Search results for: antibacterial studies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11334

Search results for: antibacterial studies

11334 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities

Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis

Abstract:

This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.

Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes

Procedia PDF Downloads 243
11333 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 280
11332 An Antibacterial Dental Restorative Containing 3,4-Dichlorocrotonolactone: Synthesis, Formulation and Evaluation

Authors: Dong Xie, Leah Howard, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize 5-acryloyloxy-3,4-dichlorocrotonolactone (a furanone derivative), use this derivative to modify a dental restorative, and study the effect of the derivative on the antibacterial activity and compressive strength of the formed restorative. In this study, a furanone derivative was synthesized, characterized, and used to formulate a dental restorative. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed restorative. The fabricated restorative specimens were photocured and conditioned in distilled water at 37oC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h for antibacterial testing. The results show that the modified dental restorative showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With addition of the antibacterial derivative up to 30%, the restorative kept its original CS nearly unchanged but showed a significant antibacterial activity with 68% reduction in the S. mutans viability. Furthermore, the antibacterial function of the modified restorative was not affected by human saliva. The aging study also indicates that the modified restorative may have a long-lasting antibacterial function. It is concluded that this experimental antibacterial restorative may potentially be developed into a clinically attractive dental filling restorative due to its high mechanical strength and antibacterial function.

Keywords: antibacterial, dental restorative, compressive strength, S. mutans viability

Procedia PDF Downloads 295
11331 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica

Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy

Abstract:

In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.

Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies

Procedia PDF Downloads 85
11330 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 287
11329 Mansonone G and Its Ether Analogues as New Antibacterial Agents

Authors: Rita Hairani, Warinthorn Chavasiri

Abstract:

Naphthoquinones are secondary metabolites widespread in nature and can be produced by plants, fungi and actinomycetes. The interest of naphthoquinones is not only limited as organic dyes, but also their wide variety of biological activities such as antitumor, antibacterial, and cytotoxic activities. Typical 1,2-naphthoquinones such as mansonones can be found in Mansonia gagei Drumm. (“chan-cha-mod”), Sterculaceae family. This plant has been used traditionally to treat some diseases such as antiemetic and antidepressant. In this study, some natural mansonones isolated from the CH2Cl2 extract of M. gagei heartwood have been assessed for their antibacterial activities using agar well diffusion method. According to the antibacterial activity results of four natural mansonones (mansonones C, E, G and H), mansonones E and G showed higher activities than the others against Staphylococcus aureus, Propionibacterium acnes and Salmonella typhi, respectively. Since mansonone G exhibited good antibacterial activity and was obtained in the highest yield, we decided to derivertize mansonone G into five ether analogues. Based on the antibacterial activities of these synthesized compounds, four ether analogues (compounds 1-4) revealed higher antibacterial activities than its natural mansonone G against S. aureus and S. typhi.

Keywords: Mansonia gagei Drumm., antibacterial activities, mansonone G, ether analogues

Procedia PDF Downloads 398
11328 Antibacterial Studies on Cellulolytic Bacteria for Termite Control

Authors: Essam A. Makky, Chan Cai Wen, Muna Jalal, Mashitah M. Yusoff

Abstract:

Termites are considered as important pests that could cause severe wood damage and economic losses in urban, agriculture and forest of Malaysia. The ability of termites to degrade cellulose depends on association of gut cellulolytic microflora or better known as mutual symbionts. With the idea of disrupting the mutual symbiotic association, better pest control practices can be attained. This study is aimed to isolate cellulolytic bacteria from the gut of termites and carry out antibacterial studies for the termite. Confirmation of cellulase activity is done by qualitative and quantitative methods. Impacts of antibiotics and their combinations, as well as heavy metals and disinfectants, are conducted by using disc diffusion method. Effective antibacterial agents are then subjected for termite treatment to study the effectiveness of the agents as termiticides. 24 cellulolytic bacteria are isolated, purified and screened from the gut of termites. All isolates were identified as Gram-negative with either rod or cocci in shape. For antibacterial studies result, isolates were found to be 100% sensitive to 4 antibiotics (rifampicin, tetracycline, gentamycin, and neomycin), 2 heavy metals (cadmium and mercury) and 3 disinfectants (lactic acid, formalin, and hydrogen peroxide). 22 out of 36 antibiotic combinations showed synergistic effect while 15 antibiotic combinations showed an antagonistic effect on isolates. The 2 heavy metals and 3 disinfectants that showed 100% effectiveness, as well as 22 antibiotic combinations, that showed synergistic effect were used for termite control. Among the 27 selected antibacterial agents, 12 of them were found to be effective to kill all the termites within 1 to 6 days. Mercury, lactic acid, formalin and hydrogen peroxide were found to be the most effective termiticides in which all termites were killed within 1 day only. These effective antibacterial agents possess a great potential to be a new application to control the termite pest species in the future.

