Search results for: digital memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3893

Search results for: digital memory

1673 Media Literacy Development: A Methodology to Systematically Integrate Post-Contemporary Challenges in Early Childhood Education

Authors: Ana Mouta, Ana Paulino

Abstract:

The following text presents the ik.model, a theoretical framework that guided the pedagogical implementation of meaningful educational technology-based projects in formal education worldwide. In this paper, we will focus on how this framework has enabled the development of media literacy projects for early childhood education during the last three years. The methodology that guided educators through the challenge of systematically merging analogic and digital means in dialogic high-quality opportunities of world exploration is explained throughout these lines. The effects of this methodology on early age media literacy development are considered. Also considered is the relevance of this skill in terms of post-contemporary challenges posed to learning.

Keywords: early learning, ik.model, media literacy, pedagogy

Procedia PDF Downloads 324
1672 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 431
1671 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry

Authors: Basem Kamal Abasakhiroun Farag

Abstract:

Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.

Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.

Procedia PDF Downloads 67
1670 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 10
1669 Truthful or Untruthful Social Media Posts: Applying Statement Analysis to Decode online Deception

Authors: Christa L. Arnold, Margaret C. Stewart

Abstract:

This research shares the results of an exploratory study examining Statement Analysis (SA) to detect deception in online truthful and untruthful social media posts. Applying a Law Enforcement methodology SA, used in criminal interview statements, this research analyzes what is stated to assist in evaluating written deceptive information. Preliminary findings reveal qualitative and quantitative nuances for SA in online deception detection and uncover insights regarding digital deceptive behavior. Thus far, findings reveal truthful statements tend to differ from untruthful statements in both content and quality.

Keywords: deception detection, online deception, social media content, statement analysis

Procedia PDF Downloads 65
1668 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 189
1667 Protecting Privacy and Data Security in Online Business

Authors: Bilquis Ferdousi

Abstract:

With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.

Keywords: privacy, data security, legislation, online business

Procedia PDF Downloads 106
1666 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: sampled-data control, fuel cell, linear matrix inequalities, nonlinear control

Procedia PDF Downloads 565
1665 Executive Function in Youth With ADHD and ASD: A Systematic Review and Meta-analysis

Authors: Parker Townes, Prabdeep Panesar, Chunlin Liu, Soo Youn Lee, Dan Devoe, Paul D. Arnold, Jennifer Crosbie, Russell Schachar

Abstract:

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are impairing childhood neurodevelopmental disorders with problems in executive functions. Executive functions are higher-level mental processes essential for daily functioning and goal attainment. There is genetic and neural overlap between ADHD and ASD. The aim of this meta-analysis was to evaluate if pediatric ASD and ADHD have distinct executive function profiles. This review was completed following Cochrane guidelines. Fifty-eight articles were identified through database searching, followed by a blinded screening in duplicate. A meta-analysis was performed for all task performance metrics evaluated by at least two articles. Forty-five metrics from 24 individual tasks underwent analysis. No differences were found between youth with ASD and ADHD in any domain under direct comparison. However, individuals with ASD and ADHD exhibited deficient attention, flexibility, visuospatial abilities, working memory, processing speed, and response inhibition compared to controls. No deficits in planning were noted in either disorder. Only 11 studies included a group with comorbid ASD+ADHD, making it difficult to determine whether common executive function deficits are a function of comorbidity. Further research is needed to determine if comorbidity accounts for the apparent commonality in executive function between ASD and ADHD.

Keywords: autism spectrum disorder, ADHD, neurocognition, executive function, youth

Procedia PDF Downloads 76
1664 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development

Authors: Poteet Frances, Glovinski Ira

Abstract:

INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.

Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation

Procedia PDF Downloads 61
1663 The Relationship between the Use of Social Networks with Executive Functions and Academic Performance in High School Students in Tehran

Authors: Esmail Sadipour

Abstract:

The use of social networks is increasing day by day in all societies. The purpose of this research was to know the relationship between the use of social networks (Instagram, WhatsApp, and Telegram) with executive functions and academic performance in first-year female high school students. This research was applied in terms of purpose, quantitative in terms of data type, and correlational in terms of technique. The population of this research consisted of all female high school students in the first year of district 2 of Tehran. Using Green's formula, the sample size of 150 people was determined and selected by cluster random method. In this way, from all 17 high schools in district 2 of Tehran, 5 high schools were selected by a simple random method and then one class was selected from each high school, and a total of 155 students were selected. To measure the use of social networks, a researcher-made questionnaire was used, the Barclay test (2012) was used for executive functions, and last semester's GPA was used for academic performance. Pearson's correlation coefficient and multivariate regression were used to analyze the data. The results showed that there is a negative relationship between the amount of use of social networks and self-control, self-motivation and time self-management. In other words, the more the use of social networks, the fewer executive functions of students, self-control, self-motivation, and self-management of their time. Also, with the increase in the use of social networks, the academic performance of students has decreased.

