Search results for: soil characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5399

Search results for: soil characterization

3269 Groundwater Quality and Its Suitability for Agricultural Use in the Jeloula Basin, Tunisia

Authors: Intissar Farid

Abstract:

Groundwater quality assessment is crucial for sustainable water use, especially in semi-arid regions like the Jeloula basin in Tunisia, where groundwater is essential for domestic and agricultural needs. The present research aims to characterize the suitability of groundwater for irrigational purposes by considering various parameters: total salt concentration as measured by Electrical Conductivity EC, relative proportions of Na⁺ as expressed by %Na and SAR, Kelly’s ratio, Permeability Index, Magnesium hazard and Residual Sodium chloride. Chemical data indicate that the percent sodium (%Na) in the study area ranged from 26.3 to 45.3%. According to the Wilcox diagram, the quality classification of irrigation water suggests that analyzed groundwaters are suitable for irrigation purposes. The SAR values vary between 2.1 and 5. Most of the groundwater samples plot in the Richards’C3S1 water class and indicate little danger from sodium content to soil and plant growth. The Kelly’s ratio of the analyzed samples ranged from 0.3 to 0.8. These values indicate that the waters are fit for agricultural purposes. Magnesium hazard (MH) values range from 27.5 to 52.6, with an average of 38.9 in the analyzed waters. Hence, the Mg²⁺ content of the groundwater from the shallow aquifer cannot cause any problem to the soil permeability. Permeability index (PI) values computed for the area ranged from 33.6 to 52.7%. The above result, therefore, suggests that most of the water samples fall within class I of the Doneen chart and can be categorized as good irrigation water. The groundwaters collected from the Jeloula shallow aquifer were found to be within the safe limits and thus suitable for irrigation purposes.

Keywords: Kelly's ratio, magnesium hazard, permeability index, residual sodium chloride

Procedia PDF Downloads 26
3268 Hydrological Response of the Glacierised Catchment: Himalayan Perspective

Authors: Sonu Khanal, Mandira Shrestha

Abstract:

Snow and Glaciers are the largest dependable reserved sources of water for the river system originating from the Himalayas so an accurate estimate of the volume of water contained in the snowpack and the rate of release of water from snow and glaciers are, therefore, needed for efficient management of the water resources. This research assess the fusion of energy exchanges between the snowpack, air above and soil below according to mass and energy balance which makes it apposite than the models using simple temperature index for the snow and glacier melt computation. UEBGrid a Distributed energy based model is used to calculate the melt which is then routed by Geo-SFM. The model robustness is maintained by incorporating the albedo generated from the Landsat-7 ETM images on a seasonal basis for the year 2002-2003 and substrate map derived from TM. The Substrate file includes predominantly the 4 major thematic layers viz Snow, clean ice, Glaciers and Barren land. This approach makes use of CPC RFE-2 and MERRA gridded data sets as the source of precipitation and climatic variables. The subsequent model run for the year between 2002-2008 shows a total annual melt of 17.15 meter is generate from the Marshyangdi Basin of which 71% is contributed by the glaciers , 18% by the rain and rest being from the snow melt. The albedo file is decisive in governing the melt dynamics as 30% increase in the generated surface albedo results in the 10% decrease in the simulated discharge. The melt routed with the land cover and soil variables using Geo-SFM shows Nash-Sutcliffe Efficiency of 0.60 with observed discharge for the study period.

Keywords: Glacier, Glacier melt, Snowmelt, Energy balance

Procedia PDF Downloads 455
3267 Synthesis and Characterization of Heterogeneous Silver Nanoparticles for Protection of Ancient Egyptian Artifacts from Microbial Deterioration

Authors: Mohamed Abd Elfattah Ibraheem Elghrbawy

Abstract:

