Search results for: automatic classification of tremor types
5873 Internalized HIV Stigma, Mental Health, Coping, and Perceived Social Support among People Living with HIV/AIDS in Aizawl District, Mizoram
Authors: Mary Ann L. Halliday, Zoengpari Gohain
Abstract:
The stigma associated with HIV-AIDS negatively affect mental health and ability to effectively manage the disease. While the number of People living with HIV/AIDS (PLHIV) has been increasing day by day in Mizoram (a small north-eastern state in India), research on HIV/AIDS stigma has so far been limited. Despite the potential significance of Internalized HIV Stigma (IHS) in the lives of PLHIV, there has been very limited research in this area. It was therefore, felt necessary to explore the internalized HIV stigma, mental health, coping and perceived social support of PLHIV in Aizawl District, Mizoram. The present study was designed with the objectives to determine the degree of IHS, to study the relationship between the socio-demographic characteristics and level of IHS, to highlight the mental health status, coping strategies and perceived social support of PLHIV and to elucidate the relationship between these psychosocial variables. In order to achieve the objectives of the study, six hypotheses were formulated and statistical analyses conducted accordingly. The sample consisted of 300 PLWHA from Aizawl District, 150 males and 150 females, of the age group 20 to 70 years. Two- way classification of “Gender” (male and female) and three-way classification of “Level of IHS” (High IHS, Moderate IHS, Low IHS) on the dependent variables was employed, to elucidate the relationship between Internalized HIV Stigma, mental health, coping and perceived social support of PLHIV. The overall analysis revealed moderate level of IHS (67.3%) among PLHIV in Aizawl District, with a small proportion of subjects reporting high level of IHS. IHS was found to be significantly different on the basis of disclosure status, with the disclosure status of PLHIV accounting for 9% variability in IHS. Results also revealed more or less good mental health among the participants, which was assessed by minimal depression (50.3%) and minimal anxiety (45%), with females with high IHS scoring significantly higher in both depression and anxiety (p<.01). Examination of the coping strategies of PLHIV found that the most frequently used coping styles were Acceptance (91%), Religion (84.3%), Planning (74.7%), Active Coping (66%) and Emotional Support (52.7%). High perception of perceived social support (48%) was found in the present study. Correlation analysis revealed significant positive relationships between IHS and depression as well as anxiety (p<.01), thus revealing that IHS negatively affects the mental health of PLHIV. Results however revealed that this effect may be lessened by the use of various coping strategies by PLHIV as well as their perception of social support.Keywords: Aizawl, anxiety, depression, internalized HIV stigma, HIV/AIDS, mental health, mizoram, perceived social support
Procedia PDF Downloads 2625872 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems
Authors: Kaan Karaoglu, Raif Bayir
Abstract:
In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning
Procedia PDF Downloads 755871 Performance Analysis of Ad-Hoc Network Routing Protocols
Authors: I. Baddari, A. Riahla, M. Mezghich
Abstract:
Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc.Keywords: ad-hoc network routing protocol, simulation, NS2, delay, packet loss, wideband, mobility
Procedia PDF Downloads 4005870 Internal Displacement in Iraq due to ISIS Occupation and Its Effects on Human Security and Coexistence
Authors: Feisal Khudher Mahmood, Abdul Samad Rahman Sultan
Abstract:
Iraq had been a diverse society with races, cultures and religions that peacefully coexistence. The phenomenon of internal displacement occurred after April 2003, because of political instability as will as the deterioration of the political and security situation as a result of United States of America occupation. Biggest internal displacement have occurred (and keep happening) since 10th of June 2014 due to rise of Islamic State of Iraq and Syria (ISIS) and it’s occupation of one third of country territories. This crisis effected directly 3,275,000 people and reflected negatively on the social fabric of Iraq community and led to waves of sectorial violence that swept the country. Internal displaced communities are vulnerable, especially under non functional and weak government, that led to lose of essential human rights and dignity. Using Geographic Information System (GIS) and Geospatial Techniques, two types of internal displacement have been found; voluntary and forced. Both types of displacement are highly influenced by location, race and religion. The main challenge for Iraqi government and NGOs will be after defeating ISIS. Helping the displaced to resettle within their community and to re-establish the coexistence. By spatial-statical analysis hot spots of future conflicts among displaced community have been highlighted. This will help the government to tackle future conflicts before they occur. Also, it will be the base for social conflict early warning system.Keywords: internal displacement, Iraq, ISIS, human security, human rights, GIS, spatial-statical analysis
