Search results for: composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2648

Search results for: composition

488 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 118
487 Health Risk Assessment and Source Apportionment of Elemental Particulate Contents from a South Asian Future Megacity

Authors: Afifa Aslam, Muhammad Ibrahim, Abid Mahmood, Muhammad Usman Alvi, Fariha Jabeen, Umara Tabassum

Abstract:

Many factors cause air pollution in Pakistan, which poses a significant threat to human health. Diesel fuel and gasoline motor vehicles, as well as industrial companies, pollute the air in Pakistan's cities. The study's goal is to determine the level of air pollution in a Pakistani industrial city and to establish risk levels for the health of the population. We measured the intensity of air pollution by chemical characterization and examination of air samples collected at stationary remark sites. The PM10 levels observed at all sampling sites, including residential, commercial, high-traffic, and industrial areas were well above the limits imposed by Pakistan EPA, the United States EPA, and WHO. We assessed the health risk via chemical factors using a methodology approved for risk assessment. All Igeo index values greater than one were considered moderately contaminated or moderately to severely contaminated. Heavy metals have a substantial risk of acute adverse effects. In Faisalabad, Pakistan, there was an enormously high risk of chronic effects produced by a heavy metal acquaintance. Concerning specified toxic metals, intolerable levels of carcinogenic risks have been determined for the entire population. As a result, in most of the investigated areas of Faisalabad, the indices and hazard quotients for chronic and acute exposure exceeded the permissible level of 1.0. In the current study, re-suspended roadside mineral dust, anthropogenic exhaust emissions from traffic and industry, and industrial dust were identified as major emission sources of elemental particulate contents. Because of the unacceptable levels of risk in the research area, it is strongly suggested that a comprehensive study of the population's health status as a result of air pollution should be conducted for policies to be developed against these risks.

Keywords: elemental composition, particulate pollution, Igeo index, health risk assessment, hazard quotient

Procedia PDF Downloads 91
486 Positive Interactions among Plants in Pinegroves over Quarzitic Sands

Authors: Enrique González Pendás, Vidal Pérez Hernández, Jorge Ferro Díaz, Nelson Careaga Pendás

Abstract:

The investigation is carried out on the Protected Area of San Ubaldo, toward the interior of an open pinegrove with palm trees in a dry plainness of quar zitic sands, belonging to the Floristic Managed Reservation San Ubaldo-Sabanalamar, Guane, Pinar del Río, Cuba. This area is characterized by drastic seasonal variations, high temperatures and water evaporation, strong solar radiation, with sandy soils of almost pure quartz, which are very acid and poor in nutrients. The objective of the present work is to determine evidence of facilitation and its relationship with the structure and composition of plant communities in these peculiar ecosystems. For this study six lineal parallel transepts of 100 m are traced, in those, a general recording of the flora is carried out. To establish which plants act as nurses, is taken into account a height over 1 meter, canopy over 1.5 meter and the occurrence of several species under it. Covering was recorded using the line intercept method; the medium values of species richness for the taxa under nurses is compared with those that are located in open spaces among them. Then, it is determined which plants are better recruiter of other species (better nurses). An experiment is made to measure and compare some parameters in pine seedlings under the canopy of the Byrsonima crassifolia (L.) Kunth. and in open spaces, also the number of individuals is counted by species to calculate the frequency and total abundance in the study area. As a result, it is offered an up-to-date floristic list, a phylogenetic tree of the plant community showing a high phylodiversity, it is proven that the medium values of species richness and abundance of species under the nurses, is significantly superior to those occurring in open spaces. Furthermore, by means of phylogenetic trees it is shown that the species which cohabit under the nurses are not phylogenetically related. The former results are cited evidences of facilitation among plants, as well as it is one more time shown the importance of the nurse effect in preserving plant diversity on extreme environments.

Keywords: facilitation, nurse plants, positive interactions, quarzitic sands

Procedia PDF Downloads 341
485 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines

Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin

Abstract:

Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.

Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.