Biodeterioration of cultural heritage is a complex process which is caused by the interaction of many physical, chemical and biological agents; the growth of microorganisms can cause staining, cracking, powdering, disfigurement and displacement of monuments material, which leads to the permanent loss of monuments material. Organisms causing biodeterioration on monuments have usually been controlled by chemical products (biocides). In order to overcome the impact of biocides on the environment, human health and monument substrates, alternative tools such as antimicrobial agents from natural products can be used for monuments conservation and protection. The problem is how to formulate antibacterial agents with high efficiency and low toxicity. Various types of biodegradable metal nanoparticles (MNPs) have many applications in plant extract delivery. So, Nano-encapsulation of metal and natural antimicrobial agents using polymers such as chitosan increases their efficacy, specificity and targeting ability. Green synthesis and characterization of metal nanoparticles such as silver with natural products extracted from some plants having antimicrobial properties, using the ecofriendly method one pot synthesis. Encapsulation of the new synthesized mixture using some biopolymers such as chitosan nanoparticles. The dispersions and homogeneity of the antimicrobial heterogeneous metal nanoparticles encapsulated by biopolymers will be characterized and confirmed by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Zeta seizer. The effect of the antimicrobial biopolymer metal nano-formulations on normal human cell lines will be investigated to evaluate the environmental safety of these formulations. The antimicrobial toxic activity of the biopolymeric antimicrobial metal nanoparticles formulations will be will be investigated to evaluate their efficiency towards different pathogenic bacteria and fungi.

Keywords: antimicrobial, biodeterioration, chitosan, cultural heritage, silver

Procedia PDF Downloads 81
3266 Influence of Genotypic Variability on Symbiotic and Agrophysiological Performances of Chickpea Under Mesorhizobium-PSB Inoculation and RP-Fertilization Likely Due to Shipping Rhizosphere Diversity

Authors: Rym Saidi, Pape Alioune Ndiaye, Mohamed Idbella, Ammar Ibnyasser, Zineb Rchiad, Issam Kadmiri Meftahi, Khalid Daoui, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide, and the second most important food legume in Morocco. In addition, that chickpea plays a significant role in humans’ dietary consumption, it has key ecological interest in terms of biological N-fixation (BNF) having the ability to symbiotically secure 20-80% of needed. Alongside nitrogen (N), low soil phosphorus (P) availability is one of the major factors limiting chickpea growth and productivity. After nitrogen, P is the most important macronutrient for plants growth and development as well as the BNF. In the context of improving chickpea symbiotic performance, co-application of beneficial bacterial inoculants (including Mesorhizobium) and Rock P-fertilizer could boost chickpea performance and productivity, owing to increasing P-utilization efficiency and overall nutrient acquisition under P-deficiency conditions. Greenhouse experiment was conducted to evaluate the response of two chickpea varieties (Arifi “A” and Bochra “B”) to co-application of RP-fertilizer alongside Mesorhizobium and phosphate solubilizing bacteria (PSB) consortium under P-deficient soil in Morocco. Our findings demonstrate that co-applying RP50 with bacterial inoculant significantly increased NDW by 85.71% and 109.09% in A and B chickpea varieties respectively, compared to uninoculated RP-fertilized plants. Nodule Pi and leghemoglobin (LHb) contents also increased in RP-fertilized bacterial inoculants plants. Likewise, shoot and root dry weights of both chickpea varieties increased with bacterial inoculation and RP-fertilization. This is due to enhanced Pi content in shoot (282.54% and 291.42%) and root (334.30% and 408.32%) in response to RP50-Inc compared to unfertilized uninoculated plants, for A and B chickpea varieties respectively. Rhizosphere available P was also increased by 173.86% and 182.25% in response to RP50-Inc as compared to RP-fertilized uninoculated plants, with a positive correlation between soil available P and root length in inoculated plants of A. and B. chickpea varieties (R= 0.49; 0.6) respectively. Furthermore, Mesorhizobium was among the dominant genera in rhizosphere bacterial diversity of both chickpea varieties. This can be attributed to its capacity to enhance plant growth traits, with a more pronounced effect observed in B. variety. Our research demonstrates that integrated fertilization with bacterial inoculation effectively improves biological N-fixation and P nutrition, enhancing the agrophysiological performance of Moroccan chickpea varieties, particularly in restricted P-availability conditions.

Keywords: chickpea varieties, bacterial consortium, inoculants, Mesorhizobium, Rock-P fertilizer, phosphorus deficiency, agrophysiological performance

Procedia PDF Downloads 20
3265 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage

Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik

Abstract:

The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.

Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis

Procedia PDF Downloads 318
3264 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 150
3263 Isolation and Selection of Strains Perspective for Sewage Sludge Processing

Authors: A. Zh. Aupova, A. Ulankyzy, A. Sarsenova, A. Kussayin, Sh. Turarbek, N. Moldagulova, A. Kurmanbayev

Abstract:

One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing.

Keywords: sewage sludge, composting, bacteria, enzymatic activity

Procedia PDF Downloads 102
3262 Detection of Pollution in the Catchment Area of Baha Region by Using Some Common Plants as a Bioindicators

Authors: Saad M. Howladar

Abstract:

Although, there are a little data on the use of littoral plants as heavy metals bioaccumulators over large areas of the wetlands environment. So, soil samples and biomass of the five plant species: Pluchea dioscroides, Pulicaria crispa, Lavandula pubescens, Tarchononthus comporatus and Argemone ochroleuca were collected from two different sites (basin and mouth) of four dams at Baha province, KSA. Nutrients and heavy metals were extracted from plant samples (leaves and stems) for analyzing elements (Na, K, Ca, P and N) and heavy metals (Pb, Cu and Ni). The soils of the mouth of the dam had the highest concentrations of all elements, while that of basin had the highest ones of most heavy metals except Pb. The soil elements in relation to the two sites arranged as: Ca > K > P > Na > N; and the heavy metals as: Cu > Ni > Pb. The present study indicated that Pluchea dioscroides had the highest values of most elements and heavy metals, while Lavandula pubescens had the lowest. In general, leaves attain the highest concentrations of all nutrients and heavy metals in most studied species as compared with stem. It was indicated that Pluchea dioscroides showed a high transfer factor for almost elements and heavy metals such as K, Na, Cu, Ni and Pb, while Pulicaria crispa showed the highest translocation factor of N, P, Ca-Na ratio and Cu. All studied species growing in the basin had almost the highest concentrations of elements and heavy metals as compared with that in the mouth of dam except K in Pluchea dioscroides, Tarchononthus comporatus and Argemone ochroleuca tissues. Otherwise tissues of Tarchononthus comporatus growing in the basin had the lowest concentrations of K and Ni, while that growing in the mouth had the highest of P and N.

Keywords: Baha Region, bioindicators, plant, pollution, dams, heavy metals

Procedia PDF Downloads 465
3261 Effects of Nitrogen Addition on Litter Decomposition and Nutrient Release in a Temperate Grassland in Northern China

Authors: Lili Yang, Jirui Gong, Qinpu Luo, Min Liu, Bo Yang, Zihe Zhang

Abstract:

Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of N addition on litter decomposition is critical to understand ecosystem carbon cycling and their responses to global climate change. The aim of this study was to investigate the effects of N addition and litter types on litter decomposition of a semi-arid temperate grassland during growing and non-growing seasons in Inner Mongolia, northern China, and to identify the relation between litter decomposition and C: N: P stoichiometry in the litter-soil continuum. Six levels of N addition were conducted: CK, N1 (0 g Nm−2 yr−1), N2 (2 g Nm−2 yr−1), N3 (5 g Nm−2 yr−1), N4 (10 g Nm−2 yr−1) and N5 (25 g Nm−2 yr−1). Litter decomposition rates and nutrient release differed greatly among N addition gradients and litter types. N addition promoted litter decomposition of S. grandis, but exhibited no significant influence on L. chinensis litter, indicating that the S. grandis litter decomposition was more sensitive to N addition than L. chinensis. The critical threshold for N addition to promote mixed litter decomposition was 10 -25g Nm−2 yr−1. N addition altered the balance of C: N: P stoichiometry between litter, soil and microbial biomass. During decomposition progress, the L. chinensis litter N: P was higher in N2-N4 plots compared to CK, while the S. grandis litter C: N was lower in N3 and N4 plots, indicating that litter N or P content doesn’t satisfy microbial decomposers with the increasing of N addition. As a result, S. grandis litter exhibited net N immobilization, while L. chinensis litter net P immobilization. Mixed litter C: N: P stoichiometry satisfied the demand of microbial decomposers, showed net mineralization during the decomposition process. With the increasing N deposition in the future, mixed litter would potentially promote C and nutrient cycling in grassland ecosystem by increasing litter decomposition and nutrient release.