Keywords: social networks, executive function, academic performance, working memory

Procedia PDF Downloads 96
1662 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping

Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung

Abstract:

Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.

Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 257
1661 Advanced Combinatorial Method for Solving Complex Fault Trees

Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle

Abstract:

Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.

Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures

Procedia PDF Downloads 45
1660 Assessment of Music Performance Anxiety in Portuguese Children and Adolescents

Authors: Pedro Dias, Lurdes Verissimo, Maria Joao Baptista, Ana Pinheiro, Patricia Oliveira-Silva, Sofia Serra, Daniela Coimbra

Abstract:

To achieve a high standard in performance, a musician must be well in all aspects of health (physical, mental and social). Anxiety in performance is related to the high level of coordination and skill needed in performance, as well as to the public evaluation of the performer. It affects some key elements of performance, such as concentration, memory, motor coordination, and relaxation. This work presents two studies focused on the adaptation and evaluation of the psychometric properties of the Music Performance Anxiety Inventory (MPAI-A) in young Portuguese music students. The first study was conducted with a sample of 161 adolescent music students, who responded to the Portuguese version of this instrument, and to the State-Trait Anxiety Inventory for Children (STAIC-c2). Validity and reliability were examined, and this measure revealed robust psychometric properties in this sample. The second study aimed to adapt the MPAI to a younger population (one hundred 8-10 years-old music students). Again, the MPAI and the STAIC c-2 were used in this study. Exploratory factor analysis, correlations, and internal consistency were used to evaluate the final children version of the instrument (MPAI-C), presenting a different factor structure compared to the adolescent version (10 items organized in 2 factors) and high levels of reliability and convergent validity.

Keywords: anxiety, assessment, children and adolescents, music performance

Procedia PDF Downloads 190
1659 Growth of New Media Advertising

Authors: Palwinder Bhatia

Abstract:

As all know new media is a broad term in media studies that emerged in the latter part of the 20th century which refers to on-demand access to content any time, anywhere, on any digital device, as well as interactive user feedback, creative participation and community formation around the media content. The role of new media in advertisement is impeccable these days. It becomes the cheap and best way of advertising. Another important promise of new media is the democratization of the creation, publishing, distribution and consumption of media content. New media brings a revolution in about every field. It makes bridge between customer and companies. World make a global village with the only help of new media. Advertising helps in shaping the consumer behavior and effect on consumer psychology, sociology, social anthropology and economics. People do comments and like the particular brands on the networking sites which create mesmerism impact on the behavior of customer. Recent study did by Times of India shows that 64% of Facebook users have liked a brand on Facebook.

Keywords: film, visual, culture, media, advertisement

Procedia PDF Downloads 282
1658 Power Quality Audit Using Fluke Analyzer

Authors: N. Ravikumar, S. Krishnan, B. Yokeshkumar

Abstract:

In present days, the power quality issues are increases due to non-linear loads like fridge, AC, washing machines, induction motor, etc. This power quality issues will affects the output voltages, output current, and output power of the total performance of the generator. This paper explains how to test the generator using the Fluke 435 II series power quality analyser. This Fluke 435 II series power quality analyser is used to measure the voltage, current, power, energy, total harmonic distortion (THD), current harmonics, voltage harmonics, power factor, and frequency. The Fluke 435 II series power quality analyser have several advantages. They are i) it will records output in analog and digital format. ii) the fluke analyzer will records at every 0.25 sec. iii) it will also measure all the electrical parameter at a time.

Keywords: THD, harmonics, power quality, TNEB, Fluke 435

Procedia PDF Downloads 177
1657 Secure Proxy Signature Based on Factoring and Discrete Logarithm

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

A digital signature is an electronic signature form used by an original signer to sign a specific document. When the original signer is not in his office or when he/she travels outside, he/she delegates his signing capability to a proxy signer and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on factoring and discrete logarithm problem.