Procedia PDF Downloads 98
484 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by zona pellucida with layer of cumulus cells ranging between 59.29-202.14 µm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 µg/mL porcine follicle-stimulating hormone, 1 µg/mL LH, 1µg/mL estradiol with ethanol, and 50 µg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: cumulus cells, electron microscopy, in vitro, porcine oocyte

Procedia PDF Downloads 385
483 Evaluation of Different Liquid Scintillation Counting Methods for 222Rn Determination in Waters

Authors: Jovana Nikolov, Natasa Todorovic, Ivana Stojkovic

Abstract:

Monitoring of 222Rn in drinking or surface waters, as well as in groundwater has been performed in connection with geological, hydrogeological and hydrological surveys and health hazard studies. Liquid scintillation counting (LSC) is often preferred analytical method for 222Rn measurements in waters because it allows multiple-sample automatic analysis. LSC method implies mixing of water samples with organic scintillation cocktail, which triggers radon diffusion from the aqueous into organic phase for which it has a much greater affinity, eliminating possibility of radon emanation in that manner. Two direct LSC methods that assume different sample composition have been presented, optimized and evaluated in this study. One-phase method assumed direct mixing of 10 ml sample with 10 ml of emulsifying cocktail (Ultima Gold AB scintillation cocktail is used). Two-phase method involved usage of water-immiscible cocktails (in this study High Efficiency Mineral Oil Scintillator, Opti-Fluor O and Ultima Gold F are used). Calibration samples were prepared with aqueous 226Ra standard in glass 20 ml vials and counted on ultra-low background spectrometer Quantulus 1220TM equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with 226Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide reliable and precise spectra separation. Consequentially, calibration procedure was done through investigation of PSA discriminator level influence on 222Rn efficiency detection, using 226Ra calibration standard in wide range of activity concentrations. Evaluation of presented methods was based on obtained efficiency detections and achieved Minimal Detectable Activity (MDA). Comparison of presented methods, accuracy and precision as well as different scintillation cocktail’s performance was considered from results of measurements of 226Ra spiked water samples with known activity and environmental samples.

Keywords: 222Rn in water, Quantulus1220TM, scintillation cocktail, PSA parameter

Procedia PDF Downloads 201
482 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 140
481 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications

Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash

Abstract:

A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.

Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses

Procedia PDF Downloads 224
480 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 153
479 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: cell response, excimer laser, polymer treatment, periodic pattern, surface morphology

Procedia PDF Downloads 237
478 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 115
477 Comparative Analysis of Polish Traditional Bread and Teff Injera: Culinary Heritage and Nutritional Perspectives

Authors: Temesgen Minase Woldegebriel

Abstract:

This study undertakes a comparative analysis of two distinct staples from diverse culinary heritages: Polish traditional bread and Teff Injera. Despite originating from disparate cultural contexts, both these foods hold significant roles in their respective societies, serving as dietary staples rich in cultural symbolism and nutritional value. Our investigation delves into the historical, cultural, and nutritional dimensions of Polish bread and Teff Injera, shedding light on their ingredients, preparation methods, and consumption patterns. Firstly, we explore the rich history and cultural significance embedded within Polish traditional bread, tracing its evolution through centuries of tradition and craftsmanship. From the ubiquitous Polish Rye bread to the intricate regional variations, we unravel the socio-cultural narratives intertwined with each loaf, reflecting Polish identity and culinary heritage. In contrast, our analysis extends to Teff Injera, a staple of Ethiopian and Eritrean cuisine known for its spongy texture and tangy flavor. We delve into the ancient origins of Teff cultivation, highlighting its pivotal role in Ethiopian culture and its symbolic significance in communal dining practices, such as the traditional Ethiopian coffee ceremony. Furthermore, we undertake a comparative examination of the nutritional profiles of Polish bread and Teff Injera, assessing their respective contributions to dietary health and well-being. Through comprehensive nutritional analysis, we elucidate the unique attributes of each staple, considering factors such as gluten content, fiber composition, and micronutrient density. Moreover, our study investigates the contemporary relevance of these traditional staples in the context of shifting dietary preferences and global culinary trends. We analyze consumer perceptions and market dynamics surrounding Polish bread and Teff Injera, discerning patterns of consumption and avenues for innovation in a rapidly evolving food landscape. In conclusion, our comparative analysis illuminates the multifaceted dimensions of Polish traditional bread and Teff Injera, transcending mere culinary discourse to encompass broader themes of cultural heritage, nutrition, and gastronomic diversity.