Keywords: C: N: P stoichiometry, litter decomposition, nitrogen addition, nutrient release

Procedia PDF Downloads 486
3260 Evaluating Probable Bending of Frames for Near-Field and Far-Field Records

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using incremental dynamic analysis under near- and far-field records. For this purpose, IDA analyses of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records.

Keywords: IDA, failure curve, directivity, maximum floor drift, fling step, evaluating probable bending of frames, near-field and far-field earthquake records

Procedia PDF Downloads 108
3259 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications

Authors: Hande Yavuz, Grégory Girard, Jinbo Bai

Abstract:

Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.

Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability

Procedia PDF Downloads 233
3258 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 206
3257 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: bias, expert, high risk industry, stress.

Procedia PDF Downloads 112
3256 Anti-Obesity Activity of Garcinia xanthochymus: Biochemical Characterization and In vivo Studies in High Fat Diet-Rat Model

Authors: Mahesh M. Patil, K. A. Anu-Appaiah

Abstract:

Overweight and obesity is a serious medical problem, increasing in prevalence, and affecting millions worldwide. Investigators have been trying from decades to articulate the burden of obesity and related risk factors. To answer this problem, we suggest a new therapeutic anti-obesity compounds from Garcinia xanthochymus fruit. However, there is little published scientific information on non-hydroxycitric acid Garcinia species. Our findings include biochemical characterization of the fruit; in vivo toxicity and bio-efficacy study of G. xanthochymus in high fat diet wistar rat model. We observed that Garcinia pericarp is a rich source of organic acids, polyphenols, mono- (40.63%) and poly-unsaturated fatty acids (16.45%; omega-3: 10.02%). Toxicological studies have showed that Garcinia is safe and had no observed adverse effect level up to 400 mg/kg/day. Body weight and food intake was significantly (P<0.05) reduced in oral gavage treated rats (sonicated Garcinia powder) in 13 weeks. Subcutaneous fat was significantly (P<0.05) reduced in Garcinia treated rats. Hepatocytes significantly (p<0.05) overexpressed sterol regulatory element binding protein 2, liver X receptor- α, liver X receptor- β, lipoprotein lipase and monoacylglycerol lipase. Fatty acid binding protein 1 and peroxisome proliferator activated receptor- α were down regulated as assessed by real time qPCR. Currently our research is focused on the adipocyte obesity related gene expressions, effect of Garcinia on 3T3-adipocyte cell lines and high fat diet induced mice model. This in vivo pre-clinical data suggests that G. xanthochymus may have clinical utility for the treatment of obesity. However, further studies are required to establish its potency.

Keywords: Garcinia xanthochymus, anti-obesity, high fat diet, real time qPCR

Procedia PDF Downloads 252
3255 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study

Authors: S. P. Pradhan, Amulya Ratna Roul

Abstract:

A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.

Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation

Procedia PDF Downloads 184
3254 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 344
3253 Quality Control of Distinct Cements by IR Spectroscopy: First, insights into Perspectives and Opportunities

Authors: Tobias Bader, Joerg Rickert

Abstract:

One key factor in achieving net zero emissions along the cement and concrete value chain in Europe by 2050 is the use of distinct constituents to produce improved and advanced cements. These cements will contain e.g. calcined clays, recycled concrete fines that are chemically similar as well as X-ray amorphous and therefore difficult to distinguish. This leads to enhanced requirements on the analytical methods for quality control regarding accuracy as well as reproducibility due to the more complex cement composition. With the methods currently provided for in the European standards, it will be a challenge to ensure reliable analyses of the composition of the cements. In an ongoing research project, infrared (IR) spectroscopy in combination with mathematical tools (chemometrics) is going to be evaluated as an additional analytical method with fast and low preparation effort for the characterization of silicate-based cement constituents. The resulting comprehensive database should facilitate determination of the composition of new cements. First results confirmed the applicability of near-infrared IR for the characterization of traditional silicate-based cement constituents (e.g. clinker, granulated blast furnace slag) and modern X-ray amorphous constituents (e.g. calcined clay, recycled concrete fines) as well as different sulfate species (e.g. gypsum, hemihydrate, anhydrite). A multivariant calibration model based on numerous calibration mixtures is in preparation. The final analytical concept to be developed will form the basis for establishing IR spectroscopy as a rapid analytical method for characterizing material flows of known and unknown inorganic substances according to their material properties online and offline. The underlying project was funded by the Federal Institute for Research on Building, Urban Affairs and Spatial Development on behalf of the Federal Ministry of Housing, Urban Development and Building with funds from the ‘Zukunft Bau’ research programme.