Keywords: antibacterial, cellulase, termicide, termites

Procedia PDF Downloads 445
11327 Extraction and Antibacterial Studies of Oil from Three Mango Kernel Obtained from Makurdi, Nigeria

Authors: K. Asemave, D. O. Abakpa, T. T. Ligom

Abstract:

The ability of bacteria to develop resistance to many antibiotics cannot be undermined, given the multifaceted health challenges in the present times. For this reason, a lot of attention is on botanicals and their products in search of new antibacterial agents. On the other hand, mango kernel oils (MKO) can be heavily valorized by taking advantage of the myriads bioactive phytochemicals it contains. Herein, we validated the use of MKO as bioactive agent against bacteria. The MKOs for the study were extracted by soxhlet means with ethanol and hexane for 4 h from 3 different mango kernels, namely; 'local' (sample A), 'julie' (sample B), and 'john' (sample C). Prior to the extraction, ground fine particles of the kernels were obtained from the seed kernels dried in oven at 100 °C for 8 h. Hexane gave higher yield of the oils than ethanol. It was also qualitatively confirmed that the mango kernel oils contain some phytochemicals such as phenol, quinone, saponin, and terpenoid. The results of the antibacterial activities of the MKO against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) at different concentrations showed that the oils extracted with ethanol gave better antibacterial properties than those of the hexane. More so, the bioactivities were best with the local mango kernel oil. Indeed this work has completely validated the previous claim that MKOs are effective antibacterial agents. Thus, these oils (especially the ethanol-derived ones) can be used as bacteriostatic and antibacterial agents in say food, cosmetics, and allied industries.

Keywords: bacteria, mango, kernel, oil, phytochemicals

Procedia PDF Downloads 119
11326 Synthesis, Density Functional Theory (DFT) and Antibacterial Studies of Highly Functionalized Novel Spiropyrrolidine 4-Quinolone-3-Carboxylic Acids Derived from 6-Acetyl Quinolone

Authors: Thangaraj Arasakumar, Athar Ata, Palathurai Subramaniam Mohan

Abstract:

A series of novel 4-quinolone-3-carboxylic acid grafted spiropyrrolidines as new type of antibacterial agents were synthesized via multicomponent 1,3-dipolar cycloaddition reaction of an azomethine ylides with a newly prepared (E)-4-oxo-6-(3-phenyl-acryloyl)-1,4-dihydro-quinoline-3-carboxylic acids in high regioselectivity with good yields. The structure of cycloadduct characterized by FT IR, mass, 1H, 13C, 2D NMR techniques and elemental analysis. Structure and spectrometry of compound 8a has been investigated theoretically by using HF and DFT approach at B3LYP, M05-2x/6-31G* levels of theories. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. A good agreement is found between the measured and calculated values. The DFT studies support the molecular mechanism of this cycloaddition reaction and determine the molecular electrostatic potential and thermodynamic properties. Furthermore, the antibacterial activities of synthesized compounds were evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria strains (Escherichia coli, Klebsiella pneumoniae). Among 21 compounds screened, 8f and 8p were found to be more active against tested bacteria.

Keywords: antibacterial activity, azomethine ylide, DFT calculation, spirooxindole

Procedia PDF Downloads 174
11325 Antibacterial Activity of Nickel Oxide Composite Films with Chitosan/Polyvinyl Chloride/Polyethylene Glycol

Authors: Ali Garba Danjani, Abdulrasheed Halliru Usman

Abstract:

Due to the rapidly increasing biological applications and antibacterial properties of versatile chitosan composites, the effects of chitosan/polyvinyl chloride composites film were investigated. Chitosan/polyvinyl chloride films were prepared by a casting method. Polyethylene glycol (PEG) was used as a plasticizer in the blending stage of film preparation. Characterizations of films were done by Scanning Electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA). Chitosan composites incorporation enhanced the antibacterial activity of chitosan films against Escherichia coli and Staphylococcus aureus. The composite film produced is proposed as packaging or coating material because of its flexibility, antibacterial efficacy, and good mechanical strength.

