Search results for: inverse power law
4621 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility
Authors: B. Casper
Abstract:
The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning
Procedia PDF Downloads 1314620 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature
Procedia PDF Downloads 1334619 Spirituality and Coping with Breast Cancer among Omani Women
Authors: Huda Al-Awisi, Mohammed Al-Azri, Samira Al-Rasbi, Mansour Al-Moundhri
Abstract:
Cancer diagnosis is invariably a profound and catastrophic life-changing experience for individuals and their families. It has been found that cancer patients and survivors are distressed with the fragility of their life and their mortality. Based on the literature, cancer patients /survivors value their spiritual experience and connecting with unknown power either related to religious belief or not as an important coping mechanism. Health care professionals including nurses are expected to provide spiritual care for cancer patients as holistic care. Yet, nurses face many challenges in providing such care mainly due to lack of clear definition of spirituality. This study aims to explore coping mechanisms of Omani women diagnosed with breast cancer throughout their cancer journey including spirituality using a qualitative approach. A purposive sample of 19 Omani women diagnosed with breast cancer at different stages of cancer treatment modalities were interviewed. Interviews were tape recorded and transcribed verbatim. The framework approach was used to analyze the data. One main theme related to spirituality was identified and called “The power of faith”. For the majority of participants, faith in God (the will of God) was most important in coping with all stages of their breast cancer experience. Some participants thought that the breast cancer is a test from God which they have to accept. Participants also expressed acceptance of death as the eventual end and reward from God. This belief gives them the strength to cope with cancer and seek medical treatment. In conclusion, women participated in this study believed faith in God imposed spiritual power for them to cope with cancer. They connected spirituality with religious beliefs. Therefore, regardless of nurses’ faith in spirituality, the spiritual care needs to be tailored and provided according to each patient individual need.Keywords: breast cancer, spiritual, religion, coping, diagnosis, oman, women
Procedia PDF Downloads 3324618 Integration of Thermal Energy Storage and Electric Heating with Combined Heat and Power Plants
Authors: Erich Ryan, Benjamin McDaniel, Dragoljub Kosanovic
Abstract:
Combined heat and power (CHP) plants are an efficient technology for meeting the heating and electric needs of large campus energy systems, but have come under greater scrutiny as the world pushes for emissions reductions and lower consumption of fossil fuels. The electrification of heating and cooling systems offers a great deal of potential for carbon savings, but these systems can be costly endeavors due to increased electric consumption and peak demand. Thermal energy storage (TES) has been shown to be an effective means of improving the viability of electrified systems, by shifting heating and cooling load to off-peak hours and reducing peak demand charges. In this study, we analyze the integration of an electrified heating and cooling system with thermal energy storage into a campus CHP plant, to investigate the potential of leveraging existing infrastructure and technologies with the climate goals of the 21st century. A TRNSYS model was built to simulate a ground source heat pump (GSHP) system with TES using measured campus heating and cooling loads. The GSHP with TES system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Using known CHP production information, costs and emissions were investigated for a unique large energy user rate structure that operates a CHP plant. The results highlight the cost and emissions benefits of a targeted integration of heat pump technology within the framework of existing CHP systems, along with the performance impacts and value of TES capability within the combined system.Keywords: thermal energy storage, combined heat and power, heat pumps, electrification
Procedia PDF Downloads 924617 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption
Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko
Abstract:
Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.