Keywords: cement, infrared spectroscopy, quality control, X-ray amorphous

Procedia PDF Downloads 40
3252 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 220
3251 The Prevalence of Soil Transmitted Helminths among Newly Arrived Expatriate Labors in Jeddah, Saudi Arabia

Authors: Mohammad Al-Refai, Majed Wakid

Abstract:

Introduction: Soil-transmitted diseases (STD) are caused by intestinal worms that are transmitted via various routes into the human body resulting in various clinical manifestations. The intestinal worms causing these infections are known as soil transmitted helminths (STH), including Hook worms, Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), and Strongyloides sterocoralis (S. sterocoralis). Objectives: The aim of this study was to investigate the prevalence of STH among newly arrived expatriate labors in Jeddah city, Saudi Arabia, using three different techniques (direct smears, sedimentation concentration, and real-time PCR). Methods: A total of 188 stool specimens were collected and investigated at the parasitology laboratory in the Special Infectious Agents Unit at King Fahd Medical Research Center, King Abdulaziz University in Jeddah, Saudi Arabia. Microscopic examination of wet mount preparations using normal saline and Lugols Iodine was carried out, followed by the formal ether sedimentation method. In addition, real-time PCR was used as a molecular tool to detect several STH and hookworm speciation. Results: Out of 188 stool specimens analyzed, in addition to STH parasite, several other types were detected. 9 samples (4.79%) were positive for Entamoeba coli, 7 samples (3.72%) for T. trichiura, 6 samples (3.19%) for Necator americanus, 4 samples (2.13%) for S. sterocoralis, 4 samples (2.13%) for A. lumbricoides, 4 samples (2.13%) for E. histolytica, 3 samples (1.60%) for Blastocystis hominis, 2 samples (1.06%) for Ancylostoma duodenale, 2 samples (1.06%) for Giardia lamblia, 1 sample (0.53%) for Iodamoeba buetschlii, 1 sample (0.53%) for Hymenolepis nana, 1 sample (0.53%) for Endolimax nana, and 1 sample (0.53%) for Heterophyes heterophyes. Out of the 35 infected cases, 26 revealed single infection, 8 with double infections, and only one triple infection of different STH species and other intestinal parasites. Higher rates of STH infections were detected among housemaids (11 cases) followed by drivers (7 cases) when compared to other occupations. According to educational level, illiterate participants represent the majority of infected workers (12 cases). The majority of workers' positive cases were from the Philippines. In comparison between laboratory techniques, out of the 188 samples screened for STH, real-time PCR was able to detect the DNA in (19/188) samples followed by Ritchie sedimentation technique (18/188), and direct wet smear (7/188). Conclusion: STH infections are a major public health issue to healthcare systems around the world. Communities must be educated on hygiene practices and the severity of such parasites to human health. As far as drivers and housemaids come to close contact with families, including children and elderlies. This may put family members at risk of developing serious side effects related to STH, especially as the majority of workers were illiterate, lacking the basic hygiene knowledge and practices. We recommend the official authority in Jeddah and around the kingdom of Saudi Arabia to revise the standard screening tests for newly arrived workers and enforce regular follow-up inspections to minimize the chances of the spread of STH from expatriate workers to the public.

