Search results for: drug prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4191

Search results for: drug prediction

1971 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica

Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy

Abstract:

In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.

Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies

Procedia PDF Downloads 114
1970 The Optical Properties of CdS and Conjugated Cadmium Sulphide-Cowpea Chlorotic Mottle Virus

Authors: Afiqah Shafify Amran, Siti Aisyah Shamsudin, Nurul Yuziana Mohd Yusof

Abstract:

Cadmium Sulphide (CdS) from group II-IV quantum dots with good optical properties was successfully synthesized by using the simple colloidal method. Capping them with ligand Polyethylinamine (PEI) alters the surface defect of CdS while, thioglycolic acid (TGA) was added to the reaction as a stabilizer. Due to their cytotoxicity, we decided to conjugate them with the protein cage nanoparticles. In this research, we used capsid of Cowpea Chlorotic Mottle Virus (CCMV) to package the CdS because they have the potential to serve in drug delivery, cell targeting and imaging. Adding Sodium Hydroxide (NaOH) changes the pH of the systems hence the isoelectric charge is adjusted. We have characterized and studied the morphology and the optical properties of CdS and CdS-CCMV by transmitted electron microscopic (TEM), UV-Vis spectroscopy, photoluminescence spectroscopy, UV lamp and Fourier transform infrared spectroscopy (FTIR), respectively. The results obtained suggest that the protein cage nanoparticles do not affect the optical properties of CdS.

Keywords: cadmium sulphide, cowpea chlorotic mottle virus, protein cage nanoparticles, quantum dots

Procedia PDF Downloads 338
1969 Fan Engagement Sustainability and Fan Fatigue: Understanding the Role of Marvel Franchise for Fans

Authors: Mitrajit Biswas

Abstract:

This paper is trying to understand the issues related to maintaining a fan base over a period of time. The paper would be trying to look into how the fan base can be actually engaged. That is what are the attributes of keeping a fan base interested and not feeling fatigued or tired. It would also try to understand that what are the key elements required for a franchise to be active and keep the fans engaged. The paper would look to understand the primary elements of a franchise like Marvel to keep the fans engaged for such a long period of time. This will help to improve the scope of literature on consumer engagement and consumption behaviour in modern times of unpredictability. It will also help to understand how the consumers take in a longer period of engagement. This would help to understand that despite huge success and investment in fan engagement and what could be the possible reasons for disengagement? This would include in-depth interviews with a global sample of around 50 people, which would be connected through purposive, convenient, and snowball sampling. It will help to understand whether the customer lifetime value as a theory can be sustained based on customer relationship management. If yes, how can products from certain companies predict and keep up the strategy for the prediction of the consumer engagement process?

Keywords: consumption, fatigue, brand loyalty, sustainable consumption

Procedia PDF Downloads 77
1968 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 70
1967 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 73
1966 Model and Neural Control of the Depth of Anesthesia during Surgery

Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz

Abstract:

At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.

Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model

Procedia PDF Downloads 337
1965 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model

Procedia PDF Downloads 502
1964 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy

Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu

Abstract:

The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.

Keywords: complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment

Procedia PDF Downloads 259
1963 Investigation of the Relationship between Personality Components and Tendency to Addiction to Domestic Violence

Authors: Mohamad Reza Khodabakhsh

Abstract:

Violence against women is a historical phenomenon; although its form and type are common in various societies and cultures, this type of violence occurs in terms of physical, psychological, financial, and sexual dimensions. This is the cause of many social deviations and endangers the center of the family as the most important institution. This research seeks to investigate the relationship between personality characteristics and the tendency to addiction to domestic violence. One hundred fifty women and one hundred fifty men were selected by the available sampling method. One hundred fifty men were admitted to drug addiction camps, and women included domestic violence cases. A questionnaire on addiction tendency, Five Personality Traits (NEO), and attitudes toward violence against women was used. Data were analyzed in descriptive and inferential statistics. The data were analyzed at the level of descriptive mean, mean, and standard deviation and analyzed using SPSS 20 software using correlation and analysis of variance at the level of inferential level. And the data were analyzed at the p≤0.05 significance level. The results showed that there is a significant relationship between personality traits and a tendency to addiction and domestic violence.