Keywords: bread, culinary, injera, teff

Procedia PDF Downloads 18
476 Analysis of Genic Expression of Honey Bees Exposed to Sublethal Pesticides Doses Using the Transcriptome Technique

Authors: Ricardo de Oliveira Orsi, Aline Astolfi, Daniel Diego Mendes, Isabella Cristina de Castro Lippi, Jaine da Luz Scheffer, Yan Souza Lima, Juliana Lunardi, Giovanna do Padro Ribeiro, Samir Moura Kadri

Abstract:

NECTAR Brazilian group (Center of Education, Science, and Technology in Rational Beekeeping) conducted studies on the pesticides honey bees effects using the transcriptome sequencing (RNA-Seq) analyzes for gene expression studies. In this way, we analyzed the effects of Pyraclostrobin and Fipronil on the honey bees with 21 old-days (forager) in laboratory conditions. For this, frames containing sealed brood were removed from the beehives and maintenance on the stove (32°C and 75% humidity) until the bees were born. So, newly emerged workers were marked on the pronotum with a non-toxic pen and reintroduced into their original hives. After 21 days, 120 marked bees were collected with an entomological forces and immediately stored in Petri dishes, perforated to ensure ventilation, and kept fasted for 3 hours. These honeybees were exposed to food contaminated or not with the sublethal dose of Pyraclostrobin (850 ppb/bee) or Fipronil (2.5 ppb/bee). After four hours of exposure, 15 bees from each treatment were referred to transcriptome analysis. Total RNA analysis was extracted from the brain pools (03 brains per pool) using the TRIzol® reagent protocol according to the manufacturer's instructions. cDNA libraries were constructed, and the FASTQC program was used to check adapter content and assess the quality of raw reads. Differential expression analysis was performed with the DESeq2 package. Genes that had an adjusted value of less than 0.05 were considered to be significantly up-regulated. Regarding the Pyraclostrobin, alterations were observed in the pattern of 17 gene related to of antioxidant system, cellular respiration, glucose metabolism, and regulation of juvenile hormone and the hormone insulin. Glyphosate altered the 10 gene related to the digestive system, exoskeleton composition, vitamin E transport, and antioxidant system. The results indicate that the necessity of studies using the sublethal doses to evaluate the pesticides uses and risks on crops and its effects on the honey bees.

Keywords: beekeeping, honey bees, pesticides, transcriptome

Procedia PDF Downloads 125
475 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
474 Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses

Authors: Mahamuda Sk, Srinivasa Rao Allam, Vijaya Prakash G.

Abstract:

The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser.

Keywords: Europium, Judd-Ofelt parameters, laser, luminescence

Procedia PDF Downloads 242
473 A New Obesity Index Derived from Waist Circumference and Hip Circumference Well-Matched with Other Indices in Children with Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Anthropometric obesity indices such as waist circumference (WC), indices derived from anthropometric measurements such as waist-to-hip ratio (WHR), and indices created from body fat mass composition such as trunk-to-leg fat ratio (TLFR) are commonly used for the evaluation of mild or severe forms of obesity. Their clinical utilities are being compared using body mass index (BMI) percentiles to classify obesity groups. The best of them is still being investigated to make a clear-cut discrimination between healthy normal individuals (N-BMI) and overweight or obese (OB) or morbid obese patients. The aim of this study is to derive a new index, which best suits the purpose for the discrimination of children with N-BMI from OB children. A total of eighty-three children participated in the study. Two groups were constituted. The first group comprised 42 children with N-BMI, and the second group was composed of 41 OB children, whose age- and sex- adjusted BMI percentile values vary between 95 and 99. The corresponding values for the first group were between 15 and 85. This classification was based upon the tables created by World Health Organization. The institutional ethics committee approved the study protocol. Informed consent forms were filled by the parents of the participants. Anthropometric measurements were taken and recorded following a detailed physical examination. Within this context, weight, height (Ht), WC, hip C (HC), neck C (NC) values were taken. Body mass index, WHR, (WC+HC)/2, WC/Ht, (WC/HC)/Ht, WC*NC were calculated. Bioelectrical impedance analysis was performed to obtain body’s fat compartments in terms of total fat, trunk fat, leg fat, arm fat masses. Trunk-to-leg fat ratio, trunk-to-appendicular fat ratio (TAFR), (trunk fat+leg fat)/2 ((TF+LF)/2) were calculated. Fat mass index (FMI) and diagnostic obesity notation model assessment-II (D2I) index values were calculated. Statistical analysis of the data was performed. Significantly increased values of (WC+HC)/2, (TF+LF)/2, D2I, and FMI were observed in OB group in comparison with those of N-BMI group. Significant correlations were calculated between BMI and WC, (WC+HC)/2, (TF+LF)/2, TLFR, TAFR, D2I as well as FMI both in N-BMI and OB groups. The same correlations were obtained for WC. (WC+HC)/2 was correlated with TLFR, TAFR, (TF+LF)/2, D2I, and FMI in N-BMI group. In OB group, the correlations were the same except those with TLFR and TAFR. These correlations were not present with WHR. Correlations were observed between TLFR and BMI, WC, (WC+HC)/2, (TF+LF)/2, D2I as well as FMI in N-BMI group. Same correlations were observed also with TAFR. In OB group, correlations between TLFR or TAFR and BMI, WC as well as (WC+HC)/2 were missing. None was noted with WHR. From these findings, it was concluded that (WC+HC)/2, but not WHR, was much more suitable as an anthropometric obesity index. The only correlation valid in both groups was that exists between (WC+HC)/2 and (TF+LF)/2. This index was suggested as a link between anthropometric and fat-based indices.

