Search results for: signet ring cell cancer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5369

Search results for: signet ring cell cancer

3179 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition

Authors: Norihiro Kato, Yuriko Takayama

Abstract:

Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.

Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator

Procedia PDF Downloads 255
3178 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 287
3177 Induction of Apoptosis by Diosmin through Interleukins/STAT and Mitochondria Mediated Pathway in Hep-2 and KB Cells

Authors: M. Rajasekar, K. Suresh

Abstract:

Diosmin is a flavonoid, most abundantly found in many citrus fruits. As a flavonoid, it possesses a multitude of biological activities including anti-hyperglycemic, anti-lipid peroxidative, anti-inflammatory, antioxidant, and anti-mutagenic properties. At this point, we established the anti-proliferative and apoptosis-inducing activities of diosmin in Hep-2 and KB cells. Diosmin has cytotoxic effects through inhibiting cellular proliferation of Hep-2 and KB cells, which leads to the induction of apoptosis, as apparent by an increase in the fraction of cells in the sub-G1phase of the cell cycle. Results exposed that inhibition of cell proliferation is associated with regulation of the Interleukins/STAT pathway. In addition, Diosmin treatment with Hep-2 and KB cells actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. And also an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and shifting the balance in favor of apoptosis. These observations conclude that Diosmin induce apoptosis via Interleukins /STAT-mediated pathway.

Keywords: diosmin, apoptosis, antioxidant, STAT pathway

Procedia PDF Downloads 311
3176 The Relationships among Self-Efficacy, Critical Thinking and Communication Skills Ability in Oncology Nurses for Cancer Immunotherapy in Taiwan

Authors: Yun-Hsiang Lee

Abstract:

Cancer is the main cause of death worldwide. With advances in medical technology, immunotherapy, which is a newly developed advanced treatment, is currently a crucial cancer treatment option. For better quality cancer care, the ability to communicate and critical thinking plays a central role in clinical oncology settings. However, few studies have explored the impact of communication skills on immunotherapy-related issues and their related factors. This study was to (i) explore the current status of communication skill ability for immunotherapy-related issues, self-efficacy for immunotherapy-related care, and critical thinking ability; and (ii) identify factors related to communication skill ability. This is a cross-sectional study. Oncology nurses were recruited from the Taiwan Oncology Nursing Society, in which nurses came from different hospitals distributed across four major geographic regions (North, Center, South, East) of Taiwan. A total of 123 oncology nurses participated in this study. A set of questionnaires were used for collecting data. Communication skill ability for immunotherapy issues, self-efficacy for immunotherapy-related care, critical thinking ability, and background information were assessed in this survey. Independent T-test and one-way ANOVA were used to examine different levels of communication skill ability based on nurses having done oncology courses (yes vs. no) and education years (< 1 year, 1-3 years, and > 3 years), respectively. Spearman correlation was conducted to understand the relationships between communication skill ability and other variables. Among the 123 oncology nurses in the current study, the majority of them were female (98.4%), and most of them were employed at a hospital in the North (46.8%) of Taiwan. Most of them possessed a university degree (78.9%) and had at least 3 years of prior work experience (71.7%). Forty-three of the oncology nurses indicated in the survey that they had not received oncology nurses-related training. Those oncology nurses reported moderate to high levels of communication skill ability for immunotherapy issues (mean=4.24, SD=0.7, range 1-5). Nurses reported moderate levels of self-efficacy for immunotherapy-related care (mean=5.20, SD=1.98, range 0-10) and also had high levels of critical thinking ability (mean=4.76, SD=0.60, range 1-6). Oncology nurses who had received oncology training courses had significantly better communication skill ability than those who had not received oncology training. Oncology nurses who had higher work experience (1-3 years, or > 3 years) had significantly higher levels of communication skill ability for immunotherapy-related issues than those with lower work experience (<1 year). When those nurses reported better communication skill ability, they also had significantly better self-efficacy (r=.42, p<.01) and better critical thinking ability (r=.47, p<.01). Taken altogether, courses designed to improve communication skill ability for immunotherapy-related issues can make a significant impact in clinical settings. Communication skill ability for oncology nurses is the major factor associated with self-efficacy and critical thinking, especially for those with lower work experience (< 1 year).

Keywords: communication skills, critical thinking, immunotherapy, oncology nurses, self-efficacy

Procedia PDF Downloads 84
3175 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.

