Search results for: neural networks
1544 SOTM: A New Cooperation Based Trust Management System for VANET
Authors: Amel Ltifi, Ahmed Zouinkhi, Mohamed Salim Bouhlel
Abstract:
Security and trust management in Vehicular Ad-hoc NETworks (VANET) is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM). This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.Keywords: ative vehicle, cooperation, trust management, VANET
Procedia PDF Downloads 4301543 SEC-MALLS Study of Hyaluronic Acid and BSA Thermal Degradation in Powder and in Solution
Authors: Vasile Simulescu, Jakub Mondek, Miloslav Pekař
Abstract:
Hyaluronic acid (HA) is an anionic glycosaminoglycan distributed throughout connective, epithelial and neural tissues. The importance of hyaluronic acid increased in the last decades. It has many applications in medicine and cosmetics. Hyaluronic acid has been used in attempts to treat osteoarthritis of the knee via injecting it into the joint. Bovine serum albumin (also known as BSA) is a protein derived from cows, which has many biochemical applications. The aim of our research work was to compare the thermal degradation of hyaluronic acid and BSA in powder and in solution, by determining changes in molar mass and conformation, by using SEC-MALLS (size exclusion chromatography -multi angle laser light scattering). The aim of our research work was to observe the degradation in powder and in solution of different molar mass hyaluronic acid samples, at different temperatures for certain periods. The degradation of the analyzed samples was mainly observed by modifications in molar mass.Keywords: thermal degradation, hyaluronic acid, BSA, SEC-MALLS
Procedia PDF Downloads 5051542 Water Monitoring Sentinel Cloud Platform: Water Monitoring Platform Based on Satellite Imagery and Modeling Data
Authors: Alberto Azevedo, Ricardo Martins, André B. Fortunato, Anabela Oliveira
Abstract:
Water is under severe threat today because of the rising population, increased agricultural and industrial needs, and the intensifying effects of climate change. Due to sea-level rise, erosion, and demographic pressure, the coastal regions are of significant concern to the scientific community. The Water Monitoring Sentinel Cloud platform (WORSICA) service is focused on providing new tools for monitoring water in coastal and inland areas, taking advantage of remote sensing, in situ and tidal modeling data. WORSICA is a service that can be used to determine the coastline, coastal inundation areas, and the limits of inland water bodies using remote sensing (satellite and Unmanned Aerial Vehicles - UAVs) and in situ data (from field surveys). It applies to various purposes, from determining flooded areas (from rainfall, storms, hurricanes, or tsunamis) to detecting large water leaks in major water distribution networks. This service was built on components developed in national and European projects, integrated to provide a one-stop-shop service for remote sensing information, integrating data from the Copernicus satellite and drone/unmanned aerial vehicles, validated by existing online in-situ data. Since WORSICA is operational using the European Open Science Cloud (EOSC) computational infrastructures, the service can be accessed via a web browser and is freely available to all European public research groups without additional costs. In addition, the private sector will be able to use the service, but some usage costs may be applied, depending on the type of computational resources needed by each application/user. Although the service has three main sub-services i) coastline detection; ii) inland water detection; iii) water leak detection in irrigation networks, in the present study, an application of the service to Óbidos lagoon in Portugal is shown, where the user can monitor the evolution of the lagoon inlet and estimate the topography of the intertidal areas without any additional costs. The service has several distinct methodologies implemented based on the computations of the water indexes (e.g., NDWI, MNDWI, AWEI, and AWEIsh) retrieved from the satellite image processing. In conjunction with the tidal data obtained from the FES model, the system can estimate a coastline with the corresponding level or even topography of the inter-tidal areas based on the Flood2Topo methodology. The outcomes of the WORSICA service can be helpful for several intervention areas such as i) emergency by providing fast access to inundated areas to support emergency rescue operations; ii) support of management decisions on hydraulic infrastructures operation to minimize damage downstream; iii) climate change mitigation by minimizing water losses and reduce water mains operation costs; iv) early detection of water leakages in difficult-to-access water irrigation networks, promoting their fast repair.Keywords: remote sensing, coastline detection, water detection, satellite data, sentinel, Copernicus, EOSC
Procedia PDF Downloads 1261541 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 1111540 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification
Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui
Abstract:
Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.Keywords: EEG, ICA, SVM, wavelet
Procedia PDF Downloads 3841539 Using Two-Mode Network to Access the Connections of Film Festivals
Authors: Qiankun Zhong
Abstract:
In a global cultural context, film festival awards become authorities to define the aesthetic value of films. To study which genres and producing countries are valued by different film festivals and how those evaluations interact with each other, this research explored the interactions between the film festivals through their selection of movies and the factors that lead to the tendency of film festivals to nominate the same movies. To do this, the author employed a two-mode network on the movies that won the highest awards at five international film festivals with the highest attendance in the past ten years (the Venice Film Festival, the Cannes Film Festival, the Toronto International Film Festival, Sundance Film Festival, and the Berlin International Film Festival) and the film festivals that nominated those movies. The title, genre, producing country and language of 50 movies, and the range (regional, national or international) and organizing country or area of 129 film festivals were collected. These created networks connected by nominating the same films and awarding the same movies. The author then assessed the density and centrality of these networks to answer the question: What are the film festivals that tend to have more shared values with other festivals? Based on the Eigenvector centrality of the two-mode network, Palm Springs, Robert Festival, Toronto, Chicago, and San Sebastian are the festivals that tend to nominate commonly appreciated movies. In contrast, Black Movie Film Festival has the unique value of generally not sharing nominations with other film festivals. A homophily test was applied to access the clustering effects of film and film festivals. The result showed that movie genres (E-I index=0.55) and geographic location (E-I index=0.35) are possible indicators of film festival clustering. A blockmodel was also created to examine the structural roles of the film festivals and their meaning in real-world context. By analyzing the same blocks with film festival attributes, it was identified that film festivals either organized in the same area, with the same history, or with the same attitude on independent films would occupy the same structural roles in the network. Through the interpretation of the blocks, language was identified as an indicator that contributes to the role position of a film festival. Comparing the result of blockmodeling in the different periods, it is seen that international film festivals contrast with the Hollywood industry’s dominant value. The structural role dynamics provide evidence for a multi-value film festival network.Keywords: film festivals, film studies, media industry studies, network analysis
Procedia PDF Downloads 3161538 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1271537 Enhancing Cloud Computing with Security Trust Model
Authors: John Ayoade
Abstract:
Cloud computing is a model that enables the delivery of on-demand computing resources such as networks, servers, storage, applications and services over the internet. Cloud Computing is a relatively growing concept that presents a good number of benefits for its users; however, it also raises some security challenges which may slow down its use. In this paper, we identify some of those security issues that can serve as barriers to realizing the full benefits that cloud computing can bring. One of the key security problems is security trust. A security trust model is proposed that can enhance the confidence that users need to fully trust the use of public and mobile cloud computing and maximize the potential benefits that they offer.Keywords: cloud computing, trust, security, certificate authority, PKI
Procedia PDF Downloads 4841536 The Anatomy and Characteristics of Online Romance Scams
Authors: Danuvasin Charoen
Abstract:
Online romance scams are conducted by criminals using social networks and dating sites. These criminals use love to deceive the victims to send them money. The victims not only lose money to the criminals, but they are also heartbroken. This study investigates how online romance scams work and why people become victims to them. The researcher also identifies the characteristics of the perpetrators and victims. The data were collected from in-depth interviews with former victims and police officers responsible for the cases. By studying the methods and characteristics of the online romance scam, we can develop effective methods and policies to reduce the rates of such crimes.Keywords: romance scam, online scam, phishing, cybercrime
Procedia PDF Downloads 1571535 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape
Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca
Abstract:
ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)
Procedia PDF Downloads 1101534 DOS and DDOS Attacks
Authors: Amin Hamrahi, Niloofar Moghaddam
Abstract:
Denial of Service is for denial-of-service attack, a type of attack on a network that is designed to bring the network to its knees by flooding it with useless traffic. Denial of Service (DoS) attacks have become a major threat to current computer networks. Many recent DoS attacks were launched via a large number of distributed attacking hosts in the Internet. These attacks are called distributed denial of service (DDoS) attacks. To have a better understanding on DoS attacks, this article provides an overview on existing DoS and DDoS attacks and major defense technologies in the Internet.Keywords: denial of service, distributed denial of service, traffic, flooding
