Search results for: Full Bayes models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8665

Search results for: Full Bayes models

6475 Mathematical Modeling of Nonlinear Process of Assimilation

Authors: Temur Chilachava

Abstract:

In work the new nonlinear mathematical model describing assimilation of the people (population) with some less widespread language by two states with two various widespread languages, taking into account demographic factor is offered. In model three subjects are considered: the population and government institutions with the widespread first language, influencing by means of state and administrative resources on the third population with some less widespread language for the purpose of their assimilation; the population and government institutions with the widespread second language, influencing by means of state and administrative resources on the third population with some less widespread language for the purpose of their assimilation; the third population (probably small state formation, an autonomy), exposed to bilateral assimilation from two rather powerful states. Earlier by us it was shown that in case of zero demographic factor of all three subjects, the population with less widespread language completely assimilates the states with two various widespread languages, and the result of assimilation (redistribution of the assimilated population) is connected with initial quantities, technological and economic capabilities of the assimilating states. In considered model taking into account demographic factor natural decrease in the population of the assimilating states and a natural increase of the population which has undergone bilateral assimilation is supposed. At some ratios between coefficients of natural change of the population of the assimilating states, and also assimilation coefficients, for nonlinear system of three differential equations are received the two first integral. Cases of two powerful states assimilating the population of small state formation (autonomy), with different number of the population, both with identical and with various economic and technological capabilities are considered. It is shown that in the first case the problem is actually reduced to nonlinear system of two differential equations describing the classical model "predator - the victim", thus, naturally a role of the victim plays the population which has undergone assimilation, and a predator role the population of one of the assimilating states. The population of the second assimilating state in the first case changes in proportion (the coefficient of proportionality is equal to the relation of the population of assimilators in an initial time point) to the population of the first assimilator. In the second case the problem is actually reduced to nonlinear system of two differential equations describing type model "a predator – the victim", with the closed integrated curves on the phase plane. In both cases there is no full assimilation of the population to less widespread language. Intervals of change of number of the population of all three objects of model are found. The considered mathematical models which in some approach can model real situations, with the real assimilating countries and the state formations (an autonomy or formation with the unrecognized status), undergone to bilateral assimilation, show that for them the only possibility to avoid from assimilation is the natural demographic increase in population and hope for natural decrease in the population of the assimilating states.

Keywords: nonlinear mathematical model, bilateral assimilation, demographic factor, first integrals, result of assimilation, intervals of change of number of the population

Procedia PDF Downloads 455
6474 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 239
6473 Evaluation of the Energy Performance and Emissions of an Aircraft Engine: J69 Using Fuel Blends of Jet A1 and Biodiesel

Authors: Gabriel Fernando Talero Rojas, Vladimir Silva Leal, Camilo Bayona-Roa, Juan Pava, Mauricio Lopez Gomez

Abstract:

The substitution of conventional aviation fuels with biomass-derived alternative fuels is an emerging field of study in the aviation transport, mainly due to its energy consumption, the contribution to the global Greenhouse Gas - GHG emissions and the fossil fuel price fluctuations. Nevertheless, several challenges remain as the biofuel production cost and its degradative effect over the fuel systems that alter the operating safety. Moreover, experimentation on full-scale aeronautic turbines are expensive and complex, leading to most of the research to the testing of small-size turbojets with a major absence of information regarding the effects in the energy performance and the emissions. The main purpose of the current study is to present the results of experimentation in a full-scale military turbojet engine J69-T-25A (presented in Fig. 1) with 640 kW of power rating and using blends of Jet A1 with oil palm biodiesel. The main findings are related to the thrust specific fuel consumption – TSFC, the engine global efficiency – η, the air/fuel ratio – AFR and the volume fractions of O2, CO2, CO, and HC. Two fuels are used in the present study: a commercial Jet A1 and a Colombian palm oil biodiesel. The experimental plan is conducted using the biodiesel volume contents - w_BD from 0 % (B0) to 50 % (B50). The engine operating regimes are set to Idle, Cruise, and Take-off conditions. The turbojet engine J69 is used by the Colombian Air Force and it is installed in a testing bench with the instrumentation that corresponds to the technical manual of the engine. The increment of w_BD from 0 % to 50 % reduces the η near 3,3 % and the thrust force in a 26,6 % at Idle regime. These variations are related to the reduction of the 〖HHV〗_ad of the fuel blend. The evolved CO and HC tend to be reduced in all the operating conditions when increasing w_BD. Furthermore, a reduction of the atomization angle is presented in Fig. 2, indicating a poor atomization in the fuel nozzle injectors when using a higher biodiesel content as the viscosity of fuel blend increases. An evolution of cloudiness is also observed during the shutdown procedure as presented in Fig. 3a, particularly after 20 % of biodiesel content in the fuel blend. This promotes the contamination of some components of the combustion chamber of the J69 engine with soot and unburned matter (Fig. 3). Thus, the substitution of biodiesel content above 20 % is not recommended in order to avoid a significant decrease of η and the thrust force. A more detail examination of the mechanical wearing of the main components of the engine is advised in further studies.