Keywords: power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching

Procedia PDF Downloads 944
3174 An Invertebrate-Type Lysozyme from Chinese Mitten Crab Eriocheir Sinensis: Cloning and Characterization

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Lysozyme is a catalytic enzyme that performs bacterial cell lysis by cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine of peptidoglycan in cell walls. In the present study, an invertebrate-type (i-type) lysozyme gene was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsLysozyme) based on PCR-based rapid amplification of cDNA ends (RACE) technology. The full-length cDNA of EsLysozyme was of 831 bp. SMART and SIGNALP 3.0 program analysis revealed that EsLysozyme contained a signal peptide and a destabilase domain. The five amino acid residues (Tyr63, Trp64, Tyr91, His110, Pro114) and the conserved motif GSLSCG(P/Y)FQI and CL(E/L/R/H)C(I/M)C in i-type lysozymes were also found in EsLysozyme. The high similarity of EsLysozyme with L. vannamei lysozymes and phylogenetic analysis suggested that EsLysozyme should be a new member of i-type lysozyme family.

Keywords: i-type lysozyme, Eriocheir sinensis, cloning, characterization

Procedia PDF Downloads 272
3173 QSAR Study and Haptotropic Rearrangement in Estradiol Derivatives

Authors: Mohamed Abd Esselem Dems, Souhila Laib, Nadjia Latelli, Nadia Ouddai

Abstract:

In this work, we have developed QSAR model for Relative Binding Affinity (RBA) of a large diverse set of estradiol among these derivatives, the organometallic derivatives. By dividing the dataset into a training set of 24 compounds and a test set of 6 compounds. The DFT method was used to calculate quantum chemical descriptors and physicochemical descriptors (MR and MLOGP) were performed using E-Dragon. All the validations indicated that the QSAR model built was robust and satisfactory (R2 = 90.12, Q2LOO = 86.61, RMSE = 0.272, F = 60.6473, Q2ext =86.07). We have therefore apply this model to predict the RBA, for two isomers β and α wherein Mn(CO)3 complex with the aromatic ring of estradiol, and the two isomers show little appreciation for the estrogenic receptor (RBAβ = 1.812 and RBAα = 1.741).

Keywords: DFT, estradiol, haptotropic rearrangement, QSAR, relative binding affinity

Procedia PDF Downloads 278
3172 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 382
3171 Computational Approach to the Interaction of Neurotoxins and Kv1.3 Channel

Authors: Janneth González, George Barreto, Ludis Morales, Angélica Sabogal

Abstract:

Sea anemone neurotoxins are peptides that interact with Na+ and K+ channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of nearly eighty autoimmune disorders due to their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.

Keywords: neurotoxins, potassium channel, Kv1.3, computational methods, autoimmune diseases

Procedia PDF Downloads 357
3170 Dependence of the Electro-Stimulation of Saccharomyces cerevisiae by Pulsed Electric Field at the Yeast Growth Phase

Authors: Jessy Mattar, Mohamad Turk, Maurice Nonus, Nikolai Lebovka, Henri El Zakhem, Eugene Vorobiev

Abstract:

The effects of electro-stimulation of S. cerevisiae cells in colloidal suspension by Pulsed Electric Fields ‎‎(PEF) with electric field strength E = 20 – 2000 V.cm-1 and effective PEF treatment time tPEF = 10^−5 – 1 s were ‎investigated. The applied experimental procedure includes variations in the preliminary fermentation time and ‎electro-stimulation by PEF-treatment. Plate counting was performed.‎ At relatively high electric fields (E ≥ 1000 V.cm-1) and moderate PEF treatment time (tPEF > 100 µs), the ‎extraction of ionic components from yeast was observed by conductivity measurements, which can be related to ‎electroporation of cell membranes. Cell counting revealed a dependency of the colonies’ size on the time of ‎preliminary fermentation tf and the power consumption W, however no dependencies were noticeable by varying the initial yeast concentration in the treated suspensions.‎

Keywords: intensification, yeast, fermentation, electroporation, biotechnology

Procedia PDF Downloads 453
3169 Mode of Action of Surface Bound Antimicrobial Peptides Melimine and Mel4 against Pseudomonas aeruginosa

Authors: Muhammad Yasir, Debarun Dutta, Mark Willcox

Abstract:

Biomaterial-associated infections are a multi-billion dollar burden globally. Antimicrobial peptide-based coatings may be able to prevent such infections. The aim of this study was to investigate the mechanism of action surface bound peptides (AMPs) against Pseudomonas aeruginosa 6294. Melimine and Mel4 were covalently attached to glass coverslips using azido-benzoic acid. Attachment was confirmed using X-ray photoelectron spectroscopy. P. aeruginosa was allowed to attach to AMP-coated glass for up to 6 hours. The effect of the surface-bound AMPs on bacterial cell membranes was evaluated using the dyes DiSC3-(5), Sytox green, SYTO 9 and propidium iodide with fluorescence microscopy. Release of cytoplasmic materials ATP and DNA/RNA were determined in the surrounding fluid. The amount of cell death was estimated by agar plate counts. The AMPs were successfully covalently bound to the glass as demonstrated by increases in %nitrogen of 3.6% (melimine) and 2.3% (Mel4) compared to controls. Immobilized peptides disrupted the cytoplasmic membrane potential of P. aeruginosa within 10 min. This was followed by the release of ATP after 2 h. Membrane permeabilization started at 3 h of contact with glass coated AMPs. There was a significant number of bacteria (59% for melimine; 36% for Mel-4) with damaged membranes after 4 h of contact. At the 6 h time point, release of DNA occurred with melimine releasing 2 times the amount of DNA/RNA than Mel4 surfaces (p < 0.05). Surface bound AMPs were able to disrupt cell membranes with subsequent release of cytoplasmic materials, and ultimately resulting in bacterial death.

Keywords: biomaterials, immobilized antimicrobial peptides, P. aeruginosa, mode of action

Procedia PDF Downloads 124
3168 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems

Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah

Abstract:

This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses is one of the main issues in the development of renewable energy systems. A procedure for three converters-conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.

Keywords: flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy

Procedia PDF Downloads 582
3167 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 344
3166 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter

Authors: Vahid Anari, Leila Shahmohammadi

Abstract:

Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction

Procedia PDF Downloads 53
3165 Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe

Authors: Purva Nemavarkar, Badri Narain Pandey, Jitendra Kumar

Abstract:

Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection.

Keywords: radiation protection, cell cycle, fission yeast, comet assay, s-phase, DNA repair, radioprotectors, caffeine, curcumin, SCGE

Procedia PDF Downloads 88
3164 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data

Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.

Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry

Procedia PDF Downloads 208
3163 Pancreatic Adenocarcinoma Correctly Diagnosed by EUS but nor CT or MRI

Authors: Yousef Reda

Abstract:

Pancreatic cancer has an overall dismal prognosis. CT, MRI and Endoscopic Ultrasound are most often used to establish the diagnosis. We present a case of a patient found on abdominal CT and MRI to have an 8 mm cystic lesion within the head of the pancreas which was thought to be a benign intraductal papillary mucinous neoplasm (IPMN). Further evaluation by EUS demonstrated a 1 cm predominantly solid mass that was proven to be an adenocarcinoma by EUS-guided FNA. The patient underwent a Whipple procedure. The final pathology confirmed a 1 cm pT1 N0 pancreatic ductal adenocarcinoma. Case: A 63-year-old male presented with left upper quadrant pain and an abdominal CT demonstrated an 8 mm lesion within the head of the pancreas that was thought to represent a side branch IPMN. An MRI also showed similar findings. Four months later due to ongoing symptoms an EUS was performed to re-evaluate the pancreatic lesion. EUS revealed a predominantly solid hypoechoic, homogeneous mass measuring 12 mm x 9 mm. EUS-guided FNA was performed and was positive for adenocarcinoma. The patient underwent a Whipple procedure that confirmed it to be a ductal adenocarcinoma, pT1N0. The solid mass was noted to be adjacent to a cystic dilation with no papillary architecture and scant epithelium. The differential diagnosis resided between cystic degeneration of a primary pancreatic adenocarcinoma versus malignant degeneration within a side-branch IPMN. Discussion: The reported sensitivity of CT for pancreatic cancer is approximately 90%. For pancreatic tumors, less than 3 cm the sensitivity of CT is reduced ranging from 67-77%. MRI does not significantly improve overall detection rates compared to CT. EUS, however is superior to CT in the detection of pancreatic cancer, in particular among lesions smaller than 3 cm. EUS also outperforms CT and MRI in distinguishing neoplastic from non-neoplastic cysts. In this case, both MRI and CT failed to detect a small pancreatic adenocarcinoma. The addition of EUS and FNA to abdominal imaging can increase overall accuracy for the diagnosis of neoplastic pancreatic lesions. It may be prudent that when small lesions although appearing as a benign IPMN should further be evaluated by EUS as this would lead to potentially identifying earlier stage pancreatic cancers and improve survival in a disease which has a dismal prognosis.