Procedia PDF Downloads 3921533 Decentralised Edge Authentication in the Industrial Enterprise IoT Space
Authors: C. P. Autry, A.W. Roscoe
Abstract:
Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.Keywords: authentication, enterprise IoT cybersecurity, PKI/TTP, IoT space
Procedia PDF Downloads 1691532 The Third Level Digital Divide: Millennials and Post-Millennials Online Activities in South Africa
Authors: Ayanda Magida, Brian Armstrong
Abstract:
The study aimed to assess the third level of the digital divide among the millennials and post-millennials in South Africa. The millennials are people born from 1981-to 1996, that is, people between the ages of 25-40 years old and post-millennials are people born from 1997 to date. For the study, only post-millennials born between 1997-2003 were included as they were old enough to consent to participation in the study. Data was collected as part of the Ph.D. project that focuses on the relationship between income inequality, the digital divide, and social cohesion in South Africa. The digital divide has three main levels, namely the first, second and third. The first and second focus on access and usage, respectively. The third-level digital divide can be defined as the differences in the benefits associated with being online. The current paper focuses on the third level: the benefits derived by being online using four domains: economic, educational, social, and personal benefits. The economic benefits include income, employment and finance-related activities; the social benefits include socializing belonging, identity, and informal networks. The personal benefits include personal wellbeing and self-actualization. A total of 763 participants completed the survey, and 61.3% were post-millennials between the ages of 18-24 and s 38.6 % were millennials between 25 and 40. The majority of the respondents were female (62%), male (34%) and nonbinary (1%), respectively. Most of the respondents were black, followed by whites, Indians and colored, respectively. Thus, they represented the status of the demographics of the country. Most of the respondents had access to the internet and smartphone. Most expressed that they use laptops (68%) or mobile (71%) to access the internet and 54 % access the internet using wireless/Wi-Fi. There were no differences between the millennial and post-millennial economic and educational benefits of being online. However, the post-millennials were more inclined to use the internet for social and personal benefits than the millennials. This could be attributed to many factors, such as age. The post-millennials are still discovering themselves and therefore would derive social and personal benefits associated with being online. The findings confirm studies that argue that younger generations derive more benefits from being online than the older generation. Based on the findings, it is evident that the post-millennials are not using the internet or online activities for social networks and socializing but can derive economic benefits such as job looking and education benefits from being online. It can be inferred that there are no significant differences between the two groups, and it seems like the third-level digital divide is not evident among the two groups as they both have been able to derive meaningful benefits from being online. Further studies should focus on the third-level divide between the baby boomers and Generation X.Keywords: third-level digital divide, millennials, post-millennials, online activities
Procedia PDF Downloads 1041531 Construction of Finite Woven Frames through Bounded Linear Operators
Authors: A. Bhandari, S. Mukherjee
Abstract:
Two frames in a Hilbert space are called woven or weaving if all possible merge combinations between them generate frames of the Hilbert space with uniform frame bounds. Weaving frames are powerful tools in wireless sensor networks which require distributed data processing. Considering the practical applications, this article deals with finite woven frames. We provide methods of constructing finite woven frames, in particular, bounded linear operators are used to construct woven frames from a given frame. Several examples are discussed. We also introduce the notion of woven frame sequences and characterize them through the concepts of gaps and angles between spaces.Keywords: frames, woven frames, gap, angle
Procedia PDF Downloads 1931530 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 1261529 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard
Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor
Abstract:
During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.Keywords: critical links, extreme weather events, hazard, resilience, transport network
Procedia PDF Downloads 2861528 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip
Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum
Abstract:
3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits
Procedia PDF Downloads 3031527 Understanding and Improving Neural Network Weight Initialization
Authors: Diego Aguirre, Olac Fuentes
Abstract:
In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.Keywords: deep learning, image classification, supervised learning, weight initialization
Procedia PDF Downloads 1351526 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 1901525 Exploring the Neural Correlates of Different Interaction Types: A Hyperscanning Investigation Using the Pattern Game