Keywords: chitosan, polymeric nanocomposites, antibacterial activity, polymer blend

Procedia PDF Downloads 58
11324 Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth and Their Mechanism of Antibacterial Activity

Authors: Yik Ling Chew, Adlina Maisarah Mahadi, Joo Kheng Goh

Abstract:

Bauhinia kockiana originates from Peninsular Malaysia, and it is grown as a garden ornamental plant. However, it is used as medicinal plant by Malaysia ‘Kelabit’ ethic group in treating various diseases and illnesses. This study focused on the assessment of the antibacterial activity of B. kockiana towards MRSA, to purify and identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower is evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts. Phytochemical analysis is performed to determine the classes of phytochemicals in the extracts. Bioactivity-guided isolation is performed to purify the antibacterial agents and identified the chemical structures via various spectroscopy methods. Scanning electron microscopy (SEM) technique is adopted to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower is found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria. Gallic acid and its ester derivatives are purified from ethyl acetate extract and the antibacterial activity is evaluated. SEM has revealed the mechanism of the extracts and compounds isolated.

Keywords: alkyl gallates, Bauhinia kockiana, MRSA, scanning electron microscopy

Procedia PDF Downloads 336
11323 Study of Antibacterial Activity of Phenolic Compounds Extracted from Algerian Medicinal Plant

Authors: Khadri Sihem, Abbaci Nafissa, Zerari Labiba

Abstract:

In the context of the search for new bioactive natural products, we were interested in evaluating some antibacterial properties of two plant extracts: total phenols and flavonoids of Algerian medicinal plant. Our study occurs in two axes: The first concerns the extraction of phenolic compounds and flavonoids with methanol by liquid-liquid extraction, followed by quantification of the levels of these compounds in the end the analysis of the chemical composition of extracts. In the second axis, we studied the antibacterial power of the studied plant extracts.

Keywords: antibacterial activity, flavonoids, medicinal plants, polyphenols

Procedia PDF Downloads 520
11322 Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 68
11321 Coordination Behavior, Theoretical studies and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands: glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 67
11320 Antimicrobial Activity of Ilex paraguariensis Sub-Fractions after Liquid-Liquid Partitioning

Authors: Sabah El-Sawalhi, Elie Fayad, Roula M. Abdel-Massih

Abstract:

Ilex paraguariensis (Yerba Mate) is a medium to large tree commonly consumed by South Americans. Its leaves and stems are associated with different biological activities. The purpose of this study was to evaluate the antibacterial activity of Yerba Mate against Gram-positive and Gram-negative bacterial strains and its action against some resistant bacteria with different resistance profiles. Yerba Mate aqueous extracts were prepared at 70°C for 2 hrs, and the microdilution method was used to determine the minimum inhibitory concentration (MIC). Gram-positive bacteria exhibited a stronger antibacterial activity (MIC ranged between 0.468 mg/mL and 15 mg/mL) than Gram-negative bacteria. Yerba Mate was also extracted with acetone: water (1:1) and then further sub-fractionated with hexane, chloroform, and ethyl acetate. MIC values against Staphylococcus aureus ranged from 0.78 to 2.5 mg/ml for the chloroform fraction, from 1.56 to 3.75 mg/ml for the ethyl acetate fraction, and 0.78 to 1.87 mg/ml for the water fraction. The water fraction also exhibited antibacterial activity against Salmonella species (MIC ranged from 1.56 mg/ml to 3.12 mg/ml). The water fraction exhibited the highest antibacterial activity among all the fractions obtained. More studies are needed to determine the molecule or molecules responsible for this activity.