Keywords: personality, addiction, domestic violence, family

Procedia PDF Downloads 103
1962 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 50
1961 Digitalization in Aggregate Quarries

Authors: José Eugenio Ortiz, Pierre Plaza, Josefa Herrero, Iván Cabria, José Luis Blanco, Javier Gavilanes, José Ignacio Escavy, Ignacio López-Cilla, Virginia Yagüe, César Pérez, Silvia Rodríguez, Jorge Rico, Cecilia Serrano, Jesús Bernat

Abstract:

The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.

Keywords: aggregates, artificial intelligence, automatization, mining operations

Procedia PDF Downloads 88
1960 Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G

Authors: Saha Saradindu, Das Payel, Somdeb BoseDasgupta

Abstract:

Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation.

Keywords: mycobacteria, Protein kinase G, phosphoproteomics, necroptosis

Procedia PDF Downloads 146
1959 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 480
1958 Study on the Forging of AISI 1015 Spiral Bevel Gear by Finite Element Analysis

Authors: T. S. Yang, J. H. Liang

Abstract:

This study applies the finite element method (FEM) to predict maximum forging load, effective stress distribution, effective strain distribution, workpiece temperature temperature in spiral bevel gear forging of AISI 1015. Maximum forging load, effective stress, effective strain, workpiece temperature are determined for different process parameters, such as modules, number of teeth, helical angle and workpiece temperature of the spiral bevel gear hot forging, using the FEM. Finally, the prediction of the power requirement for the spiral bevel gear hot forging of AISI 1015 is determined.

Keywords: spiral bevel gear, hot forging, finite element method

Procedia PDF Downloads 478
1957 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 297
1956 Determination of Verapamil Hydrochloride in the Tablet and Injection Solution by the Verapamil-Sensitive Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih, V. V. Egorov

Abstract:

Verapamil is a drug used in medicine for arrhythmia, angina, and hypertension as a calcium channel blocker. In this study, a Verapamil-selective electrode was prepared, and the concentrations of the components in the membrane were as follows: PVC (32.8 wt %), O-NPhOE (66.6 wt %), and KTPClPB (0.6 wt % or approximately 0.01 M). The inner solution containing verapamil hydrochloride 1 x 10⁻³ M was introduced, and the electrodes were conditioned overnight in 1 x 10⁻³ M verapamil hydrochloride solution in 1 x 10⁻³ M orthophosphoric acid. These studies have demonstrated that O-NPhOE and KTPClPB are the best plasticizers and ion exchangers, while both direct potentiometry and potentiometric titration methods can be used for the determination of verapamil hydrochloride in tablets and injection solutions. Normalized weights of verapamil per tablet (80.4±0.2, 80.7±0.2, 81.0±0.4 mg) were determined by direct potentiometry and potentiometric titration, respectively. Weights of verapamil per average tablet weight determined by the methods of direct potentiometry and potentiometric titration were" 80.4±0.2, 80.7±0.2 mg determined for the same set of tablets, respectively. The masses of verapamil in solutions for injection, determined by direct potentiometry for two ampoules from one set, were (5.00±0.015, 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.

Keywords: verapamil, potentiometry, ion-selective electrode, lipophilic physiologically active amines

Procedia PDF Downloads 86
1955 Self-Regenerating, Vascularizing Hybrid Scaffold-Hydrogel For Bone Tissue Engineering

Authors: Alisha Gupta

Abstract:

Osteoarthritis (OA) is the most common form of arthritis which is a degenerative joint disease causing joints to begin to break down and underlying bones to change. This “wear and tear” most frequently affects hands, hips, and knees. This is important because OA pain is considered to be a leading cause of mobility impairment in older adults, with hip and knee OA ranked 11th highest contributors to global disability. Bone tissue engineering utilizing polymer scaffolds and hydrogels is an emerging field for treating osteoarthritis. Polymer scaffolds provide a three-dimensional structure for tissue growth, and hydrogels can be used to deliver drugs and growth factors. The combination of the two materials creates a hybrid structure that can better withstand physiological and mechanical demands while also providing a more controlled environment for drug and nutrient delivery. I think using bone tissue engineering for making scaffold-hydrogel composites that are self-regenerating and vascularizing might be useful in solving this problem. Successful implementation can reconstruct healthy, simulated bone tissue on deficient applicants.

