. Adsorption behavior of ammoniacal nitrogen from wastewater using the nanoparticles loaded coconut coir was investigated in the present work. Manganese Oxide (MnO2) and Zinc Oxide (ZnO) nanoparticles were prepared and used for the further adsorption study. Manganese nanoparticles loaded coconut coir (MNLCC) and Zinc nanoparticles loaded coconut coir (ZNLCC) were prepared via a simple method and was fully characterized. The properties of both MNLCC and ZNLCC were characterized by Scanning electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. Adsorption characteristics were studied using batch technique considering various parameters like pH, adsorbent dosage, time, temperature and agitation time. The NH3-N adsorption process for MNLCC and ZNLCC was thoroughly studied from both kinetic and equilibrium isotherm view-points. The results indicated that the adsorption efficiency of ZNLCC was better when compared to MNLCC. The adsorption kinetics at different experimental conditions showed that second order kinetic model best fits ensuring the monovalent binding sites existing in the present experimental system. The outcome of the entire study suggests that the ZNLCC can be a smart option for the treatment of the ammoniacal nitrogen containing wastewater.

Keywords: ammoniacal nitrogen, MnO2, Nanoparticles, ZnO

Procedia PDF Downloads 345
3184 Hawaii, Colorado, and Netherlands: A Comparative Analysis of the Respective Space Sectors

Authors: Mclee Kerolle

Abstract:

For more than 50 years, the state of Hawaii has had the beginnings of a burgeoning commercial aerospace presence statewide. While Hawaii provides the aerospace industry with unique assets concerning geographic location, lack of range safety issues and other factors critical to aerospace development, Hawaii’s strategy and commitment for aerospace have been unclear. For this reason, this paper presents a comparative analysis of Hawaii’s space sector with two of the world’s leading space sectors, Colorado and the Netherlands, in order to provide a strategic plan that establishes a firm position going forward to support Hawaii’s aerospace development statewide. This plan will include financial and other economic incentives legislatively supported by the State to help grow and diversify Hawaii’s aerospace sector. The first part of this paper will examine the business model adopted by the Colorado Space Coalition (CSC), a group of industry stakeholders working to make Colorado a center of excellence for aerospace, as blueprint for growth in Hawaii’s space sector. The second section of this paper will examine the business model adopted by the Netherlands Space Business Incubation Centre (NSBIC), a European Space Agency (ESA) affiliated program that offers business support for entrepreneurs to turn space-connected business ideas into commercial companies. This will serve as blueprint to incentivize space businesses to launch and develop in Hawaii. The third section of this paper will analyze the current policies both CSC, and NSBIC implores to promote industry expansion and legislative advocacy. The final section takes the findings from both space sectors and applies their most adaptable features to a Hawaii specific space business model that takes into consideration the unique advantage and disadvantages found in developing Hawaii’s space sector. The findings of this analysis will show that the development of a strategic plan based on a comparative analysis that creates high technology jobs and new pathways for a trained workforce in the space sector, as well as elicit state support and direction, will achieve the goal of establishing Hawaii as a center of space excellence. This analysis will also serve as a signal to the federal, private sector and international community that Hawaii is indeed serious about developing its’ aerospace industry. Ultimately this analysis and subsequent aerospace development plan will serve as a blueprint for the benefit of all space-faring nations seeking to develop their space sectors.

Keywords: Colorado, Hawaii, Netherlands, space policy

Procedia PDF Downloads 155
3183 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 58
3182 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption

Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui

Abstract:

The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.

Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa

Procedia PDF Downloads 219
3181 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 192
3180 Reduced Lung Volume: A Possible Cause of Stuttering

Authors: Shantanu Arya, Sachin Sakhuja, Gunjan Mehta, Sanjay Munjal

Abstract:

Stuttering may be defined as a speech disorder affecting the fluency domain of speech and characterized by covert features like word substitution, omittance and circumlocution and overt features like prolongation of sound, syllables and blocks etc. Many etiologies have been postulated to explain stuttering based on various experiments and research. Moreover, Breathlessness has also been reported by many individuals with stuttering for which breathing exercises are generally advised. However, no studies reporting objective evaluation of the pulmonary capacity and further objective assessment of the efficacy of breathing exercises have been conducted. Pulmonary Function Test which evaluates parameters like Forced Vital Capacity, Peak Expiratory Flow Rate, Forced expiratory flow Rate can be used to study the pulmonary behavior of individuals with stuttering. The study aimed: a) To identify speech motor & physiologic behaviours associated with stuttering by administering PFT. b) To recognize possible reasons for an association between speech motor behaviour & stuttering severity. In this regard, PFT tests were administered on individuals who reported signs and symptoms of stuttering and showed abnormal scores on Stuttering Severity Index. Parameters like Forced Vital Capacity, Forced Expiratory Volume, Peak Expiratory Flow Rate (L/min), Forced Expiratory Flow Rate (L/min) were evaluated and correlated with scores of Stuttering Severity Index. Results showed significant decrease in the parameters (lower than normal scores) in individuals with established stuttering. Strong correlation was also found between degree of stuttering and the degree of decrease in the pulmonary volumes. Thus, it is evident that fluent speech requires strong support of lung pressure and requisite volumes. Further research in demonstrating the efficacy of abdominal breathing exercises in this regard is needed.

Keywords: forced expiratory flow rate, forced expiratory volume, forced vital capacity, peak expiratory flow rate, stuttering

Procedia PDF Downloads 256
3179 An Index to Measure Transportation Sustainable Performance in Construction Projects

Authors: Sareh Rajabi, Taha Anjamrooz, Salwa Bheiry

Abstract:

The continuous increase in the world population, resource shortage and the warning of climate change cause various environmental and social issues to the world. Thus, sustainability concept is much needed nowadays. Organizations are progressively falling under strong worldwide pressure to integrate sustainability practices into their project decision-making development. Construction projects in the industry are amongst the most significant, since it is one of the biggest divisions and of main significance for the national economy and hence has a massive effect on the environment and society. So, it is important to discover approaches to incorporate sustainability into the management of those projects. This study presents a combined sustainability index of projects with sustainable transportation which has been formed as per a comprehensive literature review and survey study. Transportation systems enable the movement of goods and services worldwide, and it is leading to economic growth and creating jobs while creating negative impacts on the environment and society. This research is study to quantify the sustainability indicators, through 1) identifying the importance of sustainable transportation indicators that are based on the sustainable practices used for the construction projects and 2) measure the effectiveness of practices through these indicators on the three sustainable pillars. A total 26 sustainability indicators have been selected and grouped under each related sustainability pillars. A survey was used to collect the opinion about the sustainability indicators by a scoring system. A combined sustainability index considering three sustainable pillars can be helpful in evaluating the transportation sustainable practices of a project and making decisions regarding project selection. In addition to focus on the issue of financial resource allocation in a project selection, the decision-maker could take into account the sustainability as an important key in addition to the project’s return and risk. The purpose of this study is to measure the performance of transportation sustainability which allow companies to assess multiple projects selection. This is useful to decision makers to rank and focus more on future sustainable projects.

Keywords: sustainable transportation, transportation performances, sustainable indicators, sustainable construction practice, sustainability

Procedia PDF Downloads 130
3178 Investigation of Mangrove Area Effects on Hydrodynamic Conditions of a Tidal Dominant Strait Near the Strait of Hormuz

Authors: Maryam Hajibaba, Mohsen Soltanpour, Mehrnoosh Abbasian, S. Abbas Haghshenas

Abstract:

This paper aims to evaluate the main role of mangroves forests on the unique hydrodynamic characteristics of the Khuran Strait (KS) in the Persian Gulf. Investigation of hydrodynamic conditions of KS is vital to predict and estimate sedimentation and erosion all over the protected areas north of Qeshm Island. KS (or Tang-e-Khuran) is located between Qeshm Island and the Iranian mother land and has a minimum width of approximately two kilometers. Hydrodynamics of the strait is dominated by strong tidal currents of up to 2 m/s. The bathymetry of the area is dynamic and complicated as 1) strong currents do exist in the area which lead to seemingly sand dune movements in the middle and southern parts of the strait, and 2) existence a vast area with mangrove coverage next to the narrowest part of the strait. This is why ordinary modeling schemes with normal mesh resolutions are not capable for high accuracy estimations of current fields in the KS. A comprehensive set of measurements were carried out with several components, to investigate the hydrodynamics and morpho-dynamics of the study area, including 1) vertical current profiling at six stations, 2) directional wave measurements at four stations, 3) water level measurements at six stations, 4) wind measurements at one station, and 5) sediment grab sampling at 100 locations. Additionally, a set of periodic hydrographic surveys was included in the program. The numerical simulation was carried out by using Delft3D – Flow Module. Model calibration was done by comparing water levels and depth averaged velocity of currents against available observational data. The results clearly indicate that observed data and simulations only fit together if a realistic perspective of the mangrove area is well captured by the model bathymetry data. Generating unstructured grid by using RGFGRID and QUICKIN, the flow model was driven with water level time-series at open boundaries. Adopting the available field data, the key role of mangrove area on the hydrodynamics of the study area can be studied. The results show that including the accurate geometry of the mangrove area and consideration of its sponge-like behavior are the key aspects through which a realistic current field can be simulated in the KS.