Keywords: aviation, air to fuel ratio, biodiesel, energy performance, fuel atomization, gas turbine

Procedia PDF Downloads 96
6472 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia

Authors: Mokhtar Kouki Inès Rekik

Abstract:

This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after the 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, Negative binomial, Zero inflated Poisson, Poisson hurdle, Negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.

Keywords: bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days

Procedia PDF Downloads 245
6471 Biosorption of Metal Ions from Sarcheshmeh Acid Mine Drainage by Immobilized Bacillus thuringiensis in a Fixed-Bed Column

Authors: V. Khosravi, F. D. Ardejani, A. Aryafar, M. Sedighi

Abstract:

Heavy metals have a damaging impact for the environment, animals and humans due to their extreme toxicity and removing them from wastewaters is a very important and interesting task in the field of water pollution control. Biosorption is a relatively new method for treatment of wastewaters and recovery of heavy metals. In this study, a continuous fixed bed study was carried out by using Bacillus thuringiensis as a biosorbent for the removal of Cu and Mn ions from Sarcheshmeh Acid Mine Drainage (AMD). The effect of operating parameters such as flow rate and bed height on the sorption characteristics of B. thuringiensis was investigated at pH 6.0 for each metal ion. The experimental results showed that the breakthrough time decreased with increasing flow rate and decreasing bed height. The data also indicated that the equilibrium uptake of both metals increased with decreasing flow rate and increasing bed height. BDST, Thomas, and Yoon–Nelson models were applied to experimental data to predict the breakthrough curves. All models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and bed height. In order to regenerate the adsorbent, an elution step was carried out with 1 M HCl and five adsorption-desorption cycles were carried out in continuous manner.

Keywords: acid mine drainage, bacillus thuringiensis, biosorption, cu and mn ions, fixed bed

Procedia PDF Downloads 390
6470 Modeling of Austenitic Stainless Steel during Face Milling Using Response Surface Methodology

Authors: A. A. Selaimia, H. Bensouilah, M. A. Yallese, I. Meddour, S. Belhadi, T. Mabrouki

Abstract:

The objective of this work is to model the output responses namely; surface roughness (Ra), cutting force (Fc), during the face milling of the austenitic stainless steel X2CrNi18-9 with coated carbide tools (GC4040). For raison, response surface methodology (RMS) is used to determine the influence of each technological parameter. A full factorial design (L27) is chosen for the experiments, and the ANOVA is used in order to evaluate the influence of the technological cutting parameters namely; cutting speed (Vc), feed per tooth, and depth of cut (ap) on the out-put responses. The results reveal that (Ra) is mostly influenced by (fz) and (Fc) is found considerably affected by (ap).

Keywords: austenitic stainless steel, ANOVA, coated carbide, response surface methodology (RSM)

Procedia PDF Downloads 355
6469 Optimization of the Fabrication Process for Particleboards Made from Oil Palm Fronds Blended with Empty Fruit Bunch Using Response Surface Methodology

Authors: Ghazi Faisal Najmuldeen, Wahida Amat-Fadzil, Zulkafli Hassan, Jinan B. Al-Dabbagh

Abstract:

The objective of this study was to evaluate the optimum fabrication process variables to produce particleboards from oil palm fronds (OPF) particles and empty fruit bunch fiber (EFB). Response surface methodology was employed to analyse the effect of hot press temperature (150–190°C); press time (3–7 minutes) and EFB blending ratio (0–40%) on particleboards modulus of rupture, modulus of elasticity, internal bonding, water absorption and thickness swelling. A Box-Behnken experimental design was carried out to develop statistical models used for the optimisation of the fabrication process variables. All factors were found to be statistically significant on particleboards properties. The statistical analysis indicated that all models showed significant fit with experimental results. The optimum particleboards properties were obtained at optimal fabrication process condition; press temperature; 186°C, press time; 5.7 min and EFB / OPF ratio; 30.4%. Incorporating of oil palm frond and empty fruit bunch to produce particleboards has improved the particleboards properties. The OPF–EFB particleboards fabricated at optimized conditions have satisfied the ANSI A208.1–1999 specification for general purpose particleboards.

Keywords: empty fruit bunch fiber, oil palm fronds, particleboards, response surface methodology

Procedia PDF Downloads 208
6468 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 351
6467 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey

Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal

Abstract:

During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.

Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut

Procedia PDF Downloads 377
6466 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.

Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation

Procedia PDF Downloads 183
6465 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 335
6464 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 225
6463 Features of Annual Junior Men's Kayak Training Loads in China

Authors: Liu Haitao, Wang Hengyong

Abstract:

This paper attempts to kayak, Zhaoqing City, the annual training program for young men, the deconstruction and analysis, describe the characteristics of their training load, Young people to extract the key issues for training kayak, kayak training young people to clarify in Zhaoqing City, and the cause of the bottlenecks. On one hand, scientifically arranging for the coaches to adjust training load and provide the basis for periodic structure, for young people to provide practical reference kayak athletes. On the other hand, through their training load research, enrich the theoretical system kayak training project for junior kayak athletes to provide a theoretical basis.

Keywords: juniors, kayak, training programs, full year

Procedia PDF Downloads 568
6462 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications

Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef

Abstract:

Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.

Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis

Procedia PDF Downloads 443
6461 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 62
6460 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 107
6459 Knowledge Creation Environment in the Iranian Universities: A Case Study

Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi

Abstract:

Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.

Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities

Procedia PDF Downloads 91
6458 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements

Procedia PDF Downloads 295
6457 The Influence of Alvar Aalto on the Early Work of Álvaro Siza

Authors: Eduardo Jorge Cabral dos Santos Fernandes

Abstract:

The expression ‘Porto School’, usually associated with an educational institution, the School of Fine Arts of Porto, is applied for the first time with the sense of an architectural trend by Nuno Portas in a text published in 1983. The expression is used to characterize a set of works by Porto architects, in which common elements are found, namely the desire to reuse languages and forms of the German and Dutch rationalism of the twenties, using the work of Alvar Aalto as a mediation for the reinterpretation of these models. In the same year, Álvaro Siza classifies the Finnish architect as a miscegenation agent who transforms experienced models and introduces them to different realities in a text published in Jornal de Letras, Artes e Ideias. The influence of foreign models and their adaptation to the context has been a recurrent theme in Portuguese architecture, which finds important contributions in the writings of Alexandre Alves Costa, at this time. However, the identification of these characteristics in Siza’s work is not limited to the Portuguese theoretical production: it is the recognition of this attitude towards the context that leads Kenneth Frampton to include Siza in the restricted group of architects who embody Critical Regionalism (in his book Modern architecture: a critical history). For Frampton, his work focuses on the territory and on the consequences of the intervention in the context, viewing architecture as a tectonic fact rather than a series of scenographic episodes and emphasizing site-specific aspects (topography, light, climate). Therefore, the motto of this paper is the dichotomous opposition between foreign influences and adaptation to the context in the early work of Álvaro Siza (designed in the sixties) in which the influence (theoretical, methodological, and formal) of Alvar Aalto manifests itself in the form and the language: the pool at Quinta da Conceição, the Seaside Pools and the Tea House (three works in Leça da Palmeira) and the Lordelo Cooperative (in Porto). This work is part of a more comprehensive project, which considers several case studies throughout the Portuguese architect's vast career, built in Portugal and abroad, in order to obtain a holistic view.

Keywords: Alvar Aalto, Álvaro Siza, foreign influences, adaptation to the context

Procedia PDF Downloads 9
6456 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 129
6455 The Construction of the Meaning of Beauty by the Representation of Wardah Halal Beauty

Authors: Indhie Febrianti Herlina, Riri Akadafi, Alna Hanana

Abstract:

This research describes the constructivism of the Halal beauty of Wardah commercials that present hijab women as the advertising models and shows the sign of Halal in each promotion. There are differences of the concept of beauty between wardah and other beauty ads. When today’s ads describe that beautiful women are who have bright skin, sharp nose and long hair, wardah describes that beautiful women are the hijab women and wear Halal beauty product. This research is interesting because it is so rare when the beauty is presented by hijab women. By using the constructivism paradigm and combining it with reception theory, the author wants to reveal whether women are constructed by these commercials. Reception theory is about how public accept the content of a media. The informants are the women who wear hijab, wear Wardah products and join ‘Wardah Goes to Campus’, a roadshow event conducted by Wardah in Universities all around Indonesia. By interviewing the informants, a statement can be inferred that informants A, B, C, and D assumed that beauty is a physical beauty. However, after they have learned about the true meaning of beauty and watched Wardah commercials, those informants understand that beauty is reflected by the women who wear hijab and wear Halal Cosmetics. Meanwhile, the informant E assumes that beauty is relative, inner, and good-looking. The conclusion of this research is that the informants are constructed by the halal beauty described by Wardah commercials. By presenting the models wearing hijab and wear natural-looking cosmetics, Wardah successfully influences the informants to be more confident to look good by wearing hijab.