Keywords: tissue engineering, regenerative medicine, scaffold-hydrogel composites, osteoarthritis

Procedia PDF Downloads 119
1954 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone

Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng

Abstract:

Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.

Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling

Procedia PDF Downloads 364
1953 A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions

Authors: Wei-Ting Kuo, Feng-Huei Lin

Abstract:

Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery.

Keywords: adhesion force, binding affinity, epidermal growth factor receptor, target molecule

Procedia PDF Downloads 433
1952 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
1951 Nematocidal Effects of Laurus Nobilis Essential Oil against Gastrointestinal Nematodes.

Authors: Essia Sebai, Amel Abidi, Hayet benyeddem, Akkari Hafidh

Abstract:

Herbal extracts are of particular interest to the drug industry; essential oil with significant anthelmintic activity has the potential to be used as an alternative to conventional chemical drugs. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of laurel oil against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. The chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis has shown the presence of monoterpenes 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with an inhibition value of 3.23 mg/mL and 87.5% of immobility of adult worms after 8 hours of exposure to 8 mg/mL of L. nobilis EO. Regarding the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg completely eliminated the egg output of H. polygyrus after seven days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained funding, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites.

Keywords: lauris nobilis, anthelmintic, haemonchus, pylogyrus

Procedia PDF Downloads 104
1950 Internal Corrosion Rupture of a 6-in Gas Line Pipe

Authors: Fadwa Jewilli

Abstract:

A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition.

Keywords: gas line pipe, corrosion prediction ductile fracture, ductile fracture, failure analysis

Procedia PDF Downloads 84
1949 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests

Authors: Rose Shayeghi, Pejman Hosseinioun

Abstract:

The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learner-centered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.

Keywords: multiple intelligence, grammar, ELT, EFL, TIMI

Procedia PDF Downloads 490
1948 TransDrift: Modeling Word-Embedding Drift Using Transformer

Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur

Abstract:

In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.

Keywords: NLP applications, transformers, Word2vec, drift, word embeddings

Procedia PDF Downloads 91
1947 Understanding Racial Disparate Treatment of Juvenile Interpersonal Violent Offenders in the Juvenile Justice System Using Focal Concerns Theory

Authors: Suzanne Overstreet-Juenke

Abstract:

Disproportionate minority contact (DMC) is a salient issue that has been found at every stage of the decision-making process in the juvenile justice system. Existing research indicates that DMC influences adjudication for drug, property, and personal crimes. Because intimate partner violence (IPV) is a major public health problem and global concern, the current study examines DMC at adjudication among youth charged for crimes of interpersonal violence. This research uses administrative, Court Designated Worker (CDW) data collected from 2014 to 2016. The results are contextualized using Steffensmeier’s version of focal concerns theory of judicial decision-making. This study assesses race and two seriousness of offense measures to establish whether a link exists between race and adjudication. The results of the study is similar to prior research on the topic. These results are discussed in terms of policy implications, limitations, and future research.

Keywords: race, disproportionate minority contact, focal concerns theory, juvenile

Procedia PDF Downloads 76
1946 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai

Abstract:

In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.

Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU

Procedia PDF Downloads 154
1945 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 51
1944 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 89
1943 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: cognitive decline, functional connectivity, MCI, MMSE

Procedia PDF Downloads 383
1942 Evaluation of Particle Settling in Flow Chamber

Authors: Abdulrahman Alenezi, B. Stefan

Abstract:

Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.

Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber

Procedia PDF Downloads 136