Keywords: Khuran Strait, Persian Gulf, tide, current, Delft3D

Procedia PDF Downloads 188
3177 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L. Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates.

Keywords: non destructive, paint coating, thickness, infrared thermography, laser, heterogeneity

Procedia PDF Downloads 629
3176 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India

Authors: D. S. Jaya, G. P. Deepthi

Abstract:

Groundwater is vital to the livelihoods and health of the majority of the people since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical, and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area are wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre-monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analysed following standard procedures. The concentration of heavy metals (Cd, Pb, and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to the alkaline level. In the majority of well water samples ( > 54%) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area is good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Kerala in terms of its chemical and bacteriological characteristics and is not potable without proper treatment. In the study, more than 1/3rd of the wells tested were positive for total coliforms, and the bacterial contamination may pose threats to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.

Keywords: bacteriological, groundwater, irrigational suitability, physicochemical, portability

Procedia PDF Downloads 254
3175 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia

Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman

Abstract:

The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.

Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development

Procedia PDF Downloads 425
3174 Financial Innovations for Companies Offered by Banks: Polish Experience

Authors: Joanna Błach, Anna Doś, Maria Gorczyńska, Monika Wieczorek-Kosmala

Abstract:

Financial innovations can be regarded as the cause and the effect of the evolution of the financial system. Most of financial innovations are created by various financial institutions for their own purposes and needs. However, due to their diversity, financial innovations can be also applied by various business entities (other than financial institutions). This paper focuses on the potential application of financial innovations by non-financial companies. It is assumed that financial innovations may be effectively applied in all fields of corporate financial decisions integrating financial management with the risk management process. Appropriate application of financial innovations may enhance the development of the company and increase its value by improving its financial situation and reducing the level of risk. On the other hand, misused financial innovations may become the source of extra risk for the company threatening its further operation. The main objective of the paper is to identify the major types of financial innovations offered to non-financial companies by the banking system in Poland. It also aims at identifying the main factors determining the creation of financial innovations in the banking system in Poland and indicating future directions of their development. This paper consists of conceptual and empirical part. Conceptual part based on theoretical study is focused on the determinants of the process of financial innovations and their application by the non-financial companies. Theoretical study is followed by the empirical research based on the analysis of the actual offer of the 20 biggest banks operating in Poland with regard to financial innovations offered to SMEs and large corporations. These innovations are classified according to the main functions of the integrated financial management, such as: Financing, investment, working capital management and risk management. Empirical study has proved that the biggest banks operating in the Polish market offer to their business customers many types and classes of financial innovations. This offer appears vast and adequate to the needs and purposes of the Polish non-financial companies. It was observed that financial innovations pertained to financing decisions dominate in the banks’ offer. However, due to high diversification of the offered financial innovations, business customers may effectively apply them in all fields and areas of integrated financial management. It should be underlined, that the banks’ offer is highly dispersed, which may limit the implementation of financial innovations in the corporate finance. It would be also recommended for the banks operating in the Polish market to intensify the education campaign aiming at increasing knowledge about financial innovations among business customers.

Keywords: banking products and services, banking sector in Poland, corporate financial management, financial innovations, theory of innovation

Procedia PDF Downloads 296
3173 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho

Authors: Tsepiso Mofolo, Luna Bergh

Abstract:

The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.

Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction

Procedia PDF Downloads 273
3172 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act

Authors: Maria Jędrzejczak, Patryk Pieniążek

Abstract:

The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.

Keywords: data protection law, personal data, AI law, personal data breach

Procedia PDF Downloads 48
3171 Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid

Authors: Alexandra C. Blaga, Dan Caşcaval, Alexandra Tucaliuc, Madalina Poştaru, Anca I. Galaction

Abstract:

Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5.