Keywords: expatriate labors, Jeddah, prevalence, soil transmitted helminths

Procedia PDF Downloads 150
3250 Preparation and Characterization of Nickel-Tungsten Nanoparticles Using Microemulsion Mediated Synthesis

Authors: S. Pal, R. Singh, S. Sivakumar, D. Kunzru

Abstract:

AOT stabilized reverse micelles of deionized water, dispersed in isooctane have been used to synthesize bimetallic nickel tungsten nanoparticles. Prepared nanoparticles were supported on γ-Al2O3 followed by calcination at 500oC. Characterizations of the nanoparticles were done by TEM, XRD, FTIR, XRF, TGA and BET. XRF results showed that this method gave good composition control with W/Ni weight ratio equal to 3.2. TEM images showed particle size of 5-10 nm. Removal of surfactant after calcination was confirmed by TGA and FTIR.

Keywords: nanoparticles, reverse micelles, nickel, tungsten

Procedia PDF Downloads 592
3249 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat

Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė

Abstract:

During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).

Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality

Procedia PDF Downloads 301
3248 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification

Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli

Abstract:

Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.

Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics

Procedia PDF Downloads 71
3247 Allelopathic Potential of Canola and Wheat to Control Weeds in Soybean (Glycine max)

Authors: Alireza Dadkhah

Abstract:

A filed experiment was done to develop management practices to reduce the use of synthetic herbicides, in the arid and semi-arid agricultural ecosystems of north east of Iran. Five treatments including I: chopped residues of canola (Brasica vulgaris), II: chopped residues of wheat (Triticum aestivum) both were separately incorporated to 25 cm depth soil, 20 days before sowing, III: shoot aqueous extract of canola, IV: shoot aqueous extract of wheat which were separately sprayed at post emergence stage and V: without any residues and spraying as control. The weed control treatments reduced the total weed cover, weed density and biomass of weed. The reduction in weed density with canola and wheat residues incorporation were up to 67.5 and 62.2% respectively, at 40 days after sowing and 65.3% and 75.6%, respectively, at 90 days after sowing, compared to control. However, post emergence spraying of shoot aqueous extract of canola and wheat, suppressed weed density up to 41.8 and 36.6% at 40 days after sowing and 54.2% and 52.7% at 90 days after sowing respectively, compared to control. Weed control treatments reduced weed cover (%), weed biomass and weeds stem length. Incorporation of canola and wheat residues in soil reduced weed cover (%) by 62.5% and 63% respectively, while spraying of shoot water extract of canola and wheat suppressed weed cover (%) by 39.6% and 40.4% respectively at 90 days after sowing. Application of canola and wheat residues increased soybean yield by 45.4% and 69.5% respectively, compared to control while post emergence application of shoot aqueous extract of canola and wheat increased soybean yield by 22% and 29.8% respectively.

Keywords: allelopathy, Bio-herbicide, Brassica oleracea, plant residues, Triticum aestivum

Procedia PDF Downloads 684
3246 Synthesis and Characterization of Anti-Psychotic Drugs Based DNA Aptamers

Authors: Shringika Soni, Utkarsh Jain, Nidhi Chauhan

Abstract:

Aptamers are recently discovered ~80-100 bp long artificial oligonucleotides that not only demonstrated their applications in therapeutics; it is tremendously used in diagnostic and sensing application to detect different biomarkers and drugs. Synthesizing aptamers for proteins or genomic template is comparatively feasible in laboratory, but drugs or other chemical target based aptamers require major specification and proper optimization and validation. One has to optimize all selection, amplification, and characterization steps of the end product, which is extremely time-consuming. Therefore, we performed asymmetric PCR (polymerase chain reaction) for random oligonucleotides pool synthesis, and further use them in Systematic evolution of ligands by exponential enrichment (SELEX) for anti-psychotic drugs based aptamers synthesis. Anti-psychotic drugs are major tranquilizers to control psychosis for proper cognitive functions. Though their low medical use, their misuse may lead to severe medical condition as addiction and can promote crime in social and economical impact. In this work, we have approached the in-vitro SELEX method for ssDNA synthesis for anti-psychotic drugs (in this case ‘target’) based aptamer synthesis. The study was performed in three stages, where first stage included synthesis of random oligonucleotides pool via asymmetric PCR where end product was analyzed with electrophoresis and purified for further stages. The purified oligonucleotide pool was incubated in SELEX buffer, and further partition was performed in the next stage to obtain target specific aptamers. The isolated oligonucleotides are characterized and quantified after each round of partition, and significant results were obtained. After the repetitive partition and amplification steps of target-specific oligonucleotides, final stage included sequencing of end product. We can confirm the specific sequence for anti-psychoactive drugs, which will be further used in diagnostic application in clinical and forensic set-up.