Keywords: children, hip circumference, obesity, waist circumference

Procedia PDF Downloads 168
472 Development of Antioxidant Rich Bakery Products by Applying Lysine and Maillard Reaction Products

Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár

Abstract:

Due to the rapidly growing number of conscious customers in the recent years, more and more people look for products with positive physiological effects which may contribute to the preservation of their health. In response to these demands Food Science Research Institute of Budapest develops and introduces into the market new functional foods of guaranteed positive effect that contain bioactive agents. New, efficient technologies are also elaborated in order to preserve the maximum biological effect of the produced foods. The main objective of our work was the development of new functional biscuits fortified with physiologically beneficial ingredients. Bakery products constitute the base of the food nutrients’ pyramid, thus they might be regarded as foodstuffs of the largest consumed quantity. In addition to the well-known and certified physiological benefits of lysine, as an essential amino acid, a series of antioxidant type compounds is formed as a consequence of the occurring Maillard-reaction. Progress of the evoked Maillard-reaction was studied by applying diverse sugars (glucose, fructose, saccharose, isosugar) and lysine at several temperatures (120-170°C). Interval of thermal treatment was also varied (10-30 min). The composition and production technologies were tailored in order to reach the maximum of the possible biological benefits, so as to the highest antioxidant capacity in the biscuits. Out of the examined sugar components, theextent of the Maillard-reaction-driven transformation of glucose was the most pronounced at both applied temperatures. For the precise assessment of the antioxidant activity of the products FRAP and DPPH methods were adapted and optimised. To acquire an authentic and extensive mechanism of the occurring transformations, Maillard-reaction products were identified, and relevant reaction pathways were revealed. GC-MS and HPLC-MS techniques were applied for the analysis of the 60 generated MRPs and characterisation of actual transformation processes. 3 plausible major transformation routes might have been suggested based on the analytical result and the deductive sequence of possible occurring conversions between lysine and the sugars.

Keywords: Maillard-reaction, lysine, antioxidant activity, GC-MS and HPLC-MS techniques

Procedia PDF Downloads 482
471 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 131
470 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology

Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea

Abstract:

The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.

Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties

Procedia PDF Downloads 167
469 Sustainable Development in Orthodontics: Orthodontic Archwire Waste

Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers

Abstract:

Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.

