Search results for: chemical profile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6512

Search results for: chemical profile

4322 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 193
4321 Polymer Flooding: Chemical Enhanced Oil Recovery Technique

Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti

Abstract:

Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).

Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio

Procedia PDF Downloads 402
4320 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses

Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite

Abstract:

With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.

Keywords: meat industry, energy intensity, energy efficiency, GHG emissions

Procedia PDF Downloads 377
4319 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 447
4318 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 155
4317 Prevalence of Microalbuminuria and Its Relation with Various Risk Factors in Type 1 Diabetes Mellitus

Authors: Singh Baljinder, Sharma Navneet

Abstract:

Microalbuminuria is the earliest detectable marker of diabetic nephropathy. We planned to evaluate the prevalence of microalbuminuria in type 1 diabetics and correlate with various risk factor. We randomly selected 100 type 1 diabetic patients after inclusion and exclusion criteria from DCRC, S. P. Medical College, Bikaner. Clinical examinations for anthropometeric parameters, hypertension, retinopathy, glycaemic status, lipid profile were done and microalbuminuria was estimated by micral test. Microalbuminuria was seen in 38% patients. The mean urinary albumin concentration was 96.61 mg/l in microalbuminuria positive cases, 134 mg/L in hypertensive patients while 74.5 mg/L in normal patients. Mean diabetic duration was 6.43 years in microalbuminurics. Albumin excretion increased significantly with age at onset of 10-18 years and declined thereafter. Microalbuminuria cases exhibited mean cholesterol 181.63 mg%, TG 130.94 mg%, LDL 109.87 mg%, HDL 57.5 mg% and VLDL 30.64 mg%. Mean urinary albumin concentration in patients with retinopathy was 160.52 mg/L while 78.66 mg/L without retinopathy. In multiple stepwise logistic regression analysis, a strong positive association was seen between microalbuminuria and hypertension (OR=5.087, CI=2.1319-12.101), fasting blood sugar (OR=3. 491, CI=1.138-10.70), duration of diabetes (OR=3.41, CI=1.360-8.55) and HbA1c (OR=2.381, CI-=1.1-5.64). The present study indicates that microalbuminuria is a common complication of type 1 diabetes mellitus and can be prevented by careful management of risk factors.

Keywords: type 1 diabetes, microalbuminuria, diabetic nephropathy, retinopathy, hypertension

Procedia PDF Downloads 447
4316 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables

Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran

Abstract:

This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.

Keywords: power management, reactive power, subsea cables, variable shunt reactors

Procedia PDF Downloads 254
4315 Killed by the ‘Subhuman’: Jane Longhurst’s Murder and the Construction of the ‘Extreme Pornography’ Problem in the British National Press

Authors: Dimitrios Akrivos, Alexandros K. Antoniou

Abstract:

This paper looks at the crucial role of the British news media in the construction of extreme pornography as a social problem, suggesting that this paved the way for the subsequent criminalization of such material through the introduction of the Criminal Justice and Immigration Act 2008. Focusing on the high-profile case of Graham Coutts, it examines the British national press’ reaction to Jane Longhurst’s murder through a qualitative content analysis of 251 relevant news articles. Specifically, the paper documents the key arguments expressed in the corresponding claims-making process. It considers the different ways in which the consequent ‘trial by media’ presented this exceptional case as the ‘tip of the iceberg’ and eventually translated into policy. The analysis sheds light on the attempts to ‘piggyback’ the issue of extreme pornography on child sexual abuse images as well as the textual and visual mechanisms used to establish an ‘us versus them’ dichotomy in the pertinent media discourse. Finally, the paper assesses the severity of the actual risk posed by extreme pornography, concluding that its criminalization should not merely be dismissed as the outcome of an institutionalized media panic.