Procedia PDF Downloads 5255869 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data
Authors: Jaehyung An, Sungjoo Lee
Abstract:
Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.Keywords: NLP, patent analysis, SAO, semantic-analysis
Procedia PDF Downloads 2625868 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 595867 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4225866 Corrective Feedback and Uptake Patterns in English Speaking Lessons at Hanoi Law University
Authors: Nhac Thanh Huong
Abstract:
New teaching methods have led to the changes in the teachers’ roles in an English class, in which teachers’ error correction is an integral part. Language error and corrective feedback have been the interest of many researchers in foreign language teaching. However, the techniques and the effectiveness of teachers’ feedback have been a question of much controversy. This present case study has been carried out with a view to finding out the patterns of teachers’ corrective feedback and their impact on students’ uptake in English speaking lessons of legal English major students at Hanoi Law University. In order to achieve those aims, the study makes use of classroom observations as the main method of data collection to seeks answers to the two following questions: 1. What patterns of corrective feedback occur in English speaking lessons for second- year legal English major students in Hanoi Law University?; 2. To what extent does that corrective feedback lead to students’ uptake? The study provided some important findings, among which was a close relationship between corrective feedback and uptake. In particular, recast was the most commonly used feedback type, yet it was the least effective in terms of students’ uptake and repair, while the most successful feedback, namely meta-linguistic feedback, clarification requests and elicitation, which led to students’ generated repair, was used at a much lower rate by teachers. Furthermore, it revealed that different types of errors needed different types of feedback. Also, the use of feedback depended on the students’ English proficiency level. In the light of findings, a number of pedagogical implications have been drawn in the hope of enhancing the effectiveness of teachers’ corrective feedback to students’ uptake in foreign language acquisition process.Keywords: corrective feedback, error, uptake, speaking English lesson
Procedia PDF Downloads 2625865 Down-Regulated Gene Expression of GKN1 and GKN2 as Diagnostic Markers for Gastric Cancer
Authors: Amer A. Hasan, Mehri Igci, Ersin Borazan, Rozhgar A. Khailany, Emine Bayraktar, Ahmet Arslan
Abstract:
Gastric cancer (GC) has high morbidity and fatality rate in various countries and is still one of the most frequent and deadly diseases. Novel mitogenic and motogenic Gastrokine1 (GKN1) and Gastrokine 2 (GKN2) genes that are highly expressed in the normal stomach epithelium and plays an important role in maintaining the integrity and homeostasis of stomach mucosal epithelial cells. Significant loss of copy number and mRNA transcript of GKN1 and GKN2 gene expression were frequently observed in all types of gastric cancer. In this study, 47 paired samples that were grouped according to the types of gastric cancer and the clinical characteristics of the patients, including gender and average of age were investigated with gene expression analysis and mutation screening by monetering RT-PCR, SSCP and nucleotide sequencing techniques. Both GKN1 and GKN2 genes were observed significantly reduced found by (Wilcoxon signed rank test; p<0.05). As a result of gene screening, no mutation (no different genotype) was detected. It is considered that gene mutations are not the cause of inactivation of gastrokines. In conclusion, the mRNA expression level of GKN1 and GKN2 genes statistically was decreased regardless the gender, age or cancer type of patients. Reduced of gastrokine genes seems to occur at the initial steps of cancer development. In order to understand the investigation between gastric cancer and diagnostic biomarker; further analysis is necessary.Keywords: gastric cancer, diagnostic biomarker, nucleotide sequencing, semi-quantitative RT-PCR
Procedia PDF Downloads 4725864 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 1875863 Establishment of Landslide Warning System Using Surface or Sub-Surface Sensors Data
Authors: Neetu Tyagi, Sumit Sharma
Abstract:
The study illustrates the results of an integrated study done on Tangni landslide located on NH-58 at Chamoli, Uttarakhand. Geological, geo-morphological and geotechnical investigations were carried out to understand the mechanism of landslide and to plan further investigation and monitoring. At any rate, the movements were favored by continuous rainfall water infiltration from the zones where the phyllites/slates and Dolomites outcrop. The site investigations were carried out including the monitoring of landslide movements and of the water level fluctuations due to rainfall give us a better understanding of landslide dynamics that have been causing in time soil instability at Tangni landslide site. The Early Warning System (EWS) installed different types of sensors and all sensors were directly connected to data logger and raw data transfer to the Defence Terrain Research Laboratory (DTRL) server room with the help of File Transfer Protocol (FTP). The slip surfaces were found at depths ranging from 8 to 10 m from Geophysical survey and hence sensors were installed to the depth of 15m at various locations of landslide. Rainfall is the main triggering factor of landslide. In this study, the developed model of unsaturated soil slope stability is carried out. The analysis of sensors data available for one year, indicated the sliding surface of landslide at depth between 6 to 12m with total displacement up to 6cm per year recorded at the body of landslide. The aim of this study is to set the threshold and generate early warning. Local peoples already alert towards landslide, if they have any types of warning system.Keywords: early warning system, file transfer protocol, geo-morphological, geotechnical, landslide
Procedia PDF Downloads 1585862 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.Keywords: bed topography, FBM, LBM, shallow water, simulations
Procedia PDF Downloads 985861 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1365860 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion
Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab
Abstract:
Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.Keywords: air jet loom, twist per inch, twist loss, weft yarn
Procedia PDF Downloads 4025859 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1825858 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates
Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes
Abstract:
The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration
Procedia PDF Downloads 2905857 Comparison of FASTMAP and B0 Field Map Shimming for 4T MRI
Authors: Mohan L. Jayatiake, Judd Storrs, Jing-Huei Lee
Abstract:
The optimal MRI resolution relies on a homogeneous magnetic field. However, local susceptibility variations can lead to field inhomogeneities that cause artifacts such as image distortion and signal loss. The effects of local susceptibility variation notoriously increase with magnetic field strength. Active shimming improves homogeneity by applying corrective fields generated from shim coils, but requires calculation of optimal current for each shim coil. FASTMAP (fast automatic shimming technique by mapping along projections) is an effective technique for finding optimal currents works well at high-field, but is restricted to shimming spherical regions of interest. The 3D gradient-echo pulse sequence was modified to reduce sensitivity to eddy currents and used to obtain susceptibility field maps at 4T. Measured fields were projected onto first-and second-order spherical harmonic functions corresponding to shim hardware. A spherical phantom was used to calibrate the shim currents. Susceptibility maps of a volunteer’s brain with and without FASTMAP shimming were obtained. Simulations indicate that optimal shim currents derived from the field map may provide better overall shimming of the human brain.Keywords: shimming, high-field, active, passive
Procedia PDF Downloads 5095856 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis
Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman
Abstract:
Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test
Procedia PDF Downloads 1255855 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio
Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog
Abstract:
Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil
Procedia PDF Downloads 2825854 Construction and Analysis of Tamazight (Berber) Text Corpus
Authors: Zayd Khayi
Abstract:
This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods
Procedia PDF Downloads 665853 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 3825852 Strategies for Public Space Utilization
Authors: Ben Levenger
Abstract:
Social life revolves around a central meeting place or gathering space. It is where the community integrates, earns social skills, and ultimately becomes part of the community. Following this premise, public spaces are one of the most important spaces that downtowns offer, providing locations for people to be witnessed, heard, and most importantly, seamlessly integrate into the downtown as part of the community. To facilitate this, these local spaces must be envisioned and designed to meet the changing needs of a downtown, offering a space and purpose for everyone. This paper will dive deep into analyzing, designing, and implementing public space design for small plazas or gathering spaces. These spaces often require a detailed level of study, followed by a broad stroke of design implementation, allowing for adaptability. This paper will highlight how to assess needs, define needed types of spaces, outline a program for spaces, detail elements of design to meet the needs, assess your new space, and plan for change. This study will provide participants with the necessary framework for conducting a grass-roots-level assessment of public space and programming, including short-term and long-term improvements. Participants will also receive assessment tools, sheets, and visual representation diagrams. Urbanism, for the sake of urbanism, is an exercise in aesthetic beauty. An economic improvement or benefit must be attained to solidify these efforts' purpose further and justify the infrastructure or construction costs. We will deep dive into case studies highlighting economic impacts to ground this work in quantitative impacts. These case studies will highlight the financial impact on an area, measuring the following metrics: rental rates (per sq meter), tax revenue generation (sales and property), foot traffic generation, increased property valuations, currency expenditure by tenure, clustered development improvements, cost/valuation benefits of increased density in housing. The economic impact results will be targeted by community size, measuring in three tiers: Sub 10,000 in population, 10,001 to 75,000 in population, and 75,000+ in population. Through this classification breakdown, the participants can gauge the impact in communities similar to their work or for which they are responsible. Finally, a detailed analysis of specific urbanism enhancements, such as plazas, on-street dining, pedestrian malls, etc., will be discussed. Metrics that document the economic impact of each enhancement will be presented, aiding in the prioritization of improvements for each community. All materials, documents, and information will be available to participants via Google Drive. They are welcome to download the data and use it for their purposes.Keywords: downtown, economic development, planning, strategic
Procedia PDF Downloads 815851 Physical Characteristics of Locally Composts Produced in Saudi Arabia and the Need for Regulations
Authors: Ahmad Al-Turki
Abstract:
Composting is the suitable way of recycling organic waste for agricultural application and environment protection. In Saudi Arabia, several composting facilities are available and producing high quantity of composts. The aim of this study is to evaluate the physical characteristics of composts manufactured in Saudi Arabia and acquire a comprehensive image of its quality through the comparative with international standards of compost quality such as CCQC and PAS-100. In the present study different locally produced compost were identified and most of the producing factories were visited during the manufacturing of composts. Representative samples of different compost production stage were collected and Physical characteristics were determined, which included moisture content, bulk density, percentage of sand and the size of distribution of the compost particles. Results showed wide variations in all parameters investigated. Results of the study indicated generally that there is a wide variation in the physical characteristics of the types of compost under study. The initial moister contents in composts were generally low, it was less than 60% in most samples and not sufficient for microbial activities for biodegradation in 96% of the 96% of the types of compost and this will impede the decomposition of organic materials. The initial bulk density values ranged from 117 gL-1 to 1110.0 gL-1, while the final apparent bulk density ranged from 340.0 gL-1 to 1000gL-1 and about 45.4 % did not meet the ideal bulk density value. Sand percents in composts were between 3.3 % and 12.5%. This study has confirmed the need for a standard specification for compost manufactured in Saudi Arabia for agricultural use based on international standards for compost and soil characteristics and climatic conditions in Saudi Arabia.Keywords: compost, maturity, Saudi Arabia, organic material
Procedia PDF Downloads 3495850 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region
Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal
Abstract:
Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification
Procedia PDF Downloads 1735849 Geochemical and Geostructural Characteristics of the Groundwater System and the Role of Faults in Groundwater Movement at the Hammamet Basin, Tebessa Area (Northeast of Algeria)
Authors: Iklass Hamaili, Fehdi Chemseddine
Abstract:
Morphostructural, hydrogeological and hydrochemical approaches were applied in this study to characterize the groundwater system of Hammamet Plain, Eastern part of Algeria and its potential for exploitation. The analysis of the fractures in several Mountains forming the natural boundaries of Hammamet plain, with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). From a hydrogeological standpoint, these two mountains constitute a unit limited by faults-oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of this unit. According to the degree of fracturing and/or karstification, two basic types of aquiferous behavior have been distinguished: fissured aquifer (Essen Mountain and Troubia Mountain), and porous aquifer (Hammamet basin). After sampling and measurement operations, the quantity of chemical components was determined. Thus, the study of the hydrochemical characteristics of this groundwater shows on Piper’s diagram that the majority of them are mainly HCO₃- and Ca₂+ water types. The ionic speciation and mineral dissolution/precipitation were calculated by PHREEQC package software. The chemical composition of the water is influenced by the dissolution and/or precipitation processes during the water-rock interaction and by the cationic exchange reactions between groundwater and alluvial sediments. The high content of CO₂ in the water samples suggests that they circulate in a geochemical opened system.Keywords: aquifer, hydrogeology, hydrochemistry, Hammamet, Tebessa, Algeria
Procedia PDF Downloads 185848 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 1185847 Enhancing Strategic Counter-Terrorism: Understanding How Familial Leadership Influences the Resilience of Terrorist and Insurgent Organizations in Asia
Authors: Andrew D. Henshaw
Abstract:
The research examines the influence of familial and kinship based leadership on the resilience of politically violent organizations. Organizations of this type frequently fight in the same conflicts though are called 'terrorist' or 'insurgent' depending on political foci of the time, and thus different approaches are used to combat them. The research considers them correlated phenomena with significant overlap and identifies strengths and vulnerabilities in resilience processes. The research employs paired case studies to examine resilience in organizations under significant external pressure, and achieves this by measuring three variables. 1: Organizational robustness in terms of leadership and governance. 2. Bounce-back response efficiency to external pressures and adaptation to endogenous and exogenous shock. 3. Perpetuity of operational and attack capability, and political legitimacy. The research makes three hypotheses. First, familial/kinship leadership groups have a significant effect on organizational resilience in terms of informal operations. Second, non-familial/kinship organizations suffer in terms of heightened security transaction costs and social economics surrounding recruitment, retention, and replacement. Third, resilience in non-familial organizations likely stems from critical external supports like state sponsorship or powerful patrons, rather than organic resilience dynamics. The case studies pair familial organizations with non-familial organizations. Set 1: The Haqqani Network (HQN) - Pair: Lashkar-e-Toiba (LeT). Set 2: Jemaah Islamiyah (JI) - Pair: The Abu Sayyaf Group (ASG). Case studies were selected based on three requirements, being: contrasting governance types, exposure to significant external pressures and, geographical similarity. The case study sets were examined over 24 months following periods of significantly heightened operational activities. This enabled empirical measurement of the variables as substantial external pressures came into force. The rationale for the research is obvious. Nearly all organizations have some nexus of familial interconnectedness. Examining familial leadership networks does not provide further understanding of how terrorism and insurgency originate, however, the central focus of the research does address how they persist. The sparse attention to this in existing literature presents an unexplored yet important area of security studies. Furthermore, social capital in familial systems is largely automatic and organic, given at birth or through kinship. It reduces security vetting cost for recruits, fighters and supporters which lowers liabilities and entry costs, while raising organizational efficiency and exit costs. Better understanding of these process is needed to exploit strengths into weaknesses. Outcomes and implications of the research have critical relevance to future operational policy development. Increased clarity of internal trust dynamics, social capital and power flows are essential to fracturing and manipulating kinship nexus. This is highly valuable to external pressure mechanisms such as counter-terrorism, counterinsurgency, and strategic intelligence methods to penetrate, manipulate, degrade or destroy the resilience of politically violent organizations.Keywords: Counterinsurgency (COIN), counter-terrorism, familial influence, insurgency, intelligence, kinship, resilience, terrorism
