Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87755
Influence of Genotypic Variability on Symbiotic and Agrophysiological Performances of Chickpea Under Mesorhizobium-PSB Inoculation and RP-Fertilization Likely Due to Shipping Rhizosphere Diversity
Authors: Rym Saidi, Pape Alioune Ndiaye, Mohamed Idbella, Ammar Ibnyasser, Zineb Rchiad, Issam Kadmiri Meftahi, Khalid Daoui, Adnane Bargaz
Abstract:
Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide, and the second most important food legume in Morocco. In addition, that chickpea plays a significant role in humans’ dietary consumption, it has key ecological interest in terms of biological N-fixation (BNF) having the ability to symbiotically secure 20-80% of needed. Alongside nitrogen (N), low soil phosphorus (P) availability is one of the major factors limiting chickpea growth and productivity. After nitrogen, P is the most important macronutrient for plants growth and development as well as the BNF. In the context of improving chickpea symbiotic performance, co-application of beneficial bacterial inoculants (including Mesorhizobium) and Rock P-fertilizer could boost chickpea performance and productivity, owing to increasing P-utilization efficiency and overall nutrient acquisition under P-deficiency conditions. Greenhouse experiment was conducted to evaluate the response of two chickpea varieties (Arifi “A” and Bochra “B”) to co-application of RP-fertilizer alongside Mesorhizobium and phosphate solubilizing bacteria (PSB) consortium under P-deficient soil in Morocco. Our findings demonstrate that co-applying RP50 with bacterial inoculant significantly increased NDW by 85.71% and 109.09% in A and B chickpea varieties respectively, compared to uninoculated RP-fertilized plants. Nodule Pi and leghemoglobin (LHb) contents also increased in RP-fertilized bacterial inoculants plants. Likewise, shoot and root dry weights of both chickpea varieties increased with bacterial inoculation and RP-fertilization. This is due to enhanced Pi content in shoot (282.54% and 291.42%) and root (334.30% and 408.32%) in response to RP50-Inc compared to unfertilized uninoculated plants, for A and B chickpea varieties respectively. Rhizosphere available P was also increased by 173.86% and 182.25% in response to RP50-Inc as compared to RP-fertilized uninoculated plants, with a positive correlation between soil available P and root length in inoculated plants of A. and B. chickpea varieties (R= 0.49; 0.6) respectively. Furthermore, Mesorhizobium was among the dominant genera in rhizosphere bacterial diversity of both chickpea varieties. This can be attributed to its capacity to enhance plant growth traits, with a more pronounced effect observed in B. variety. Our research demonstrates that integrated fertilization with bacterial inoculation effectively improves biological N-fixation and P nutrition, enhancing the agrophysiological performance of Moroccan chickpea varieties, particularly in restricted P-availability conditions.Keywords: chickpea varieties, bacterial consortium, inoculants, Mesorhizobium, Rock-P fertilizer, phosphorus deficiency, agrophysiological performance
Procedia PDF Downloads 23