Keywords: archwire, orthodontics, sustainability, waste

Procedia PDF Downloads 196
468 Electrospun Nanofibers from Amphiphlic Block Copolymers and Their Graphene Nanocomposites

Authors: Hussein M. Etmimi, Peter E. Mallon

Abstract:

Electrospinning uses an electrical charge to draw very fine fibers (typically on the micro or nano scale) from a liquid or molten precursor. Over the years, this method has become a widely used and a successful technique to process polymer materials and their composites into nanofibers. The main focus of this work is to study the electrospinning of multi-phase amphiphilic copolymers and their nanocomposites, which contain graphene as the nanofiller material. In such amphiphilic materials, the constituents segments are incompatible and thus the solid state morphology will be determined by the composition of the various constituents as well as the method of preparation. In this study, amphiphilic block copolymers of poly(dimethyl siloxane) and poly(methyl methacrylate) (PDMS-b-PMMA) with well-defined structures were synthesized and the solution electrospinning of these materials and their properties were investigated. Atom transfer radical polymerization (ATRP) was used to obtain the controlled block copolymers with relatively high molar masses and narrow dispersity. First, PDMS macroinitiators with different chain length of 1000, 5000 and 10000 g/mol were synthesized by the reaction of monocarbinol terminated PDMS with α-bromoisobutyryl bromide initiator. The obtained macroinitiators were used for the polymerization of methyl methacrylate monomer to obtain the desired block copolymers using the ATRP process. Graphene oxide (GO) of different loading was then added to the copolymer solution and the resultant nanocomposites were successfully electrospun into nanofibers. The electrospinning was achieved using dimethylformamide/chloroform mixture (60:40 vl%) as electrospinning solution medium. Scanning electron microscopy (SEM) showed the successful formation of the electrospun fibers with dimensions in the nanometer range. X-ray diffraction indicated that the GO nanosheets were of an exfoliated structure, irrespective of the filler loading. Thermogravimetric analysis also showed that the thermal stability of the nanofibers was improved in the presence of GO, which was not a function of the filler loading. Differential scanning calorimetry also showed that the mechanical properties (measured as glass transition temperature) of the nanofibers was improved significantly in the presence of GO, which was a function of the filler loading.

Keywords: elctrospinning, graphene oxide, nanofibers, polymethyl methacrylate (PMMA)

Procedia PDF Downloads 306
467 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 111
466 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 80
465 Delineation of Subsurface Tectonic Structures Using Gravity, Magnetic and Geological Data, in the Sarir-Hameimat Arm of the Sirt Basin, NE Libya

Authors: Mohamed Abdalla Saleem, Hana Ellafi

Abstract:

The study area is located in the eastern part of the Sirt Basin, in the Sarir-Hameimat arm of the basin, south of Amal High. The area covers the northern part of the Hamemat Trough and the Rakb High. All of these tectonic elements are part of the major and common tectonics that were created when the old Sirt Arch collapsed, and most of them are trending NW-SE. This study has been conducted to investigate the subsurface structures and the sedimentology characterization of the area and attempt to define its development tectonically and stratigraphically. About 7600 land gravity measurements, 22500 gridded magnetic data, and petrographic core data from some wells were used to investigate the subsurface structural features both vertically and laterally. A third-order separation of the regional trends from the original Bouguer gravity data has been chosen. The residual gravity map reveals a significant number of high anomalies distributed in the area, separated by a group of thick sediment centers. The reduction to the pole magnetic map also shows nearly the same major trends and anomalies in the area. Applying the further interpretation filters reveals that these high anomalies are sourced from different depth levels; some are deep-rooted, and others are intruded igneous bodies within the sediment layers. The petrographic sedimentology study for some wells in the area confirmed the presence of these igneous bodies and defined their composition as most likely to be gabbro hosted by marine shale layers. Depth investigation of these anomalies by the average depth spectrum shows that the average basement depth is about 7.7 km, while the top of the intrusions is about 2.65 km, and some near-surface magnetic sources are about 1.86 km. The depth values of the magnetic anomalies and their location were estimated specifically using the 3D Euler deconvolution technique. The obtained results suggest that the maximum depth of the sources is about 4938m. The total horizontal gradient of the magnetic data shows that the trends are mostly extending NW-SE, others are NE-SW, and a third group has an N-S extension. This variety in trend direction shows that the area experienced different tectonic regimes throughout its geological history.