Keywords: IPMN, MRI, EUS, CT

Procedia PDF Downloads 250
3162 Electrospinning of Nanofibrous Meshes and Surface-Modification for Biomedical Application

Authors: Hyuk Sang Yoo, Young Ju Son, Wei Mao, Myung Gu Kang, Sol Lee

Abstract:

Biomedical applications of electrospun nanofibrous meshes have been received tremendous attentions because of their unique structures and versatilities as biomaterials. Incorporation of growth factors in fibrous meshes can be performed by surface-modification and encapsulation. Those growth factors stimulate differentiation and proliferation of specific types of cells and thus lead tissue regenerations of specific cell types. Topographical cues of electrospun nanofibrous meshes also increase differentiation of specific cell types according to alignments of fibrous structures. Wound healing treatments of diabetic ulcers were performed using nanofibrous meshes encapsulating multiple growth factors. Aligned nanofibrous meshes and those with random configuration were compared for differentiating mesenchymal stem cells into neuronal cells. Thus, nanofibrous meshes can be applied to drug delivery carriers and matrix for promoting cellular proliferation.

Keywords: nanofiber, tissue, mesh, drug

Procedia PDF Downloads 326
3161 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis

Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi

Abstract:

Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.

Keywords: antibacterial, flavonoid, corn silk, acne

Procedia PDF Downloads 493
3160 Tryptophan and Its Derivative Oxidation by Heme-Dioxygenase Enzyme

Authors: Ali Bahri Lubis

Abstract:

Tryptophan oxidation by Heme-dioxygenase enzyme is initial important stepTryptophan oxidation by Heme-dioxygenase enzyme is initial important step in kynurenine pathway implicating to several severe diseases such as Parkinson’s Disease, Huntington Disease, poliomyelitis and cataract. It is crucial to comprehend the oxidation mechanism with the hope to find decent treatment upon abovementioned diseases. The mechanism has been debatable since no one has been yet proved the mechanism obviously. In this research we have attempted to prove mechanistic steps of tryptophan oxidation via human indoleamine dioxygenase (h-IDO) using various substrates: L-tryptophan, L-tryptophan (indole-ring-2-13C), L-fully-labelled13C-tryptophan, L-N-methyl-tryptophan, L-tryptophan and 2-amino-3-(benzo(b)thiophene-3-yl) propanoic acid. All enzyme assay experiments were measured using a UV-Vis spectrophotometer, LC-MS, 1H-NMR, and HSQC. We also successfully synthesized enzyme products as our control in NMR measurements. The result exhibited that the distinct substrates produced N-formyl kynurenine (NFK) and hydroxypyrrolloindoleamine carboxylate acid (HPIC) in different concentrations and isomers, correlated to the proposal of considered mechanism reaction in kynurenine pathway implicating to several severe diseases such as Parkinson’s Disease, Huntington Disease, poliomyelitis and cataract. It is crucial to comprehend the oxidation mechanism with the hope to find decent treatment for the abovementioned diseases. The mechanism has been debatable since no one has yet proven the mechanism obviously. In this research we have attempted to prove mechanistic steps of tryptophan oxidation via human indoleamine dioxygenase (h-IDO) using various substrates: L-tryptophan, L-tryptophan (indole-ring-2-13C), L-fully-labelled13C-tryptophan, L-N-methyl-tryptophan, L-tryptophan and 2-amino-3-(benzo(b)thiophene-3-yl) propanoic acid. All enzyme assay experiments were measured using a UV-Vis spectrophotometer, LC-MS, 1H-NMR and HSQC. We also successfully synthesized enzyme products as our control in NMR measurements. The result exhibited that the distinct substrates produced N-formyl kynurenine (NFK) and hydroxypyrrolloindoleamine carboxylate acid (HPIC) in different concentrations and isomers, correlated to the proposal of considered mechanism reaction.