Keywords: discrete logarithm, factoring, proxy signature, key agreement

Procedia PDF Downloads 309
1656 The Display of Environmental Information to Promote Energy Saving Practices: Evidence from a Massive Behavioral Platform

Authors: T. Lazzarini, M. Imbiki, P. E. Sutter, G. Borragan

Abstract:

While several strategies, such as the development of more efficient appliances, the financing of insulation programs or the rolling out of smart meters represent promising tools to reduce future energy consumption, their implementation relies on people’s decisions-actions. Likewise, engaging with consumers to reshape their behavior has shown to be another important way to reduce energy usage. For these reasons, integrating the human factor in the energy transition has become a major objective for researchers and policymakers. Digital education programs based on tangible and gamified user interfaces have become a new tool with potential effects to reduce energy consumption4. The B2020 program, developed by the firm “Économie d’Énergie SAS”, proposes a digital platform to encourage pro-environmental behavior change among employees and citizens. The platform integrates 160 eco-behaviors to help saving energy and water and reducing waste and CO2 emissions. A total of 13,146 citizens have used the tool so far to declare the range of eco-behaviors they adopt in their daily lives. The present work seeks to build on this database to identify the potential impact of adopted energy-saving behaviors (n=62) to reduce the use of energy in buildings. To this end, behaviors were classified into three categories regarding the nature of its implementation (Eco-habits: e.g., turning-off the light, Eco-actions: e.g., installing low carbon technology such as led light-bulbs and Home-Refurbishments: e.g., such as wall-insulation or double-glazed energy efficient windows). General Linear Models (GLM) disclosed the existence of a significantly higher frequency of Eco-habits when compared to the number of home-refurbishments realized by the platform users. While this might be explained in part by the high financial costs that are associated with home renovation works, it also contrasts with the up to three times larger energy-savings that can be accomplished by these means. Furthermore, multiple regression models failed to disclose the expected relationship between energy-savings and frequency of adopted eco behaviors, suggesting that energy-related practices are not necessarily driven by the correspondent energy-savings. Finally, our results also suggested that people adopting more Eco-habits and Eco-actions were more likely to engage in Home-Refurbishments. Altogether, these results fit well with a growing body of scientific research, showing that energy-related practices do not necessarily maximize utility, as postulated by traditional economic models, and suggest that other variables might be triggering them. Promoting home refurbishments could benefit from the adoption of complementary energy-saving habits and actions.

Keywords: energy-saving behavior, human performance, behavioral change, energy efficiency

Procedia PDF Downloads 200
1655 EFL Vocabulary Learning Strategies among Students in Greece, Their Preferences and Internet Technology

Authors: Theodorou Kyriaki, Ypsilantis George

Abstract:

Vocabulary learning has attracted a lot of attention in recent years, contrary to the neglected part of the past. Along with the interest in finding successful vocabulary teaching strategies, many scholars focused on locating learning strategies used by language learners. As a result, more and more studies in the area of language pedagogy have been investigating the use of strategies in vocabulary learning by different types of learners. A common instrument in this field is the questionnaire, a tool of work that was enriched by questions involving current technology, and it was further implemented to a sample of 300 Greek students whose age varied from 9 and 17 years. Strategies located were grouped into the three categories of memory, cognitive, and compensatory type and associations between these dependent variables were investigated. In addition, relations between dependent and independent variables (such as age, sex, type of school, cultural background, and grade in English) were pursued to investigate the impact on strategy selection. Finally, results were compared to findings of other studies in the same field to contribute to a hypothesis of ethnic differences in strategy selection. Results initially discuss preferred strategies of all participants and further indicate that: a) technology affects strategy selection while b) differences between ethnic groups are not statistically significant. A number of successful strategies are presented, resulting from correlations of strategy selection and final school grade in English.

Keywords: acquisition of English, internet technology, research among Greek students, vocabulary learning strategies

Procedia PDF Downloads 510
1654 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
1653 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
1652 A New Microstrip Diplexer Using Coupled Stepped Impedance Resonators

Authors: A. Chinig, J. Zbitou, A. Errkik, L. Elabdellaoui, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This paper presents a new structure of microstrip band pass filter (BPF) based on coupled stepped impedance resonators. Each filter consists of two coupled stepped impedance resonators connected to microstrip feed lines. The coupled junction is utilized to connect the two BPFs to the antenna. This two band pass filters are designed and simulated to operate for the digital communication system (DCS) and Industrial Scientific and Medical (ISM) bands at 1.8 GHz and 2.45 GHz respectively. The proposed circuit presents good performances with an insertion loss lower than 2.3 dB and isolation between the two channels greater than 21 dB. The prototype of the optimized diplexer have been investigated numerically by using ADS Agilent and verified with CST microwave software.

Keywords: band pass filter, coupled junction, coupled stepped impedance resonators, diplexer, insertion loss, isolation

Procedia PDF Downloads 432
1651 The Antecedents of Continued Usage on Social-Oriented Virtual Communities Based on Automaticity Mechanism

Authors: Hsiu-Hua Cheng

Abstract:

In recent years, the number of social-oriented virtual communities users has increased significantly. Corporate investment in advertising on social-oriented virtual communities increases quickly. With the gigantic commercial value of the digital market, competitions between virtual communities are keen. In this context, how to retain existing customers to continue using social-oriented virtual communities is an urgent issue for virtual community managers. This study employs the perspective of automaticity mechanism and combines the social embeddedness theory with the literature of involvement and habit in order to explore antecedents of users’ continuous usage on social-oriented virtual communities. The results can be a reference for scholars and managers of social-oriented virtual communities.