Keywords: antibacterial activity, bacterial resistance, minimum inhibitory concentration, yerba mate

Procedia PDF Downloads 105
11319 Effect of Nano-Copper Oxide Synthesized by Solution-Based Chemical Precipitation Method on Antibacterial Polyester Nanocopper Oxide Composite

Authors: Jordy Herfandi, Faris Naufal, Anne Zulfia Syahrial

Abstract:

Antibacterial materials have become future textile materials due to the escalation of people’s awareness regarding the importance of maintaining health. Textile materials with antibacterial properties are examples in application which has positive results in various aspects. In this research polyester nano-copper oxide composite with nanoparticle is synthesized by solution-based chemical precipitation method from Cu(NO3)2 solution. Parameters such as precursor concentration is varied to determine which composition would result in effective properties of antibacterial composite. The antibacterial property is observed using disk diffusion method and SEM observation is conducted on each specimen. The composites produced are able to inhibit the growth of both positive gram bacteria (i.e. S. aureus) and negative gram bacteria (i.e. E. coli), thus, highly capable of helping to prevent the spread of disease.

Keywords: copper oxide nanoparticle, antibacterial, solution-based chemical precipitation, polyester composite

Procedia PDF Downloads 363
11318 Antibacterial Activity of Ethanolic and Aqueous Extracts of Punica Granatum L. Bark

Authors: H. Kadi, A. Moussaoui, A. Medah, N. Benayahia, Nahal Bouderba

Abstract:

For thousands of years, Punica granatum L. has been used in traditional medicine all over the world and predate the introduction of antibacterial drugs. The aim of the present study was to investigate the antibacterial activity of aqueous and ethanolic extracts of Punica granatum L. bark obtained by decoction and maceration. The different extracts of Punica granatum L. (Lythraceae) bark have been tested for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus stearothermophilus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) by disc diffusion method. The ethanolic macerate extract showed the strong in vitro antibacterial activity against Pseudomonas aeruginosa with zone inhibition of 24.4 mm. However, the results tests by disc diffusion method revealed the effectiveness of ethanolic decoctate against Gram-positive bacteria (Staphylococcus aureus and Bacillus stearothermophilus) with diameter zone of inhibition varying with 21.1mm and 23.75 mm respectively.

Keywords: Punica granatum L. bark, antibacterial activity, maceration, decoction

Procedia PDF Downloads 421
11317 Antibacterial Activity of Calendula officinalis Extract Loaded Chitosan Nanoparticles

Authors: Sanjay Singh, Swati Jaiswal, Prashant Mishra

Abstract:

Nanoparticle based formulations of drug delivery systems have shown their potential in improving the performance of existing drugs and have opened avenues for new therapies. Calendula extract is a low cost, wide spectrum bioactive material that has been used for a long term therapy of various infections. Aim: The aim of this study was to develop Calendula officinalis extract based nanoformulations and to study the antibacterial activity of either Calendula extract loaded chitosan nanoparticles or Calendula extract coated silver nanoparticles for increased bioavailability and their long term effect. Methods: Chitosan nanoparticles were prepared by the process of ionotropic gelation, based on interaction between the negative groups of tri polyphosphate (TPP) and positively charged amino groups of chitosan. The size of the Calendula extract-loaded chitosan particles was determined using dynamic light scattering and scanning electron microscopy. Antibacterial activities of these formulations were determined based on minimum inhibitory concentration and time kill studies. In addition, silver nanoparticles were also synthesized in the presence of Calendula extract and characterized by UV visible spectrum, DLS and XRD. Experiments were conducted on 96-plates against two Gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis two Gram-negative bacteria; Escherichia coli and Pseudomonas aeruginosa. Results: Results demonstrated time dependent antibacterial activity against different microbes studied. Both Calendula extract and Calendula extract loaded chitosan nanoparticles have shown good antimicrobial activity against both Gram positive and Gram negative bacteria. Conclusion: Calendula extract loaded chitosan nanoparticles and calendula extract coated silver nanoparticles are potential antibacterial for their long term antibacterial effects.

Keywords: antibacterial, Calendula extract, chitosan nanoparticles, silver nanoparticles

Procedia PDF Downloads 312
11316 Synthesis of [1-(Substituted-Sulfonyl)-Piperidin-4-yl]-(2,4-Difluoro-Phenyl)-Methanone Oximes and Their Biological Activity

Authors: L. Mallesha, C. S. Karthik, P. Mallu

Abstract:

A series of new [1-(substituted-benzoyl)-piperidin-4-yl]-(2,4-difluoro-phenyl)-methanone oxime derivatives, 3(a-f) were synthesized and characterized by different spectral studies. All compounds were evaluated for their in vitro antibacterial activity against bacterial strains. These compounds were screened for their antioxidant activity by DPPH• and Fe2+ chelating assay. Antiproliferative effects were evaluated using the MTT assay method against two human cancer cell lines and one astrocytoma brain tumor cell line. Compound 3b exhibited moderate antibacterial activity when compared with other compounds. All the compounds showed antioxidant activity, where compound 3f was the best radical scavenger and Fe2+ ion scavenger. Compounds, 3b, and 3d showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Piperidine, antibacterial, antioxidant, antiproliferative

Procedia PDF Downloads 376
11315 In vitro Antioxidant and Antibacterial Activities of Methanol Extracts of Tamus communis L. from Algeria

Authors: F. Belkhiri, A. Baghiani, S. Boumerfeg, N. Charef, S. Khennouf, L. Arrar

Abstract:

The present study was conducted to evaluate the in vitro antioxidant and antibacterial properties of methanolic extracts from roots of Tamus communis L. (TCRE), which is a plant used in traditional medicine in Algeria. The antioxidant potential of pattern was evaluated using tow complementary techniques, inhibition of free radical DPPH and the test of β-Carotene/linoleic acid. The antioxidant test indicates that non-polar fractions of TCRE (chloroform and ethyl acetate fractions) were more active than the polar fractions. Among these fractions, the chloroform extract appear in the DPPH test an IC50 of (18.89 µg/ml) comparable to that of BHT (18.6 µg/ml). This fraction was able to inhibiting the oxidation of β-Carotene with a percentage of inhibition (89.84 %). In antibacterial test, non-polar fractions showed antibacterial activity very important compared with the polar fractions. These fractions have inhibited the growth of four from nine bacterial strains, causing zones of inhibition from 08 to 23 mm of diameter.

Keywords: antioxidant activity, antibacterial activity, Tamus communis L., polar fractions

Procedia PDF Downloads 542
11314 In Vitro Antibacterial Activity of Selected Tanzania Medicinal Plants

Authors: Mhuji Kilonzo, Patrick Ndakidemi, Musa Chacha

Abstract:

Objective: To evaluate antibacterial activity from four selected medicinal plants namely Mystroxylon aethiopicum, Lonchocarpus capassa, Albizia anthelmentica and Myrica salicifolia used for management of bacterial infection in Tanzania. Methods: Minimum Inhibitory Concentration (MIC) of plants extracts against the tested bacterial species was determined by using 96 wells microdilution method. In this method, 50 μL of nutrient broth were loaded in each well followed by 50 μL of extract (100 mg/mL) to make a final volume of 100 μL. Subsequently, 50 μL were transferred from first rows of each well to the second rows and the process was repeated down the columns to the last wells from which 50 μL were discarded. Thereafter, 50 μL of the selected bacterial suspension were added to each well thus making a final volume of 100 μL. The lowest concentration which showed no bacterial growth was considered as MIC. Results: It was revealed that L. capassa leaf ethyl acetate extract exhibited antibacterial activity against Salmonella kisarawe and Salmonella typhi with MIC values of 0.39 and 0.781 mg/mL respectively. Likewise, L. capassa root bark ethyl acetate extracts inhibited growth of S. typhi and E. coli with MIC values of 0.39 and 0.781 mg/mL respectively. The M. aethiopicum leaf and root bark chloroform extracts displayed antibacterial activity against S. kisarawe and S. typhi respectively with MIC value of 0.781 mg/mL. The M. salicifolia stem bark ethyl acetate exhibited antibacterial activity against P. aeruginosa with MIC value of 0.39 mg/mL whereas the methanolic stem and root bark of the same plant inhibited the growth of Proteus mirabilis and Klebsiella pneumoniae with MIC value of 0.781 mg/mL. Conclusion: It was concluded that M. aethiopicum, L. capassa, A. anthelmentica and M. salicifolia are potential source of antibacterial agents. Further studies to establish structures of antibacterial and evaluate active ingredients are recommended.

Keywords: Albizia anthelmentica, Lonchocarpus capassa, Mystroxylon aethiopicum, Myrica salicifolia

Procedia PDF Downloads 191
11313 Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions

Authors: M. Abdel-Hamid, P. Saporito, R. V. Mateiu, A. Osman, E. Romeih, H. Jenssen

Abstract:

Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa.