Keywords: heme-dioxygenase enzyme, tryptophan oxidation, kynurenine pathway, n-formyl kynurenine

Procedia PDF Downloads 63
3159 Some Probiotic Traits of Lactobacillus Strains Isolated from Pollen

Authors: Hani Belhadj, Daoud Harzallah, Seddik Khennouf, Saliha Dahamna, Mouloud Ghadbane

Abstract:

In this study, Lactobacillus strains isolated from pollen were identified by means of phenotypic and genotypic methods, At pH 2, most strains proved to be acid resistants, with losses in cell viability ranging from 0.77 to 4.04 Log orders. In addition, at pH 3 all strains could grew and resist the acidic conditions, with losses in cell viability ranging from 0.40 to 3.61 Log orders. It seems that, 0.3% and 0.5% of bile salts does not affect greatly the survival of most strains, excluding Lactobacillus sp. BH1398. Survival ranged from 81.0±3.5 to 93.5±3.9%. In contrast, in the presence of 1.0% bile salts, survival of five strains was decreased by more than 50%. Lactobacillus fermentum BH1509 was considered the most tolerant strain (77.5% for 1% bile) followed by Lactobacillus plantarum BH1541 (59.9% for 1% bile). Furthermore, all strains were resistant to colistine, clindamycine, chloramphenicol, and ciprofloxacine, but most of the strains were susceptible to Peniciline, Oxacillin, Oxytetracyclin, and Amoxicillin. Functionally interesting Lactobacillus isolates may be used in the future as probiotic cultures for manufacturing fermented foods and as bioactive delivery systems.

Keywords: probiotics, lactobacillus, pollen, bile, acid tolerance

Procedia PDF Downloads 410
3158 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration

Authors: Sujatha Edla

Abstract:

Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.

Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic

Procedia PDF Downloads 43
3157 A Comparative Study: Influences of Polymerization Temperature on Phosphoric Acid Doped Polybenzimidazole Membranes

Authors: Cagla Gul Guldiken, Levent Akyalcin, Hasan Ferdi Gercel

Abstract:

Fuel cells are electrochemical devices which convert the chemical energy of hydrogen into the electricity. Among the types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are attracting considerable attention as non-polluting power generators with high energy conversion efficiencies in mobile applications. Polymer electrolyte membrane (PEM) is one of the essential components of PEMFCs. Perfluorosulfonic acid based membranes known as Nafion® is widely used as PEMs. Nafion® membranes water dependent proton conductivity which limits the operating temperature below 100ᵒC. At higher temperatures, proton conductivity and mechanical stability of these membranes decrease because of dehydration. Polybenzimidazole (PBI), which has good anhydrous proton conductivity after doped with acids, as well as excellent thermal stability, shows great potential in the application of high temperature PEMFCs. In the present study, PBI polymers were synthesized by solution polycondensation at 190 and 210ᵒC. The synthesized polymers were characterized by FTIR, 1H NMR, and TGA. Phosphoric acid doped PBI membranes were prepared and tested in a PEMFC. The influences of reaction temperature on structural properties of synthesized polymers were investigated. Mechanical properties, acid-doping level, proton conductivity, and fuel cell performances of prepared phosphoric acid doped PBI membranes were evaluated. The maximum power density was found as 32.5 mW/cm² at 120ᵒC.

Keywords: fuel cell, high temperature polymer electrolyte membrane, polybenzimidazole, proton exchange membrane fuel cell

Procedia PDF Downloads 176
3156 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 164
3155 The Methodology of Flip Chip Using Astro Place and Route Tool

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Rozaimah Baharim, Md Hanif Md Nasir

Abstract:

This paper will discuss flip chip methodology, in which I/O pads, standard cells, macros and bump cells array are placed in the floorplan, then routed using Astro place and route tool. Final DRC and LVS checking is done using Calibre verification tool. The design vehicle to run this methodology is an OpenRISC design targeted to Silterra 0.18 micrometer technology with 6 metal layers for routing. Astro has extensive support for flip chip placement and routing. Astro tool commands for flip chip are straightforward approach like the conventional standard wire bond packaging. However since we do not have flip chip commands in our Astro tool, no LEF file for bump cell and no LEF file for flip chip I/O pad, we create our own methodology to prepare for future flip chip tapeout. 

Keywords: methodology, flip chip, bump cell, LEF, astro, calibre, SCHEME, TCL

Procedia PDF Downloads 470
3154 DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation

Authors: Neha Singh, Anuj Ranjan, Tanu Jindal

Abstract:

Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well.

Keywords: cell death, apoptosis, Comet Assay, DNA damage, Drosophila, electromagnetic fields, EMF, radio frequency, RF, TUNEL assay

Procedia PDF Downloads 145
3153 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling

Procedia PDF Downloads 196
3152 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment

Authors: M. Sneha, N. Meenakshi Sundaram

Abstract:

In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.

Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia

Procedia PDF Downloads 627
3151 Beneficial Effect of Autologous Endometrial Stromal Cell Co-Culture on Day 3 Embryo Quality

Authors: I. Bochev, A. Shterev, S. Kyurkchiev

Abstract:

One of the factors associated with poor success rates in human in vitro fertilization (IVF) is the suboptimal culture conditions in which fertilization and early embryonic growth occur. Co-culture systems with helper cell lines appear to enhance the in vitro conditions and allow embryos to demonstrate improved in vitro development. The co-culture of human embryos with monolayers of autologous endometrial stromal cell (EnSCs) results in increased blastocyst development with a larger number of blastomeres, lower incidence of fragmentation and higher pregnancy rates in patients with recurrent implantation failure (RIF). The aim of the study was to examine the influence of autologous endometrial stromal cell (EnSC) co-culture on day 3 embryo quality by comparing the morphological status of the embryos from the same patients undergoing consecutive IVF/Intracytoplasmic sperm injection (ICSI) cycles without and with EnSC co-culture. This retrospective randomized study (2015-2017) includes 20 couples and a total of 46 IVF/ICSI cycles. Each patient couple included had at least two IVF/ICSI procedures – one with and one without autologous EnSC co-culture. Embryo quality was assessed at 68±1 hours in culture, according to Istanbul consensus criteria (2010). Day 3 embryos were classified into three groups: good – grade 1; fair – grade 2; poor – grade 3. Embryos from all cycles were divided into two groups (A – co-cultivated; B – not co-cultivated) and analyzed. Second, for each patient couple, embryos from matched IVF/ICSI cycles (with and without co-culture) were analyzed separately. When an analysis of co-cultivated day 3 embryos from all cycles was performed (n=137; group A), 43.1% of the embryos were graded as “good”, which was not significantly different from the respective embryo quality rate of 42.2% (p = NS) in group B (n=147) with non-co-cultivated embryos. The proportions of fair and poor quality embryos in group A and group B were similar as well – 11.7% vs 10.2% and 45.2% vs 47.6% (p=NS), respectively. Nevertheless, the separate embryo analysis by matched cycles for each couple revealed that in 65% of the cases the proportion of morphologically better embryos was increased in cycles with co-culture in comparison with those without co-culture. A decrease in this proportion after endometrial stromal cell co-cultivation was found in 30% of the cases, whereas no difference was observed in only one couple. The results demonstrated that there is no marked difference in the overall morphological quality between co-cultured and non-co-cultured embryos on day 3. However, in significantly greater percentage of couples the process of autologous EnSC co-culture could increase the proportion of morphologically improved day 3 embryos. By mimicking the in vivo relationship between embryo and maternal environment, co-culture in autologous EnSC system represents a perspective approach to improve the quality of embryos in cases with elevated risk for development of embryos with impaired morphology.

Keywords: autologous endometrial stromal cells, co-culture, day 3 embryo, morphological quality

Procedia PDF Downloads 209
3150 Anti-Inflammatory Activity of Topical Anthocyanins by Complexation and Niosomal Encapsulation

Authors: Aroonsri Priprem, Sucharat Limsitthichaikoon, Suttasinee Thappasarapong

Abstract:

Anthocyanins are natural pigments with effective UV protection but their topical use could be limited due to their physicochemical characteristics. An attempt to overcome such limitations by complexation of 2 major anthocyanin-rich sources, C. ternatea, and Z. mays, for investigation on potential use as topical anti-inflammatory. Cell studies indicate no cytotoxicity of the anthocyanin complex (AC) up to 1 mg/ml tested in HaCaT and human forehead fibroblasts by MTT. Croton oil-induced ear edema in Wistar rats suggests an effective dose of 5 mg/cm2 of AC as a topical anti-inflammatory in comparison to 0.5 mg/cm2 of fluocinolone acetonide. Niosomal encapsulation of the AC significantly prolonged the anti-inflammatory activity particularly at 8 h after topical application (p = 0.0001). The AC was not cytotoxic and its anti-inflammatory and activity was dose-dependent and prolonged by niosomal encapsulation. It has also shown to promote collagen type 1 production in cell culture. Thus, AC could be a potential candidate for topical anti-inflammatory agent from natural resources.

Keywords: anthocyanin complex, ear edema, inflammation, niosomes, skin

Procedia PDF Downloads 312