Keywords: continued usage, habit, social embeddedness, involvement, virtual community

Procedia PDF Downloads 424
1650 MONDO Neutron Tracker Characterisation by Means of Proton Therapeutical Beams and MonteCarlo Simulation Studies

Authors: G. Traini, V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, M. Marafini

Abstract:

The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims a precise characterisation of the secondary fast and ultrafast neutrons produced in particle therapy treatments. The detector is composed of a matrix of scintillating fibres (250 um) readout by CMOS Digital-SPAD based sensors. Recoil protons from n-p elastic scattering are detected and used to track neutrons. A prototype was tested with proton beams (Trento Proton Therapy Centre): efficiency, light yield, and track-reconstruction capability were studied. The results of a MonteCarlo FLUKA simulation used to evaluated double scattering efficiency and expected backgrounds will be presented.

Keywords: secondary neutrons, particle therapy, tracking, elastic scattering

Procedia PDF Downloads 266
1649 Reliability and Construct Validity of the Early Dementia Questionnaire (EDQ)

Authors: A. Zurraini, Syed Alwi Sar, H. Helmy, H. Nazeefah

Abstract:

Early Dementia Questionnaire (EDQ) was developed as a screening tool to detect patients with early dementia in primary care. It was developed based on 20 symptoms of dementia. From a preliminary study, EDQ had been shown to be a promising alternative for screening of early dementia. This study was done to further test on EDQ’s reliability and validity. Using a systematic random sampling, 200 elderly patients attending primary health care centers in Kuching, Sarawak had consented to participate in the study and were administered the EDQ. Geriatric Depression Scale (GDS) was used to exclude patients with depression. Those who scored >21 MMSE, were retested using the EDQ. Reliability was determined by Cronbach’s alpha for internal consistency and construct validity was assessed using confirmatory factor analysis (principle component with varimax rotation). The result showed that the overall Cronbach’s alpha coefficient was good which was 0.874. Confirmatory factor analysis on 4 factors indicated that the Cronbach’s alpha for each domain were acceptable with memory (0.741), concentration (0.764), emotional and physical symptoms (0.754) and lastly sleep and environment (0.720). Pearson correlation coefficient between the first EDQ score and the retest EDQ score among those with MMSE of >21 showed a very strong, positive correlation between the two variables, r = 0.992, N=160, P <0.001. The results of the validation study showed that Early Dementia Questionnaire (EDQ) is a valid and reliable tool to be used as a screening tool to detect early dementia in primary care.

Keywords: Early Dementia Questionnaire (EDQ), screening, primary care, construct validity

Procedia PDF Downloads 436
1648 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy

Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid

Abstract:

Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.

Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure

Procedia PDF Downloads 495
1647 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles

Procedia PDF Downloads 111
1646 Impact of the Fourth Industrial Revolution on Food Security in South Africa

Authors: Fiyinfoluwa Giwa, Nicholas Ngepah

Abstract:

This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.

Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square

Procedia PDF Downloads 75
1645 Building Knowledge Partnership for Collaborative Learning in Higher Education – An On-Line ‘Eplanete’ Knowledge Mediation Platform

Authors: S. K. Ashiquer Rahman

Abstract:

This paper presents a knowledge mediation platform, “ePLANETe Blue” that addresses the challenge of building knowledge partnerships for higher education. The purpose is to present, as an institutional perception, the ‘ePLANETe' idea and functionalities as a practical and pedagogical innovation program contributing to the collaborative learning goals in higher education. In consequence, the set of functionalities now amalgamated in ‘ePLANETe’ can be seen as an investigation of the challenges of “Collaborative Learning Digital Process.” It can exploit the system to facilitate collaborative education, research and student learning in higher education. Moreover, the platform is projected to support the identification of best practices at explicit levels of action and to inspire knowledge interactions in a “virtual community” and thus to advance in deliberation and learning evaluation of higher education through the engagement of collaborative activities of different sorts.

Keywords: mediation, collaboration, deliberation, evaluation

Procedia PDF Downloads 140
1644 Words Spotting in the Images Handwritten Historical Documents

Authors: Issam Ben Jami

Abstract:

Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.

Keywords: feature matching, historical documents, pattern recognition, word spotting

Procedia PDF Downloads 274