Keywords: camel milk, whey proteins, antibacterial peptide, anti-biofilm

Procedia PDF Downloads 186
11312 In Silico Design of Organometallic Complexes as Potential Antibacterial Agents

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The complexes of transition metals with various organic ligands have been extensively studied as models of some important pharmaceutical molecules. It was found that biological properties of different substituted organic molecules are improved when they are complexed by different metals. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In the present work, we have bioassayed the antibacterial potency of benzimidazoles and their metal salts (Cu or Zn) against yeast Sarcina lutea. In order to validate our in vitro study, we performed in silico studies using molecular docking software. The investigated compounds and their metal complexes (Cu, Zn) showed good to moderate inhibitory activity against Sarcina lutea. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and improved antibacterial activity in comparison with non-complexed ligands. These results are part of the CMST COST Action No. 1105 "Functional metal complexes that bind to biomolecules".

Keywords: organometallic complexes, benzimidazoles, chemometric design, Sarcina lutea

Procedia PDF Downloads 305
11311 Salmonella Spp. and Essential Oil of Laurus nobilis

Authors: Karima Oldyerou, B. Meddah, A. Tirtouil

Abstract:

The food borne infections have a significant impact on public health. Salmonella is the first bacterial cause, especially because of its general availability in the intestinal tract of poultry, pigs and cattle. This bacteria and essential oil of Laurus nobilis subject in this article. In vitro evaluation of the antibacterial activity shows a sensitivity of Salmonella spp. with a MIC of 2.5 mg.ml -1 in vivo after infection of wistar rats and administered orally this essential oil, microbiological results fecal material shows the antibacterial effect of this oil on Salmonella spp.

Keywords: Laurus nobilis, essential oil, salmonella, antibacterial activity, fecal matte

Procedia PDF Downloads 313
11310 Screening for Antibacterial, Antifungal and Cytotoxic Agents in Three Hard Coral Species from Persian Gulf

Authors: Maryam Ehsanpou, Majid Afkhami, Flora Mohammadizadeh, Amirhoushang Bahri, Rastin Afkhami

Abstract:

Within the frame of a biodiversity and bioactivity study of marine macro organisms from the Persian Gulf, three hard coral species extracts were investigated for cytotoxic, antibacterial and antifungal activities against five human pathogenic microorganisms. All concentrations of extracts from three hard corals showed no antifungal activity towards the tested strains. In antibacterial assays, the hard coral extracts showed significant activity solely against Staphylococcus aureus with MICs ranging from 3 to 9 μg/ml. The highest antibacterial activity was found in the aqueous methanol extract of Porites compressa with an inhibition zone of 22 mm against Staphylococcus aureus at 18 μg/ml extract concentration. Methanol extracts from Porites harrisoi and Porites compressa exhibited only weak cytotoxic activities. It is important for future research to concentrate on finding the mechanisms employed by corals to defend themselves against invasion, the mechanism of infections and the type of chemical compounds in coral extracts that inhibit antibacterial growth or proliferation in underexplored areas such as the Persian Gulf.

Keywords: antibacterial, antifungal, cytotoxic, hard corals, Persian Gulf

Procedia PDF Downloads 455
11309 Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

Authors: Prachi Singh

Abstract:

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Keywords: antibacterial effect, CFU, Escherichia coli Hb101, growth curve, TEM, TiO2 nanoparticle, Toxicity, UV-Vis

Procedia PDF Downloads 259
11308 Effect of Iron Fortification on the Antibacterial Activity of Synbiotic Fermented Milk

Authors: Siti Helmyati, Euis Nurdiyawati, Joko Susilo, Endri Yuliati, Siti Fadhilatun Nashriyah, Kurnia Widyastuti

Abstract:

Background: Iron fortification is one of the most effective and sustainable strategies to overcome anemia. It contradictively, has negative effect on gut microbiota balance. Pathogenic bacteria required iron for their growth. The iron source have greatly affect iron absorption in the intestine. Probiotic can inhibit the growth of pathogen. Lactobacillus plantarum Dad 13, Indonesian local isolate provides many benefits for health while fructo-oligosaccharides (FOS) provides selective substrates for probiotics’ growth. Objective: To determine the effect of iron fortification (NaFeEDTA and FeSO4) on antibacterial activity of synbiotic fermented milk. Methods: The antibacterial activity test was performed using the disc diffusion method. Paper discs were soaked in three kinds of synbiotic fermented milk, which are: 1) fortified with NaFeEDTA, 2) FeSO4 and 3) control. Escherichia coli was inoculated on nutrient agar medium. The ability of inhibition was shown by the formation of clear zone around the paper disc and measured in diameter (mm). Results: Synbiotic fermented milk fortified with iron (either NaFeEDTA or FeSO4) had antibacterial activity against Escherichia coli with diameter of clear zone were 6.53 mm and 12.3 mm, respectively (p<0.05). Compared to control (10.73 mm), synbiotic fermented milk fortified with FeSO4 had similar antibacterial activity (p>0.05). Conclusions: In vitro, synbiotic fermented milk fortified with NaFeEDTA and FeSO4 had different antibacterial activity against Escherichia coli. Iron fortification compound affected the antibacterial activity of synbiotic fermented milk.

Keywords: lactobacillus plantarum Dad 13, FOS, NaFeEDTA, FeSO4, antibacterial activity

Procedia PDF Downloads 521
11307 Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives Against Acinetobacter Baumannii

Authors: Houda Haddad, Radhia Mejri, , Alyne Rodrigues de Araujo, Amira Zairi

Abstract:

Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR), and for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these dermaseptins was investigated on the HEp-2 cell line by the MTT cell viability assay. Thereafter, we studied morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibit antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of treated bacteria caused by K4S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.

Keywords: dermaseptin B2, dermaseptin S4, analogs, Acinetobacter baumannii, healthcare-associated infections, antibacterial activity

Procedia PDF Downloads 17
11306 Antibacterial Activity of Nisin: Comparison the Role of Free and Encapsulated Nisin to Control Staphylococcus Aureus Inoculated in Minced Beef

Authors: Zh. Ghasemi, S. Nouri Saeedlou, A. Ghasemi, SL. Nasiri, P. Ayremlou, P. Mahasti

Abstract:

The use of nisin is successfully used as antibacterial agent in various food products. Although the conclusions of the previous studies were that nisin is not very effective in meat environments. The reduced antimicrobial efficacy of nisin when applied in food has been frequently observed. The aim of this study is to evaluate the potential of free and encapsulated nisin to inhibit the growth of staphylococcus aureus in minced beef. The minimum inhibitory concentration (MIC) of nisin is determined against S. aureus using the agar dilution method. Nisin is encapsulated by spray drying, and encapsulation efficiency, mass yield and total solids content values are 47.79%, 61%, and 96.41 respectively. The study in vitro release kinetics shows highest release of nisin from zein capsules is obtained after 72 hour. This work shows that an appropriate delivery system is necessary to obtain desirable effect of nisin in meat and meat product.

Keywords: nisin, encapsulation, Staphylococcus aureus, minced beef, antibacterial activity

Procedia PDF Downloads 261
11305 Design, Synthesis and In-Vitro Antibacterial and Antifungal Activities of Some Novel Spiro[Azetidine-2, 3’-Indole]-2, 4(1’H)-Dione

Authors: Ravi J. Shah

Abstract:

The present study deals with the synthesis of novel spiro[azetidine-2, 3’-indole]-2’, 4(1’H)-dione derivative from the reactions of 3-(phenylimino)-1,3-dihydro-2H-indol-2-one derivatives with chloracetyl chloride in presence of triethyl amine (TEA). All the compounds were characterized using IR, 1H NMR, MS and elemental analysis. They were screened for their antibacterial and antifungal activities. Results revealed that, compounds (7a), (7b), (7c), (7d) and (7e) showed very good activity with MIC value of 6.25-12.5 μg/ml against three evaluated bacterial strains and the remaining compounds showed good to moderate activity comparable to standard drugs as antibacterial agents. Compounds (7c) and (7h) displayed equipotent antifungal activity in comparison to standard drugs. Structure-activity relationship study of the compounds showed that the presence of electron withdrawing group substitution at 5’ and 7’ positions of indoline ring and on ortho or para position of phenyl ring increases both antibacterial and antifungal activity of the compound. Henceforth, our findings will have a good impact on chemists and biochemists for further investigations in search of bromine containing spiro fused antimicrobial agents.

Keywords: antibacterial activity, antifungal activity, 2-Azetidinone, indoline

Procedia PDF Downloads 455