Authors: Beata Spilakova, Daniel J. Shaw, Radek Marecek, Milan Brazdil
Abstract:
Hyperscanning affords a unique insight into the brain dynamics underlying human interaction by simultaneously scanning two or more individuals’ brain responses while they engage in dyadic exchange. This provides an opportunity to observe dynamic brain activations in all individuals participating in interaction, and possible interbrain effects among them. The present research aims to provide an experimental paradigm for hyperscanning research capable of delineating among different forms of interaction. Specifically, the goal was to distinguish between two dimensions: (1) interaction structure (concurrent vs. turn-based) and (2) goal structure (competition vs cooperation). Dual-fMRI was used to scan 22 pairs of participants - each pair matched on gender, age, education and handedness - as they played the Pattern Game. In this simple interactive task, one player attempts to recreate a pattern of tokens while the second player must either help (cooperation) or prevent the first achieving the pattern (competition). Each pair played the game iteratively, alternating their roles every round. The game was played in two consecutive sessions: first the players took sequential turns (turn-based), but in the second session they placed their tokens concurrently (concurrent). Conventional general linear model (GLM) analyses revealed activations throughout a diffuse collection of brain regions: The cooperative condition engaged medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC); in the competitive condition, significant activations were observed in frontal and prefrontal areas, insula cortices and the thalamus. Comparisons between the turn-based and concurrent conditions revealed greater precuneus engagement in the former. Interestingly, mPFC, PCC and insulae are linked repeatedly to social cognitive processes. Similarly, the thalamus is often associated with a cognitive empathy, thus its activation may reflect the need to predict the opponent’s upcoming moves. Frontal and prefrontal activation most likely represent the higher attentional and executive demands of the concurrent condition, whereby subjects must simultaneously observe their co-player and place his own tokens accordingly. The activation of precuneus in the turn-based condition may be linked to self-other distinction processes. Finally, by performing intra-pair correlations of brain responses we demonstrate condition-specific patterns of brain-to-brain coupling in mPFC and PCC. Moreover, the degree of synchronicity in these neural signals related to performance on the game. The present results, then, show that different types of interaction recruit different brain systems implicated in social cognition, and the degree of inter-player synchrony within these brain systems is related to nature of the social interaction.Keywords: brain-to-brain coupling, hyperscanning, pattern game, social interaction
Procedia PDF Downloads 3391524 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 4991523 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1451522 Repository Blockchain for Collaborative Blockchain Ecosystem
Authors: Razwan Ahmed Tanvir, Greg Speegle
Abstract:
Collaborative blockchain ecosystems allow diverse groups to cooperate on tasks while providing properties such as decentralization and transaction security. We provide a model that uses a repository blockchain to manage hard forks within a collaborative system such that a single process (assuming that it has knowledge of the requirements of each fork) can access all of the blocks within the system. The repository blockchain replaces the need for Inter Blockchain Communication (IBC) within the ecosystem by navigating the networks. The resulting construction resembles a tree instead of a chain. A proof-of-concept implementation performs a depth-first search on the new structure.Keywords: hard fork, shared governance, inter blockchain communication, blockchain ecosystem, regular research paper
Procedia PDF Downloads 171521 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach
Authors: Vijay Kr. Yadav, Nilam Rathi
Abstract:
Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy
Procedia PDF Downloads 2571520 Probabilistic Modeling Laser Transmitter
Authors: H. S. Kang
Abstract:
Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks.Keywords: computational mathematics, finite difference Markov chain methods, sequence spaces, singularly perturbed differential equations
Procedia PDF Downloads 4311519 Competences for Learning beyond the Academic Context
Authors: Cristina Galván-Fernández
Abstract:
Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.Keywords: competences, e-portfolio, higher education, self-regulation
Procedia PDF Downloads 2991518 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 4671517 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network
Authors: Manoj Kumar
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.Keywords: AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 5181516 Intelligent Adaptive Learning in a Changing Environment
Authors: G. Valentis, Q. Berthelot
Abstract:
Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment
Procedia PDF Downloads 4241515 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 66