Keywords: criminalization, extreme pornography, social problem, trial by media

Procedia PDF Downloads 241
4314 Chemical Composition and Insecticidal Properties of Moroccan Plant Extracts against Dactylopius Opuntiae (Cockerell) Under Laboratory and Greenhouse Conditions

Authors: Imane Naboulsi, Mansour Sobeh, Rachid Lamzira, Karim El Fakhouri, Widad Ben Bakrim, Chaimae Ramdani, Rachid Boulamtat, Mustapha El Bouhssini, Jane ward, Abdelaziz Yasri, Aziz Aboulmouhajir

Abstract:

The wild cochineal Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) is the major insect pest of the prickly pear Opuntia ficus-indica (L.) in Morocco, which has causedenormous socio-economic and environmental losses to this crop in recent years. This study aimed to investigate the insecticidal potential of six aqueous (100% water), and methanolic (20/80 (v/v) MeOH/H2O) extracts obtained from aromatic and medicinal plants growing in arid and semi-arid regions of Morocco to control nymphs and adult females of D. opuntiae, under laboratory and greenhouse conditions. Under laboratory conditions, the aqueous extracts of Atriplex halimus at 5% caused significant mortality in nymphs with 71% four days after application and 88%on adult females of D. opuntiae8 days post-treatment. Under greenhouse conditions, the aqueous extract of A. halimus combined with black soap at 10 g/L showed the highest mortality rate of nymphs with 100%, 4 days after application. The adult females' mortality increased significantly to reach 83.75%,14 days after the second application of A. halimus aqueous extract at 5%. Phytochemical analysis of the water extract of A. halimus revealed a high content of saponins (24.09 ± 0.71 mg SSE/g DW) compared to other plant extracts, which was confirmed by LC-MS characterization that showed the presence of 36 triterpenoid saponin compounds (derived from oleic-12-en-28-oic acid), in addition to phytoecdysones, simple carboxylic acids, and flavonoids. These findings showed that using the aqueous extract of A. halimus as a biological pesticide could be incorporated into the management package to control the wild cochineal as a safe alternative to chemical insecticides.

Keywords: dactylopius opuntiae, opuntia ficus-indica L., plant extracts, toxicity, atriplex halimus, saponins

Procedia PDF Downloads 149
4313 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima

Authors: Rajesh Chandra, Uttam K. Ghosh

Abstract:

This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.

Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid

Procedia PDF Downloads 159
4312 Characterization Microstructural Dual Phase Steel for Application In Civil Engineering

Authors: S. Habibi, T. E. Guarcia, A. Megueni, A. Ziadi, L. Aminallah, A. S. Bouchikhi

Abstract:

The characterization of the microstructure of Dual Phase steel in various low-carbon, with a yield stress between 400 and 900 MPa were conducted .In order to assess the mechanical properties of steel, we examined the influence of their chemical compositions interictal and heat treatments (austenite + ferrite area) on their micro structures. In this work, we have taken a number of commercial DP steels, micro structurally characterized and used the conventional tensile testing of these steels for mechanical characterization.

Keywords: characterization, construction in civil engineering, micro structure, tensile DP steel

Procedia PDF Downloads 467
4311 Septic Pulmonary Emboli as a Complication of Peripheral Venous Cannula Insertion

Authors: Ankita Baidya, Vanishri Ganakumar, Ranveer S. Jadon, Piyush Ranjan, Rita Sood

Abstract:

Septic embolism can have varied presentations and clinical considerations. Infected central venous catheters are commonly associated with septic emboli but peripheral vascular catheters are rarely implicated. We describe a rare case of septic pulmonary emboli related to infected peripheral venous cannulation caused by an unusual etiological agent. A young male presented with complaints of fever, productive cough, sudden onset shortness of breath and cellulitis in both the upper limbs. He was recently hospitalised for dengue fever and administered intravenous fluids through peripheral venous line. The patient was febrile, tachypneic and in respiratory distress, there were multiple pus filled bullae in left hand alongwith swelling and erythema involving right forearm that started at the site of cannulation. Chest examination showed active accessory muscles of respiration, stony dull percussion at the base of right lung and decreased breath sounds at right infrascapular, infraaxillary and mammary area. Other system examination was within normal limits. Chest X-ray revealed bilateral multiple patchy heterogenous peripheral opacities and infiltrates with right-sided pleural effusion. Contrast-enhanced computed tomography (CECT) chest showed feeding vessel sign confirming the diagnosis as septic emboli. Venous Doppler and 2D-echocardiogarm were normal. Laboratory findings showed marked leucocytosis (22000/mm3). Pus aspirate, blood sample, and sputum sample were sent for microbiological testing. The patient was started empirically on ceftriaxone, vancomycin, and clindamycin. The Pus culture and sputum culture showed Klebsiella pneumoniae sensitive to cefoperazone-sulbactum, piperacillin-tazobactum, meropenem and amikacin. The antibiotics were modified accordingly to antimicrobial sensitivity profile to Cefoperazone-sulbactum. Bronchoalveolar lavage (BAL) was done and sent for microbiological investigations. BAL culture showed Klebsiella pneumoniae with same antimicrobial resistance profile. On day 6 of starting cefoperazone-sulbactum, he became afebrile. The skin lesions improved significantly. He was administered 2 weeks of cefoperazone–sulbactum and discharged on oral faropenem for 4 weeks. At the time of discharge, TLC was 11200/mm3 with marked radiological resolution of infection and healed skin lesions. He was kept in regular follow up. Chest X-ray and skin lesions showed complete resolution after 8 weeks. Till date, only couple of case reports of septic emboli through peripheral intravenous line have been reported in English literature. This case highlights that a simple procedure of peripheral intravenous cannulation can lead to catastrophic complication of septic pulmonary emboli and widespread cellulitis if not done with proper care and precautions. Also, the usual pathogens in such clinical settings are gram positive bacteria, but with the history of recent hospitalization, empirical therapy should also cover drug resistant gram negative microorganisms. It also emphasise the importance of appropriate healthcare practices to be taken care during all procedures.

Keywords: antibiotics, cannula, Klebsiella pneumoniae, septic emboli

Procedia PDF Downloads 165
4310 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space

Procedia PDF Downloads 241
4309 Phytoestrogen Content of Fermented Lupin Tempeh and Natto

Authors: Niranjani Wickramsinghe, Mario Soares, Stuart Johnson, Ranil Cooray, Vijay Jayasena

Abstract:

Tempeh is a traditional fermented soya bean food in Indonesia which is produced from de-hulled soya fermented with Rhizopusoligosporus. Natto is a traditional Japanese food made from whole soya bean seed fermentation with the bacteriaBacillus subtilis natto. Lupin is a grain legume with a low content of the phytoestrogenic isoflavones genistein and daidzein compared to soya. However due a comparable nutrition profile and increased cost effectiveness relative to soy, lupin has been substituted into various oriental fermented foods such as tempe and natto. Lupin tempeh and lupin natto were prepared using either WS or DHS. Analysis for genistein and daidzein content was conducted using HPLC for time points zero, 12h, 24h, 36h, 48h and 72h after fermentation. Results revealed that the amount of genistein and daidzein significantly increased with time in both tempeh and natto. Both isoflavones peaked at 48h in lupin tempeh and earlier at 36h in lupin natto. WS tempeh and WS natto had significantly more genistein than WHS tempe and WHS natto. Diadzeincontent of WHS tended to be higher than WS across both products. It is concluded that, fermentation time increased the amount of genistein and daidzein content in both lupin tempeh and natto and the form of lupin raw material used affected the genistein level and to some extent the daidzein content of fermented products.

Keywords: lupin, natto, soya, tempeh

Procedia PDF Downloads 384
4308 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses

Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux

Abstract:

Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.

Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide

Procedia PDF Downloads 146
4307 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Soil Properties of Rice

Authors: D. A. S. Gamage, B. F. A Basnayake, W. A. J. M. de Costa

Abstract:

Rice is one of the world’s most important cereals. Increasing food production both to meet in-country requirements and to help overcome food crises is one of the major issues facing Sri Lanka today. However, productive land is limited and has mostly been utilized either for food crop production or other uses. Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. A variety of modern agricultural inputs have been introduced, namely ploughs and harvesters, pesticides, fertilizers and lime. Besides, there are several agricultural institutions developing and updating the management of agricultural sector. Modern agricultural inputs cooperate as a catalyst in raising the productivity. However, in the eagerness of gaining profits from the efficient and productive techniques, this modern agricultural input has affected the environment and living things especially those which have been blended from various chemical substance. The increased pressure to maintain a high level of rice output for consumption has resulted in increased use of pesticides and inorganic fertilizer on rice fields in Sri Lanka. The application of inorganic fertilizer has become a burdened to the country in many ways. The excessive reuse of the ground water resources with a considerable application of organic and chemical fertilizers will lead to a deterioration of the quality and quantity of water. Biochar is a form of charcoal produced through the heating of natural organic materials. It has received significant attention recently for its potential as a soil conditioner, a fertilizer and as a means of storing carbon in a sustainable manner. It is the best solution for managing the agricultural wastes while providing a useful product for increasing agricultural productivity and protecting the environment. The objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N, P, K, organic matter in soil and yield of rice production.

Keywords: biochar, paddy husk, soil conditioner, rice straw compost

Procedia PDF Downloads 352
4306 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 450
4305 Analyzing Log File of Community Question Answering for Online Learning

Authors: Long Chen

Abstract:

With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.

Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training

Procedia PDF Downloads 443
4304 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries

Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova

Abstract:

Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.

Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling

Procedia PDF Downloads 277
4303 Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake

Authors: Amir B. Khoshnevis, Morteza Mirhosseini

Abstract:

The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform.

Keywords: angle of attack, Reynolds number, velocity deficit, separation

Procedia PDF Downloads 380
4302 Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation

Authors: Andreia Garrido, Artur Conde, Ana Cunha, Ric De Vos

Abstract:

Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges.

Keywords: climate change, grape berry tissues, metabolomics, mitigation strategies

Procedia PDF Downloads 126
4301 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 137
4300 In Search of Zero Beta Assets: Evidence from the Sukuk Market

Authors: Andrea Paltrinieri, Alberto Dreassi, Stefano Miani, Alex Sclip

Abstract:

The financial crises caused a collapse in prices of most asset classes, raising the attention on alternative investments such as Sukuk, a smaller, fast growing but often misunderstood market. We study diversification benefits of Sukuk, their correlation with other asset classes and the effects of their inclusion in investment portfolios of institutional and retail investors, through a comprehensive comparison of their risk/return profiles during and after the financial crisis. We find a beneficial performance adjusted for the specific volatility together with a lower correlation especially during the financial crisis. The distribution of Sukuk returns is positively skewed and leptokurtic, with a risk/return profile similarly to high yield bonds. Overall, our results suggest that Sukuk present diversification opportunities, a significant volatility-adjusted performance and lower correlations especially during the financial crisis. Our findings are relevant for a number of institutional investors. Long term investors, such as life insurers would benefit from Sukuk’s protective features during financial crisis yet keeping return and growth opportunities, whereas banks would gain due to their role of placers, advisors, market makers or underwriters.

Keywords: sukuk, zero beta asset, asset allocation, sukuk market

Procedia PDF Downloads 480
4299 Theology and Music in the XXI. Century: An Exploratory Study of Current Interrelation

Authors: Andrzej Kesiak

Abstract:

Contemporary theology is often accused of answering questions that nobody is asking, and of employing hermetic language that has lost its communication capacity. There is also a question that theology is asking itself: how theological discourse can still be influential on other disciplines and, how to overcome the separation of theology and belief. Undoubtedly, in the wider spectrum, the theological discourse has been and will be needed. The difficulty is how to find the right model of it, the model that would help theology to enter in dialogue with culture, art, science, and politics. Presumably, there is no only one such model, theology constantly needs to seek such models, and this is probably a never-ending journey; in other words, theology should adopt a profile of ‘a restless being’ if it wants to remain influential. Music, on the other hand, has always been very close to theology; in fact, a huge part of classical music is either sacred or religious. Many composers sought inspiration in religion, liturgy, religious painting and sacred texts. This paper will argue that despite all that it seems that a proper and factual dialogue is still in a starting phase. Such a thing as a reciprocal relationship between theology and music definitely exists, but it has not yet been theoretically developed enough. Correlation between musical and theological disciplines constitutes a very broad and complex discourse. Therefore this study would rather narrow the subject and put it in a specific context: Theology and Music in the XXI. Century. This paper is a text-based study; therefore it will be based on textual-analysis with elements of the text hermeneutics.