Keywords: sirt basin, tectonics, gravity, magnetic

Procedia PDF Downloads 66
464 Metamorphic Approach in Architecture Studio to Re-Imagine Drawings in Acknowledgement of Architectural/Artistic Identity

Authors: Hassan Wajid, Syed T. Ahmed, Syed G. Haider Jr., Razia Latif, Ahsan Ali, Maira Anam

Abstract:

The phenomenon of Metamorphosis can be associated with any object, organism, or structure gradually and progressively going through the change of systemic or morphological form. This phenomenon can be integrated while teaching drawing to architecture students. In architectural drawings, metamorphosis’s main focus and purpose are not to completely imitate any object. In the process of drawing, the changes in systemic or morphological form happen until the complete process, and the visuals of the complete process change the drawing, opening up possibilities for the imagination of the perceivers. Metamorphosis in architectural drawings begins with an initial form and, through various noticeable stages, ends up final form or manifestation. How much of the initial form is manifested in the final form and progressively among various intermediate stages becomes an indication of the nature of metamorphosis as a phenomenon. It is important at this stage to clarify that the term metamorphosis is presently being coopted from its original domain, usually in life sciences. In this current exercise, the architectural drawings are to act as an operative analog process transforming one image of art and/or architecture in its broadest sense. That composition is claimed to have come from one source (individual work, a cultural artifact, civilizational remain). It dialectically meets, opposes, or confronts some carefully chosen alien opposites from a different domain. As an example, the layers of a detailed drawing of a Turkish prayer rug of 5 x 7 ratio over a detailed architectural plan of a religious, historical complex can be observed such that the two drawings, though at markedly different scales could dialectically converse with one another and through their mutual congruencies. In the final stage, the idea concludes contradictions across the scales to initiate the analogous roles of metamorphosed third reality, which suggests the previous un-acknowledged architectural or artistic identity. The proposed paper explores the trajectory of reproduction by analyzing drawings through detailed drawing stages and analyzes challenges as well as opportunities in the discovered realm of imagination. This description further aims at identifying factors influencing creativity and innovation in producing architectural drawings through the process of observing drawings from inception to the concluding stage.

Keywords: architectural drawings, metamorphosis, perceptions, discovery

Procedia PDF Downloads 106
463 Comparison of Computerized Dynamic Posturography and Functional Head Impulse Test Scores after of Hatha Yoga Practice and Resistance-Based Aerobic Exercise in Adult Female Yoga Practitioners

Authors: Çağla Aras, Kübra Bi̇nay, Aysberg Şamil önlü, Mine Baydan Aran, Dicle Aras

Abstract:

The purpose of the present research was to investigate the acute effects of 30-min hatha yoga and 30-min resistance-based aerobic exercise (RBAE) on computerized dynamic posturography (CDP) and functional head impulse test (fHIT) scores in adult female yoga practitioners. To reach this aim, ten participants executed CDP and fHIT three times in total: at rest, after yoga, and after RBAE. The yoga practice lasted a total of 30 minutes, including 25 min of asanas and 5 minutes of savasana. RBAE lasted a total of 30 minutes with an intensity of 70-75% of the heart rate reserve method. When the results were examined, no change was observed in any parameters of the fHIT scores due to resting or exercise implementation. On the contrary, some changes were observed in CDP test results depending on the type of exercise. The post-RBAE somatosensory and visual systems values were higher than resting (p<0.05). The composite balance score derived after RBAE was found to be improved when compared to post-yoga and resting values (p<0.01). Lastly, the post-RBAE vestibular system score was found to be statistically significantly higher than the post-Yoga values. In addition, it was observed that body composition parameters, especially decreasing BW, LBM, PBF, MBF and TBW, were associated with improved postural stability values. According to the results, it can be stated that neither hatha yoga nor resistance-based aerobic exercise has an acute effect on functional vestibulo-ocular reflex. In addition, although there was no change in balance level after yoga, it was observed that RBAE performed at 70-75% of the heart rate reserve and for 30 minutes had positive acute effects on postural stability and balance.

Keywords: hatha yoga, resistance training, aerobic training, high intensity training, computerized dynamic posturography, functional head impulse test

Procedia PDF Downloads 54
462 Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding

Authors: Ehsan Alishahi, Chuang Deng

Abstract:

Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon.

Keywords: ARB, crystalline-amorphous composites, mechanical alloying, nanoindentation hardness

Procedia PDF Downloads 550
461 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 352
460 Food Foam Characterization: Rheology, Texture and Microstructure Studies

Authors: Rutuja Upadhyay, Anurag Mehra

Abstract:

Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.

Keywords: food foams, rheology, microstructure, texture

Procedia PDF Downloads 334
459 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 149