Procedia PDF Downloads 1154616 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer
Authors: S. M. Giripunje, Mohit Kumar
Abstract:
Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)
Procedia PDF Downloads 3924615 An Efficient Propensity Score Method for Causal Analysis With Application to Case-Control Study in Breast Cancer Research
Authors: Ms Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis as a tool for the causal inference in the observational studies where exposure is not randomly assigned, thus, confounding can impact the estimation of treatment effect on the outcome. For the binary outcome, the effect of treatment on the outcome can be estimated by odds ratios, relative risks, and risk differences. However, using the different PS methods may give you a different estimation of the treatment effect on the outcome. Several methods of PS analyses have been used mainly, include matching, inverse probability of weighting, stratification, and covariate adjusted on PS. Due to the dangers of discretizing continuous variables (exposure, covariates), the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect (ATE) utilizing the stratification of PS method. Therefore, we are trying to avoid choosing arbitrary cut-points, instead, we continuously discretize the PS and accumulate information across all cut-points for inferences. We will use Monte Carlo simulation to evaluate ATE, focusing on two PS methods, stratification and covariate adjusted on PS. We will then show how this can be observed based on the analyses of the data from a case-control study of breast cancer, the Polish Women’s Health Study.Keywords: average treatment effect, propensity score, stratification, covariate adjusted, monte Calro estimation, breast cancer, case_control study
Procedia PDF Downloads 1104614 Social Freedom and Real Utopias: Making ‘Eroding Capitalism’ a Theme in Axel Honneth’s Theory of Socialism
Authors: Yotaro Natani
Abstract:
In his recent works, Frankfurt School theorist Axel Honneth elucidates an intersubjective notion of social freedom and outlines a vision of socialism as the realization of social freedom in the family, market economy, and public sphere. These arguments are part of his broader project of defending the tradition of immanent critique and normative reconstruction. In contrast, American Marxist sociologist Erik Olin Wright spells out a vision of socialism in terms of building real utopias -democratic, egalitarian, alternative institutions- through the exercise of civil society’s social power over the economy and state. Wright identifies ‘eroding capitalism’ as the framework for thinking about the strategic logics of gradually diminishing the dominance of capitalism. Both thinkers envision the transition toward socialism in terms of democratic experimentation; Honneth is more attentive to the immanent norms of social life, whereas Wright is better aware of the power of antagonistic structures. This paper attempts to synthesize the ideas of Honneth and Wright. It will show that Honneth’s critique of capitalism suffers from certain ambiguities because he attributes normative legitimacy to existing institutions, resulting in arguments that do not problematize aspects of capitalist structures. This paper will argue that incorporating the notion of power and thematizing the erosion of capitalism as a long-term goal for socialist change will allow Honneth to think more precisely about the conditions for realizing social freedom, in a manner that is still consistent with the immanent critique tradition. Such reformulation will result in a concept of social freedom that is less static and rooted in functional teleology and more oriented toward creative agency and experimental democracy.Keywords: Axel Honneth, immanent critique, real utopias, social freedom, socialism
Procedia PDF Downloads 1514613 Nano-Structured Hydrophobic Silica Membrane for Gas Separation
Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe
Abstract:
Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method
Procedia PDF Downloads 1274612 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter
Authors: Asma Ben Rhouma, Mahmoud Hamouda
Abstract:
The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.Keywords: delta inverter, SPWM, simulation, DSP implementation
Procedia PDF Downloads 1654611 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method
Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk
Abstract:
In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS
Procedia PDF Downloads 2114610 Visualization Tool for EEG Signal Segmentation
Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh
Abstract:
This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation
Procedia PDF Downloads 4054609 Impact of Social Media on the Functioning of the Indian Government: A Critical Analysis
Authors: Priya Sepaha
Abstract:
Social media has loomed as the most effective tool in recent times to flag the causes, contents, opinions and direction of any social movement and has demonstrated that it will have a far-reaching effect on government as well. This study focuses on India which has emerged as the fastest growing community on social media. Social movement activists, in particular, have extensively utilized the power of digital social media to streamline the effectiveness of social protest on a particular issue through extensive successful mass mobilizations. This research analyses the role and impact of social media as a power to catalyze the social movements in India and further seeks to describe how certain social movements are resisted, subverted, co-opted and/or deployed by social media. The impact assessment study has been made with the help of cases, policies and some social movement which India has witnessed the assertion of numerous social issues perturbing the public which eventually paved the way for remarkable judicial decisions. The paper concludes with the observations that despite its pros and cons, the impacts of social media on the functioning of the Indian Government have demonstrated that it has already become an indispensable tool in the hands of social media-suave Indians who are committed to bring about a desired change.Keywords: social media, social movements, impact, law, government
Procedia PDF Downloads 1664608 Distribution Pattern of Faecal Egg output and Herbage Larval Populations of Gastrointestinal Nematodes in Naturally Infected Scottish Blackface Lambs in East Scotland