Keywords: amino acids, di-(2-ethylhexyl) phosphoric acid, reactive extraction, selective extraction

Procedia PDF Downloads 420
3170 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance

Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár

Abstract:

As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.

Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection

Procedia PDF Downloads 296
3169 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.

Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage

Procedia PDF Downloads 133
3168 Traumatic Brain Injury in Cameroon: A Prospective Observational Study in a Level 1 Trauma Centre

Authors: Franklin Chu Buh, Irene Ule Ngole Sumbele, Andrew I. R. Maas, Mathieu Motah, Jogi V. Pattisapu, Eric Youm, Basil Kum Meh, Firas H. Kobeissy, Kevin W. Wang, Peter J. A. Hutchinson, Germain Sotoing Taiwe

Abstract:

Introduction: Studying TBI characteristics and their relation to outcomes can identify initiatives to improve TBI prevention and care. The objective of this study was to define the features and outcomes of TBI patients seen over a 1-year period in a level-I trauma center in Cameroon. Methods: Data on demographics, causes, injury mechanisms, clinical aspects, and discharge status were prospectively collected over a period of 12 months. The Glasgow Outcome Scale-Extended (GOSE) and the Quality of Life Questionnaire after Brain Injury (QoLIBRI) were used to evaluate outcomes 6-months after TBI. Categorical variables were described as frequencies and percentages. Comparisons between 2 categorical variables were done using Pearson's Chi-square test or Fisher's exact test. Results: A total of 160 TBI patients participated in the study. The age group 15-45 years (78%; 125) was most represented. Males were more affected (90%; 144). Low educational level was recorded in 122 (76%) cases. Road traffic incidents (RTI) were the main cause of TBI (85%), with professional bike riders being frequently involved (27%, 43/160). Assaults (7.5%) and falls (2.5%) represent the second and third most common causes of TBI in Cameroon, respectively. Only 15 patients were transported to the hospital by ambulance, and 14 of these were from a referring hospital. CT-imaging was performed in 78% (125/160) of cases intracranial traumatic abnormality was identified in 77/125 (64%) cases. Financial constraints were the main reason for not performing a CT scan on 35 patients. A total of 46 (33%) patients were discharged against medical advice (DAMA) due to financial constraints. Mortality was 14% (22/160) but disproportionately high in patients with severe TBI (46%). DAMA had poor outcomes with QoLIBRI. Only 4 patients received post-injury physiotherapy services. Conclusion: TBI in Cameroon mainly results from RTIs and commonly affects young adult males, and low educational or socioeconomic status and commercial bike riding appear to be predisposing factors. Lack of pre-hospital care, financial constraints limiting both CT-scanning and medical care, and lack of acute physiotherapy services likely influenced care and outcomes adversely.

Keywords: characteristics, traumatic brain injury, outcome, disparities in care, prospective study

Procedia PDF Downloads 111
3167 Design and Realization of Computer Network Security Perception Control System

Authors: El Miloudi Djelloul

Abstract:

Based on analysis on applications by perception control technology in computer network security status and security protection measures, from the angles of network physical environment and network software system environmental security, this paper provides network security system perception control solution using Internet of Things (IOT), telecom and other perception technologies. Security Perception Control System is in the computer network environment, utilizing Radio Frequency Identification (RFID) of IOT and telecom integration technology to carry out integration design for systems. In the network physical security environment, RFID temperature, humidity, gas and perception technologies are used to do surveillance on environmental data, dynamic perception technology is used for network system security environment, user-defined security parameters, security log are used for quick data analysis, extends control on I/O interface, by development of API and AT command, Computer Network Security Perception Control based on Internet and GSM/GPRS is achieved, which enables users to carry out interactive perception and control for network security environment by WEB, E-MAIL as well as PDA, mobile phone short message and Internet. In the system testing, through middle ware server, security information data perception in real time with deviation of 3-5% was achieved; it proves the feasibility of Computer Network Security Perception Control System.

