Search results for: signal classification
1473 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa
Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak
Abstract:
Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens
Procedia PDF Downloads 2001472 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart
Authors: O. Ikpotokin
Abstract:
In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 3471471 Detection of Extrusion Blow Molding Defects by Airflow Analysis
Authors: Eva Savy, Anthony Ruiz
Abstract:
In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.Keywords: extrusion blow molding, signal, sensor, defects, detection
Procedia PDF Downloads 1511470 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.Keywords: ANOVA, DOE, inconel, machining, optimization
Procedia PDF Downloads 2051469 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier
Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur
Abstract:
Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.Keywords: test case prioritization, classification, artificial neural networks, TF-IDF
Procedia PDF Downloads 3971468 Improved Processing Speed for Text Watermarking Algorithm in Color Images
Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari
Abstract:
Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.Keywords: steganography, watermarking, time complexity measurements, private keys
Procedia PDF Downloads 1431467 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1461466 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID
Procedia PDF Downloads 3621465 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.Keywords: AHP, GIS, MCE, suitability, Zea mays
Procedia PDF Downloads 3961464 Grammatical and Lexical Cohesion in the Japan’s Prime Minister Shinzo Abe’s Speech Text ‘Nihon wa Modottekimashita’
Authors: Nadya Inda Syartanti
Abstract:
This research aims to identify, classify, and analyze descriptively the aspects of grammatical and lexical cohesion in the speech text of Japan’s Prime Minister Shinzo Abe entitled Nihon wa Modotte kimashita delivered in Washington DC, the United States on February 23, 2013, as a research data source. The method used is qualitative research, which uses descriptions through words that are applied by analyzing aspects of grammatical and lexical cohesion proposed by Halliday and Hasan (1976). The aspects of grammatical cohesion consist of references (personal, demonstrative, interrogative pronouns), substitution, ellipsis, and conjunction. In contrast, lexical cohesion consists of reiteration (repetition, synonym, antonym, hyponym, meronym) and collocation. Data classification is based on the 6 aspects of the cohesion. Through some aspects of cohesion, this research tries to find out the frequency of using grammatical and lexical cohesion in Shinzo Abe's speech text entitled Nihon wa Modotte kimashita. The results of this research are expected to help overcome the difficulty of understanding speech texts in Japanese. Therefore, this research can be a reference for learners, researchers, and anyone who is interested in the field of discourse analysis.Keywords: cohesion, grammatical cohesion, lexical cohesion, speech text, Shinzo Abe
Procedia PDF Downloads 1621463 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1911462 Android – Based Wireless Electronic Stethoscope
Authors: Aw Adi Arryansyah
Abstract:
Using electronic stethoscope for detecting heartbeat sound, and breath sounds, are the effective way to investigate cardiovascular diseases. On the other side, technology is growing towards mobile. Almost everyone has a smartphone. Smartphone has many platforms. Creating mobile applications also became easier. We also can use HTML5 technology to creating mobile apps. Android is the most widely used type. This is the reason for us to make a wireless electronic stethoscope based on Android mobile. Android based Wireless Electronic Stethoscope designed by a simple system, uses sound sensors mounted membrane, then connected with Bluetooth module which will send the heart auscultation voice input data by Bluetooth signal to an android platform. On the software side, android will read the voice input then it will translate to beautiful visualization and release the voice output which can be regulated about how much of it is going to be released. We can change the heart beat sound into BPM data, and heart beat analysis, like normal beat, bradycardia or tachycardia.Keywords: wireless, HTML 5, auscultation, bradycardia, tachycardia
Procedia PDF Downloads 3471461 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 2241460 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1571459 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 3081458 Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter
Authors: Yeng Min Yi, Rosli Md Illias, Salehhuddin Hamdan
Abstract:
Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli.Keywords: biocatalysis, cell surface display, Escherichia coli, TibA autotransporter
Procedia PDF Downloads 2811457 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 1951456 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 4821455 The Expression of a Novel Gene Encoding an Ankyrin-Repeat Protein, DRA1, Is Regulated by Drought-Responsive Alternative Splicing
Authors: H. Sakamoto, Y. Nakagawara, S. Oguri
Abstract:
Drought stress is a critical environmental factor that adversely affects crop productivity and quality. Because of their immobile nature, plants have evolved mechanisms to sense and respond to drought stress. We identified a novel locus of Arabidopsis, designated DRA1 (drought responsive ankyrin 1), whose disruption leads to increased drought stress tolerance. DRA1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. RT-PCR analysis revealed that there were at least two splicing variants of DRA1 transcripts in wild type plants. In response to drought stress, the levels of DRA1 transcripts retaining second and third introns were increased, whereas these introns were removed under unstressed conditions. These results suggest that DRA1 protein may negatively regulate plant drought tolerance and that the expression of DRA1 is regulated in response to drought stress by alternative splicing.Keywords: alternative splicing, ankyrin repeat, Arabidopsis, drought tolerance
Procedia PDF Downloads 3251454 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2031453 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 1061452 Classifying Facial Expressions Based on a Motion Local Appearance Approach
Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez
Abstract:
This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach
Procedia PDF Downloads 4131451 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 2711450 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 4731449 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1441448 Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory
Authors: Priyanka Bhatnagar, Malkeshkumar Patel, Joondong Kim, Joonpyo Hong
Abstract:
Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics.Keywords: transparent, photovoltaics, thermal memory, artificial skin, thermoreceptor
Procedia PDF Downloads 1101447 Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer
Authors: Syeda Qamarunnisa, Ishrat Jamil, Abid Azhar, Zabta K. Shinwari, Syed Irtifaq Ali
Abstract:
A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae.Keywords: systematics, solanaceae, phylogenetics, intergenic spacer, tribes
Procedia PDF Downloads 4681446 Unlocking the Potential of Short Texts with Semantic Enrichment, Disambiguation Techniques, and Context Fusion
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
This paper explores the potential of short texts through semantic enrichment and disambiguation techniques. By employing context fusion, we aim to enhance the comprehension and utility of concise textual information. The methodologies utilized are grounded in recent advancements in natural language processing, which allow for a deeper understanding of semantics within limited text formats. Specifically, topic classification is employed to understand the context of the sentence and assess the relevance of added expressions. Additionally, word sense disambiguation is used to clarify unclear words, replacing them with more precise terms. The implications of this research extend to various applications, including information retrieval and knowledge representation. Ultimately, this work highlights the importance of refining short text processing techniques to unlock their full potential in real-world applications.Keywords: information traffic, text summarization, word-sense disambiguation, semantic enrichment, ambiguity resolution, short text enhancement, information retrieval, contextual understanding, natural language processing, ambiguity
Procedia PDF Downloads 81445 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 2871444 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).
Procedia PDF Downloads 183