Authors: M. Benothman, M. Stear, S. Mitchel, O. Abuargob, R. Vijayan, Sateesh Kumar
Abstract:
Parasitic gastroenteritis caused by gastrointestinal nematodes (GIN) is a serious pathological complication in lambs. The dispersion pattern of GIN influences their transmission dynamics. There is no proper study on this aspect in Scottish Blackface lambs in Scotland. This study undertaken on 758 naturally infected, weaned, straight bred Scottish Blackface lambs in high land pasture in East Scotland extending over three months (August, September and October) in a year, and for three successive years demonstrated that the distribution of faecal egg counts (FEC) followed negative binomial distribution, with the exception of a few samples. The inverse index of dispersion (k) ranged between 0.19 ± 0.51 and 1.09 ± 0.08. Expression of low k values resulting from aggregation in a few individuals, suggested that a small proportion of animals with heavy parasitic influx significantly influenced the level of pasture contamination and parasite transmission. There was no discernible trend in the mean faecal egg count (FEC) and mean herbage larval population (HLP) in different months and in different years. Teladorsagia was the highest pasture contaminant (85.14±14.30 L3/kdh) followed by Nematodirus (53.00±13.96), Ostertagia (28.21±10.18) and Cooperia (11.43±5.55). The results of this study would be useful in instituting gastrointestinal nematode control strategies for sheep in cool temperate agro-ecological zones.Keywords: blackface lamb, faecal egg count, Gastrointestinal nematodes, herbage larval population, Scotland
Procedia PDF Downloads 4304607 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 1294606 Modifiable Poly Methacrylic Acid-Co-Acrylonitrile Microgels Fabricated with Cu and Co Nanoparticles for Simultaneous Catalytic Reduction of Multiple Compounds
Authors: Muhammad Ajmal, Muhammad Siddiq, Nurettin Sahiner
Abstract:
We prepared poly(methacrylic acid-co-acrylonitrile) (p(MAc-co-AN)) microgels by inverse suspension polymerization, and converted the nitrile groups into amidoxime groups to obtain more hydrophilic amidoximated poly(methacrylic acid-co-acrylonitile) (amid-p(MAc-co-AN)) microgels. Amid-microgels were used as microreactors for in situ synthesis of copper and cobalt nanoparticles. Cu (II) and Co (II) ions were loaded into microgels from their aqueous metal salt solutions and then converted to corresponding metal nanoparticle (MNP) by treating the loaded metal ions with sodium borohydride (NaBH4). The characterization of the prepared microgels and microgel metal nanoparticle composites was carried out by SEM, TEM and TG analysis. The amounts of metal nanoparticles within microgels were estimated by AAS measurements by dissolving the MNP entrapped within microgels by concentrated HCl acid treatment. Catalytic performances of the prepared amid-p(MAc-co-AN)-M (M: Cu, Co) microgel composites were investigated by using them as catalyst for the degradation of cationic and anionic organic dyes such as eosin Y (EY), methylene blue (MB) and methyl Orange (MO), and for the reduction of nitro aromatic pollutants like 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP) to their corresponding amino phenols. Here, we also report for the first time, the simultaneous degradation/reduction of MB, EY, and 4-NP by amid-p(MAc-co-AN)-Cu microgel composites. Different parameters affecting the reduction rates such as metal types, amount of catalysts, temperature and the amount of reducing agent were investigated.Keywords: microgels, nanoparticles, catalyst, pollutants
Procedia PDF Downloads 3594605 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes
Authors: Baghdasaryan Marinka
Abstract:
The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.Keywords: electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree
Procedia PDF Downloads 2734604 Dynamics of Follicle Vascular Perfusion, Dimensions, Antrum Growth, Circulating Angiogenic Mediators from Deviation to Ovulation
Authors: Elshymaa A. Abdelnaby, Amal M. Abo El-Maaty
Abstract:
This study aimed to investigate dynamics of dominant and subordinate follicles change in dimensions, vascularity and angiogenic hormones after completing deviation till ovulation. Five cyclic mares were subjected to daily blood sampling and rectal Doppler ultrasonographic examination along two estrous cycles. Using electronic calipers, three diameters were recorded for each follicle to estimate area and volume. Leptin, Insulin-like growth factor-I (IGF-1), nitric oxide (NO) and estradiol (E2) were measured. Area of color- and power- Doppler modes with area and circumference of the first (preovulatory) and subordinate follicles were measured in pixels. Follicles were classified into F1O (preovulatory), F2O (subordinate), F3O (third ovulatory) on the dominant ovary and F1C (first contra) and F2C (second contra) on the contralateral ovary. Days before ovulation significantly (P < 0.0001) affected diameter, circumference, area, volume, area/pixel and antrum area of the preovulatory follicle. With the increase of diameter, area, volume area/pixel, antrum area/pixel and circumference of F1O, those of all subordinates were decreasing. The blue blood flow area, power and power minus red blood flow area of F1O increased from day -6 till day of ovulation (day 0), but red blood flow area significantly decreased. F1O had the lowest percent of colored pixels and percent of the colored pixels without antrum. Estradiol and leptin increased from day -6 till day 0 but IGF-1 decreased till day -1 but NO achieved a peak on day -3 then decreased till day 0. In conclusion, antrum growth, blood flow and angiogenic hormones play a role in maturation and ovulation of the dominant follicle in mares.Keywords: angiogenic hormones, blood flow, mare, preovulatory follicle
Procedia PDF Downloads 3184603 A 'German Europe' Emerged from the Euro Crisis: A Study through the Portuguese Quality Press
Authors: Ana Luísa Mouro
Abstract:
When the financial crisis exploded in 2008 in the United States, unleashed by the collapse of Lehman Brothers, and contaminated the economies of the European periphery, Germany appeared as the anchor of the stability of all European institutions and countries in difficulty. The solutions provided by the German government have triggered a deep political debate about the key position Germany has conquered at the heart of Europe - a new “German question” has been created. Some say Germany has achieved by peaceful means what was not able to get through military conquest - the domination of Europe – and many fear Germany’s economic power. This debate about the new role of Germany in Europe has received special attention in the European media and Portugal has not been the exception. The present study has been based on the survey, selection and critical analysis of news reporting, opinion articles, interviews and editorials, published in the weekly Expresso and in the daily Público, between 2008 and 2015 (year of the 25th anniversary of Germany’s unification). The findings of this study will show the paradox of German power and its relevance for Europe’s future.Keywords: Euro crises, German Europe, intercultural hermeneutics, Portuguese quality press
Procedia PDF Downloads 2474602 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 1744601 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee
Authors: Lior B. Navon
Abstract:
The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.Keywords: biopower, female ejaculation, new media, bodily knowledge
Procedia PDF Downloads 1614600 Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement
Authors: Masao Nakagawa, Toshiki Hirogaki, Eiichi Aoyama, Mohamed Ali Ben Abbes
Abstract:
A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes.Keywords: dynamic characteristic, gear, planetary gear set, torque measuring
Procedia PDF Downloads 3844599 Energy Consumption Forecast Procedure for an Industrial Facility
Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova
Abstract:
We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting
Procedia PDF Downloads 4494598 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower
Procedia PDF Downloads 3024597 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing
Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang
Abstract:
Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting
Procedia PDF Downloads 2914596 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation
Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz
Abstract:
Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.Keywords: froth flotation, gelatinization, sodium hydroxide, starches and flours
Procedia PDF Downloads 3684595 The Analysis of Loss-of-Excitation Algorithm for Synchronous Generators
Authors: Pavle Dakić, Dimitrije Kotur, Zoran Stojanović
Abstract:
This paper presents the results of the study in which the excitation system fault of synchronous generator is simulated. In a case of excitation system fault (loss of field), distance relay is used to prevent further damage. Loss-of-field relay calculates complex impedance using measured voltage and current at the generator terminals. In order to obtain phasors from sampled measured values, discrete Fourier transform is used. All simulations are conducted using Matlab and Simulink software package. The analysis is conducted on the two machine system which supplies equivalent load. While simulating loss of excitation on one generator in different conditions (at idle operation, weakly loaded, and fully loaded), diagrams of active power, reactive power, and measured impedance are analyzed and monitored. Moreover, in the simulations, the effect of generator load on relay tripping time is investigated. In conclusion, the performed tests confirm that the fault in the excitation system can be detected by measuring the impedance.Keywords: loss-of-excitation, synchronous generator, distance protection, Fourier transformation
Procedia PDF Downloads 3344594 Hybrid PWM Techniques for the Reduction of Switching Losses and Voltage Harmonics in Cascaded Multilevel Inverters
Authors: Venkata Reddy Kota
Abstract:
These days, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements. Also, it is difficult to connect the traditional converters to the high and medium voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Different modulation topologies like Sinusoidal Pulse Width Modulation (SPWM), Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) are available for multilevel inverters. In this work, different hybrid modulation techniques which are combination of fundamental frequency modulation and multilevel sinusoidal-modulation are compared. The main characteristic of these modulations are reduction of switching losses with good harmonic performance and balanced power loss dissipation among the device. The proposed hybrid modulation schemes are developed and simulated in Matlab/Simulink for cascaded H-bridge inverter. The results validate the applicability of the proposed schemes for cascaded multilevel inverter.Keywords: hybrid PWM techniques, cascaded multilevel inverters, switching loss minimization
Procedia PDF Downloads 6184593 Nigeria Energy Security: The Role of Solar Batteries
Authors: Ihugba Okezie A., Oguzie Emeka E.
Abstract:
Nigeria's renewable energy market is expanding due to increased environmental awareness, supportive government policies, and the need for energy diversification. This paper examines the role of solar batteries in enhancing Nigeria's energy security. With growing energy demands and frequent power outages, integrating solar batteries presents a viable solution to stabilize the energy supply. The study investigates the current state of solar battery technology in Nigeria, its economic and environmental benefits, and the challenges to implementation. Through a literature review, case studies, and stakeholder interviews, the paper provides a comprehensive analysis of solar batteries' contribution to a resilient energy future. Key players include Engie SA, TotalEnergies SE, Starsight Energy, Enel SpA, and North-South Power Co. Ltd. Challenges include high upfront costs, inadequate policies, weak infrastructure, and security risks. The paper recommends that the government should strengthen policies and incentives to encourage investments through tax breaks, subsidies, and financial incentives.Keywords: renewable energy, solar batteries, energy security, Nigeria’s electricity generation, job creation
Procedia PDF Downloads 514592 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia
Authors: Benedictus Asriparusa
Abstract:
Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.Keywords: estimation, solar radiation power, REST 2, solar transmittance
Procedia PDF Downloads 431