Keywords: computer network, perception control system security strategy, Radio Frequency Identification (RFID)

Procedia PDF Downloads 432
3166 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 55
3165 Common Caper (Capparis Spinosa L.) From Oblivion and Neglect to the Interface of Medicinal Plants

Authors: Ahmad Alsheikh Kaddour

Abstract:

Herbal medicine has been a long-standing phenomenon in Arab countries since ancient times because of its breadth and moderate temperament. Therefore, it possesses a vast natural and economic wealth of medicinal and aromatic herbs. This prompted ancient Egyptians and Arabs to discover and exploit them. The economic importance of the plant is not only from medicinal uses; it is a plant of high economic value for its various uses, especially in food, cosmetic and aromatic industries. It is also an ornamental plant and soil stabilization. The main objective of this research is to study the chemical changes that occur in the plant during the growth period, as well as the production of plant buds, which were previously considered unwanted plants. The research was carried out in the period 2021-2022 in the valley of Al-Shaflah (common caper), located in Qumhana village, 7 km north of Hama Governorate, Syria. The results of the research showed a change in the percentage of chemical components in the plant parts. The ratio of protein content and the percentage of fatty substances in fruits and the ratio of oil in the seeds until the period of harvesting of these plant parts improved, but the percentage of essential oils decreased with the progress of the plant growth, while the Glycosides content where improved with the plant aging. The production of buds is small, with dimensions as 0.5×0.5 cm, which is preferred for commercial markets, harvested every 2-3 days in quantities ranging from 0.4 to 0.5 kg in one cut/shrubs with 3 years’ age as average for the years 2021-2022. The monthly production of a shrub is between 4-5 kg per month. The productive period is 4 months approximately. This means that the seasonal production of one plant is 16-20 kg and the production of 16-20 tons per year with a plant density of 1,000 shrubs per hectare, which is the optimum rate of cultivation in the unit of mass, given the price of a kg of these buds is equivalent to 1 US $; however, this means that the annual output value of the locally produced hectare ranges from 16,000 US $ to 20,000 US $ for farmers. The results showed that it is possible to transform the cultivation of this plant from traditional random to typical areas cultivation, with a plant density of 1,000-1,100 plants per hectare according to the type of soil to obtain production of medicinal and nutritious buds, as well as, the need to pay attention to this national wealth and invest in the optimal manner, which leads to the acquisition of hard currency through export to support the national income.

Keywords: common caper, medicinal plants, propagation, medical, economic importance

Procedia PDF Downloads 61
3164 Epidemiology of Low Back Pain among Nurses Working in Public Hospitals of Addis Ababa, Ethiopia

Authors: Mengestie Mulugeta Belay, Serebe Abay Gebrie, Biruk Lambbiso Wamisho, Amare Worku

Abstract:

Background: Low back pain (LBP) related to nursing profession, is a very common public health problem throughout the world. Various risk factors have been implicated in the etiology and LBP is assumed to be of multi-factorial origin as individual, work-related and psychosocial factors can contribute to its development. Objectives: To determine the prevalence and to identify risk factors of LBP among nurses working in Addis Ababa City Public Hospitals, Ethiopia, in the year 2015. Settings: Addis Ababa University, Black-Lion (‘Tikur Anbessa’) Hospital-BLH, is the country’s highest tertiary level referral and teaching Hospital. The three departments in connection with this study: Radiology, Pathology and Orthopedics, run undergraduate and residency programs and receive referred patients from all over the country. Methods: A cross-sectional study with internal comparison was conducted throughout the period October-December, 2015. Sample was chosen by simple random sampling technique by taken the lists of nurses from human resource departments as a sampling frame. A well-structured, pre-tested and self-administered questionnaire was used to collect quantifiable information. The questionnaire included socio-demographic, back pain features, consequences of back pain, work-related and psychosocial factors. The collected data was entered into EpiInfo version 3.5.4 and was analyzed by SPSS. A probability level of 0.05 or less and 95% confidence level was used to indicate statistical significance. Ethical clearance was obtained from all respected administrative bodies, Hospitals and study participants. Results: The study included 395 nurses and gave a response rate of 91.9%. The mean age was 30.6 (±8.4) years. Majority of the respondents were female (285, 72.2%). Nearly half of the participants (n=181, 45.8% (95% CI (40.8%- 50.6%))) were complained low back pain. There was statistical significant association between low back pain and working shift, physical activities at work; sleep disturbance and felt little pleasure by doing things. Conclusion: A high prevalence of low back pain was found among nurses working in Addis Ababa Public Hospitals. Recognition and preventive measures like providing resting periods should be taken to reduce the risk of low back pain in nurses working in Public hospitals.

Keywords: low back pain, risk factors, nurses, public hospitals

Procedia PDF Downloads 290
3163 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel

Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun

Abstract:

Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.