Keywords: ad, commercial, construction, halal beauty, wardah

Procedia PDF Downloads 254
6454 Quantitative Seismic Interpretation in the LP3D Concession, Central of the Sirte Basin, Libya

Authors: Tawfig Alghbaili

Abstract:

LP3D Field is located near the center of the Sirt Basin in the Marada Trough approximately 215 km south Marsa Al Braga City. The Marada Trough is bounded on the west by a major fault, which forms the edge of the Beda Platform, while on the east, a bounding fault marks the edge of the Zelten Platform. The main reservoir in the LP3D Field is Upper Paleocene Beda Formation. The Beda Formation is mainly limestone interbedded with shale. The reservoir average thickness is 117.5 feet. To develop a better understanding of the characterization and distribution of the Beda reservoir, quantitative seismic data interpretation has been done, and also, well logs data were analyzed. Six reflectors corresponding to the tops of the Beda, Hagfa Shale, Gir, Kheir Shale, Khalifa Shale, and Zelten Formations were picked and mapped. Special work was done on fault interpretation part because of the complexities of the faults at the structure area. Different attribute analyses were done to build up more understanding of structures lateral extension and to view a clear image of the fault blocks. Time to depth conversion was computed using velocity modeling generated from check shot and sonic data. The simplified stratigraphic cross-section was drawn through the wells A1, A2, A3, and A4-LP3D. The distribution and the thickness variations of the Beda reservoir along the study area had been demonstrating. Petrophysical analysis of wireline logging also was done and Cross plots of some petrophysical parameters are generated to evaluate the lithology of reservoir interval. Structure and Stratigraphic Framework was designed and run to generate different model like faults, facies, and petrophysical models and calculate the reservoir volumetric. This study concluded that the depth structure map of the Beda formation shows the main structure in the area of study, which is north to south faulted anticline. Based on the Beda reservoir models, volumetric for the base case has been calculated and it has STOIIP of 41MMSTB and Recoverable oil of 10MMSTB. Seismic attributes confirm the structure trend and build a better understanding of the fault system in the area.

Keywords: LP3D Field, Beda Formation, reservoir models, Seismic attributes

Procedia PDF Downloads 198
6453 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 207
6452 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation

Procedia PDF Downloads 296
6451 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 130
6450 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting

Procedia PDF Downloads 249
6449 The Development of Packaging to Create Additional Value for Organic Rice Products of Uttaradit Province, Thailand

Authors: Juntima Pokkrong

Abstract:

The objectives of the study were to develop packaging made from rice straws left after the harvest in order to create additional value for organic rice products of Uttaradit Province and to demonstrate the technology of producing straw packaging to the community. The population was promoters of organic rice distributors, governmental organizations, consumers, and three groups of organic rice producers which are the Agriculturist Group of Khorrum Sub-district, Pichai District, Uttaradit Province; the Agriculturist Group of Wangdin Sub-district, Muang District, Uttaradit Province; and the Agriculturist Group of Wangkapi Sub-district, Muang District, Uttaradit Province. The data were collected via group discussions, and two types of questionnaires. The data acquired were then analyzed using descriptive statistic for percentage, mean, standard deviation, and content analysis. It has been found that primary packaging for one kilogram of rice requires vacuumed plastic bags made from thermoplastic or resin because they are able to preserve the quality of rice for a long time, and they are also very cheap. For secondary packaging, the making of straw paper was studied and applied. Straw paper can be used for various purposes, and in this study, it was used to create the secondary packaging models in compliance with packaging preferences acquired from the questionnaires. The models were surveyed among the population for their opinion using satisfaction questionnaires, and the result was overall highly satisfactory.

Keywords: environmentally friendly, organic rice, packaging, straw paper

Procedia PDF Downloads 232
6448 Radar Cross Section Modelling of Lossy Dielectrics

Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit

Abstract:

Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.

Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation

Procedia PDF Downloads 225
6447 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model

Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry

Abstract:

The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.

Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete

Procedia PDF Downloads 113
6446 Reverse Logistics, Green Supply Chain, and Carbon Trading

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Reverse logistics and green supply chain form an interconnected and interwoven network of parameters that contribute to enhancement and incremental exchange in the triple bottom line in the consistently changing and fragmenting markets of the globalizing markets of today. Reverse logistics not only contributes to completing the supply chain in a comprehensive and synchronized manner but also contributes to a significant degree in optimizing green supply chains through procedures such as recycling, refurbishing etc. contributing to waste reduction. Carbon trading, owing to its limitations in the global context and being in a nascent stage seeks plethora of research to determine its full application in synergy with reverse logistics and green supply chain.

Keywords: reverse logistics, carbon trading, carbon emissions, green supply chain

Procedia PDF Downloads 408