Procedia PDF Downloads 3135846 Social Support and Depressive Symptoms in Participants of a University of the Third Age: Evidences From a Cross-Sectional Study in Brazil
Authors: Ana Luiza Blanco, Juliana Cordeiro Carvalho, Tábatta Renata Pereira Brito, Ariene Angelini dos Santos Orlandi, Ligiana Pires Corona, Daniella Pires Nunes
Abstract:
Depressive symptoms are recurrent in older adults and affect the quality of life and well-being of individuals. One of the strategies to reduce depression is social support, but studies are still needed to determine which types of social support are most effective in moderating this effect in certain populations. The objective was to identify the relationship between social support and depressive symptoms in participants of a University of the Third Age. This is a cross-sectional study. Participants were 82 individuals (≥ 50 years) who responded to the Geriatric Depression Scale - GDS and the Medical Outcomes Study - MOS. Data collection was carried out from November 2020 to May 2021. The Chi-Square and Mann Whitney tests were used, at a significance level of 5% for data analysis. Among the participants, 83.4% were female, 57.3% were age between 60 to 69 years, 83.1% studied 12 year or more and 48.1% receive from 4 to 10 minimum wages. The prevalence of depressive symptoms was 12.2%. The type of support with the highest median score was affective (100 points) and the lowest, or emotional (87.5 points). The results showed that participants without depressive symptoms had higher median scores for informational support when compared to those with depressive symptoms (p=0.029). The other types of social support were not statistically significant. The findings suggested that informational support is related to depressive symptoms in older adults. Promote informational support and educational actions in Universities of the Third Age may be an important strategy for preventing depressive symptoms and improve the quality of life of this population.Keywords: aged, depressive symptoms, social support, university of the third age
Procedia PDF Downloads 1225845 A Behavioral Approach of Impulse Buying: Application to Algerian Food Stores
Authors: Amel Graa, Maachou Dani El Kebir
Abstract:
This paper investigates the impulse buying behavior of Algerian consumer. In that purpose, we try to better understand processes underlying impulsive buying experiences by examining the theoretical framework and using Mehrabian and Russell’s structure. A model is then proposed and tested on a sample of 1500 shoppers who were recruited among customers of food stores. This model aims to explain the role of some situational variables, personal variables, variables linked to the product characteristics and emotional states on the impulse buying behavior. Following to this empirical study, it was possible to conclude that Algerian consumer has a weak tendency toward impulse buying of food products. The results indicate that seller guidance has a significant impact on the impulse buying, whereas the price of the product was negatively related. According to the results; perception of crowding was associated with scarcity and it was positively linked with impulse buying behavior. This study can help marketers determine the in-store factors that impact purely spontaneous purchases of items that otherwise would not end up in the shopping cart. Our research findings offer important information for benchmarking managerial expectations with regard to product selection and merchandising decisions. As futures perspectives, we propose new research areas related to the impulse buying behavior such as studying different types of stores (for example supermarket), or other types of product (clothing), or studying consumption of food products in religious month of Muslims (Ramadan).Keywords: impulse buying, situational variables, personal variables, emotional states, PAD model of Merhabian and Russell, Algerian consumer
Procedia PDF Downloads 4205844 Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete
Authors: Sikiru F. Oritola, Abd Latif Saleh, Abd Rahman Mohd Sam, Rozana Zakaria, Mushairry Mustaffar
Abstract:
The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacementKeywords: concrete strength, fine aggregate, fly ash cement, iron ore tailings
Procedia PDF Downloads 671