Keywords: austenite, austenite twin layers, κ-carbide, twins

Procedia PDF Downloads 216
3162 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 352
3161 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields

Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek

Abstract:

Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.

Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity

Procedia PDF Downloads 252
3160 Synthesis of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch by Using Phosphotungstic Acid

Authors: Yogi Wibisono Budhi, Ferry Iskandar, Veinardi Suendo, Muhammad Fakhrudin, Neng Tresna Umi Culsum

Abstract:

Oil palm empty fruit bunch (OPEFB), an abundant agro-waste in Indonesia, is being studied as raw material of Cellulose Nanocrystals (CNC) synthesis. Instead of conventional acid mineral, phosphotungstic acid (H₃PW₁₂O₄₀, HPW) was used to hydrolyze cellulose due to recycling ability and easy handling. Before hydrolysis process, dried EFB was treated by 4% NaOH solution at 90oC for 2 hours and then bleached using 2% NaClO₂ solution at 80oC for 3 hours to remove hemicellulose and lignin. Hydrolysis reaction parameters such as temperature, acid concentration, and reaction time were optimized with fixed solid-liquid ratio of 1:40. Response surface method was used for experimental design to determine the optimum condition of each parameter. HPW was extracted from the mixed solution and recycled with diethyl ether. CNC was separated from the solution by centrifuging and washing with distilled water and ethanol to remove degraded sugars and unreacted celluloses. In this study, pulp from dried EFB produced 44.8% yield of CNC. Dynamic Light Scattering (DLS) analysis showed that most of CNC equivalent diameter was 140 nm. Crystallinity index was observed at 73.3% using X-ray Diffraction (XRD) analysis. Thus, a green established process for the preparation of CNC was achieved.

Keywords: acid hydrolysis, cellulose nanocrystals, oil palm empty fruit bunch, phosphotungstic acid

Procedia PDF Downloads 207
3159 A Framework of Virtualized Software Controller for Smart Manufacturing

Authors: Pin Xiu Chen, Shang Liang Chen

Abstract:

A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.

Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing

Procedia PDF Downloads 66
3158 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 206
3157 Building Academic Success and Resilience in Social Work Students: An Application of Self-Determination Theory

Authors: Louise Bunce, Jill Childs, Adam J. Lonsdale, Naomi King

Abstract:

A major concern for the Social Work profession concerns the frequency of burn-out and high turnover of staff. The characteristic of resilience has been identified as playing a crucial role in social workers’ ability to have a satisfying and successful career. Thus a critical role for social work education is to develop resilience in social work students. We currently need to know more about how to train resilient social workers who will also increase the academic standing of the profession. The specific aim of this research was to quantify characteristics that may contribute towards resilience and academic success among student social workers in order to mitigate against the problems of burn-out and low academic standing. These three characteristics were competence (effectiveness at mastering the environment), autonomy (sense of control and free will), and relatedness (interacting and connecting with others), as specified in Self-Determination Theory (SDT). When these three needs are satisfied, we experience higher degrees of motivation to succeed and wellbeing. Thus when these three needs are met in social work students, they have the potential to raise academic standards and promote wellbeing characteristics that contribute to the development of resilience. The current study tested the hypothesis that higher levels of autonomy, competence, and relatedness, as defined by SDT, will predict levels of academic success and resilience in social work students. Two hundred and ten social work students studying at a number of universities completed well-established questionnaires to assess autonomy, competence, and relatedness, level of academic performance and resilience (The Brief Resilience Scale). In this scale, students rated their agreement with items e.g., ‘I bounce back quickly after hard times’ and ‘I usually come through difficult times with little struggle’. After controlling for various factors, including age, gender, ethnicity, and course (undergraduate or postgraduate) preliminary analysis revealed that the components of SDT provided useful predictive value for academic success and resilience. In particular, autonomy and competence provided a useful predictor of academic success while relatedness was a particularly useful predictor of resilience. This study demonstrated that SDT provides a valuable framework for helping to understand what predicts academic success and resilience among social work students. This is relevant because the psychological needs for autonomy, competence and relatedness can be affected by external social and cultural pressures, thus they can be improved by the right type of supportive teaching practices and educational environments. These findings contribute to the growing evidence-base to help build an academic and resilient social worker student body and workforce.

Keywords: education, resilience, self-determination theory, student social workers

Procedia PDF Downloads 320
3156 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes

Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun

Abstract:

Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.

Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces

Procedia PDF Downloads 132