Keywords: music, theology, reciprocal relationship between theology and music, XXI Century

Procedia PDF Downloads 160
4298 Investigating the Effects of Density and Different Nitrogen Nutritional Systems on Yield, Yield Components and Essential Oil of Fennel (Foeniculum Vulgare Mill.)

Authors: Mohammadreza Delfieh, Seyed Ali Mohammad Modarres Sanavy, Rouzbeh Farhoudi

Abstract:

Fennel is of most important medicinal plants which is widely used in food and pharmaceutical industries. In order to investigate the effect of different nitrogen nutritional systems including chemical, organic and biologic ones at different plant densities on yield, yield components and seed essential oil content and yield of this valuable medicinal plant, a field experiment was carried out in 2013-2014 agricultural season at Islamic Azad University of Shoushtar agricultural college in split plot design with 18 treatments and based on completely randomized blocks design. Different nitrogen system treatments consisting of: 1. N1 or control (Uniformly spreading urea fertilizer in the plot, 50% at planting time and 50% at stem elongation), 2. N2 (Uniformly spreading 50% of urea fertilizer in the plot at planting time and spraying the other 50% of urea fertilizer at stem elongation on fennel foliage), 3. N3 or cow manure, 4. N4 or biofertilizer (Inoculation of fennel seeds with Azotobacter and Azospirillum), 5. N5 or Integrated-1 (Cow manure + uniformly spreading urea fertilizer in the plot at stem elongation), 6. N6 or Integrated-2 (Cow manure + Inoculation of fennel seeds with Azotobacter and Azospirillum) were applied to the main plots. Three fennel densities consisting of: 1. FD1 (60 plant/m2), 2. FD2 (80 plant/m2) and 3. FD3 (100 plant/m2) were applied to subplots. Results showed that all of the traits were significantly affected by applied treatments (P 0.01). The interaction between treatments also were significant at 5 percent level for shoot dry weight and at 1 percent level for other traits. Based on the results, using the Integrated-1 treatment at 100 plant per m2 produced 94.575 g/m2 seed yield containing 3.375 percent of essential oil. Utilization of such combination not only could lead to a desirable fennel quantity and quality, but also is more consistent with environment.

Keywords: fennel (foeniculum vulgare mill.), nutritional system, nitrogen, biofertilizer, organic fertilizer, chemical fertilizer, density

Procedia PDF Downloads 462
4297 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology

Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez

Abstract:

Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.

Keywords: green chemistry, QSAR, molecular topology, biopesticide

Procedia PDF Downloads 318
4296 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 92
4295 Eco-Friendly Cleansers Initiation for Eco-Campsite Development in Khao Yai National Park, Thailand

Authors: Tatsanawalai Utarasakul

Abstract:

Environmental impact has occurred at Khao Yai National Park, especially the water pollution by tourist activities as a result of 800,000 tourists visiting annually. To develop an eco-campsite, eco-friendly cleansers were implemented in Lam Ta Khlong and Pha Kluay Mai Campsites for tourists and restaurants. The results indicated the positive effects of environmentally friendly cleansers on water quality in Lam Ta Khlong River and can be implemented in other protected areas to decrease chemical contamination in ecosystems.

Keywords: sustainable tourism management, eco-campsite, Khao Yai National Park, ecology

Procedia PDF Downloads 397
4294 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles

Procedia PDF Downloads 401
4293 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique

Authors: S. Kampeephat, P. Krachodnok, R. Wongsan

Abstract:

The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.

Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar

Procedia PDF Downloads 282