Keywords: anti-psychotic drugs, aptamer, biosensor, ssDNA, SELEX

Procedia PDF Downloads 134
3245 Enhanced Ripening Behaviour of Manganese Doped Cadmium Selenide Quantum Dots (Mn-doped CdSe QDs)

Authors: N. A. Hamizi, M. R. Johan, Y. H. Hor, A. N. Sabri, Y. Y. A. Yong

Abstract:

In this research, Mn-doped CdSe QDs is synthesized by using paraffin liquid as the reacting solvent and oleic acid as the ligands for Cd in order to produce Mn-doped CdSe QDs in zinc-blende crystal structure. Characterization studies for synthesized Mn-doped CdSe QDs are carried out using UV-visible and photoluminescence spectroscopy. The absorption wavelengths in UV-vis test and emission wavelengths in PL test were increase with the increases in the ripening temperature and time respectively.

Keywords: semiconductor, chemical synthesis, optical properties, ripening

Procedia PDF Downloads 365
3244 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 100
3243 Characterization of the Near-Wake of an Ahmed Body Profile

Authors: Stéphanie Pellerin, Bérengére Podvin, Luc Pastur

Abstract:

In aerovehicles context, the flow around an Ahmed body profile is simulated using the velocity-vorticity formulation of the Navier-Stokes equations, associated to a penalization method for solids and Large Eddy Simulation for turbulence. The study focuses both on the ground influence on the flow and on the dissymetry of the wake, observed for a ground clearance greater than 10% of the body height H. Unsteady and mean flows are presented and analyzed. POD study completes the analysis and gives information on the most energetic structures of the flow.

Keywords: Ahmed body, bi-stability, LES, near wake

Procedia PDF Downloads 625
3242 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 177
3241 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress

Authors: Fellah Sihem

Abstract:

The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.

Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content

Procedia PDF Downloads 469
3240 Biochemical Characterization and Structure Elucidation of a New Cytochrome P450 Decarboxylase

Authors: Leticia Leandro Rade, Amanda Silva de Sousa, Suman Das, Wesley Generoso, Mayara Chagas Ávila, Plinio Salmazo Vieira, Antonio Bonomi, Gabriela Persinoti, Mario Tyago Murakami, Thomas Michael Makris, Leticia Maria Zanphorlin

Abstract:

Alkenes have an economic appeal, especially in the biofuels field, since they are precursors for drop-in biofuels production, which have similar chemical and physical properties to the conventional fossil fuels, with no oxygen in their composition. After the discovery of the first P450 CYP152 OleTJE in 2011, reported with its unique property of decarboxylating fatty acids (FA), by using hydrogen peroxide as a cofactor and producing 1-alkenes as the main product, the scientific and technological interest in this family of enzymes vastly increased. In this context, the present work presents a new decarboxylase (OleTRN) with low similarity with OleTJE (32%), its biochemical characterization, and structure elucidation. As main results, OleTRN presented a high yield of expression and purity, optimum reaction conditions at 35 °C and pH from 6.5 to 8.0, and higher specificity for oleic acid. Besides that, structure-guided mutations were performed and according to the functional characterizations, it was observed that some mutations presented different specificity and chemoselectivity by varying the chain-length of FA substrates from 12 to 20 carbons. These results are extremely interesting from a biotechnological perspective as those characteristics could diversify the applications and contribute to designing better cytochrome P450 decarboxylases. Considering that peroxygenases have the potential activity of decarboxylating and hydroxylating fatty acids and that the elucidation of the intriguing mechanistic involved in the decarboxylation preferential from OleTJE is still a challenge, the elucidation of OleTRN structure and the functional characterizations of OleTRN and its mutants contribute to new information about CYP152. Besides that, the work also contributed to the discovery of a new decarboxylase with a different selectivity profile from OleTJE, which allows a wide range of applications.

Keywords: P450, decarboxylases, alkenes, biofuels

Procedia PDF Downloads 202