Search results for: challenges of blended learning
10129 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 7710128 Research Related to the Academic Learning Stress, Reflected into PubMed Website Publications
Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau, Dong Hun Kwak, Nicolae-Alexandru Colceriu
Abstract:
Background: Academic environment led, in time, to the birth of some research subjects concluded with many publications. One of these issues is related to the learning stress. Thus far, the PubMed website displays an impressive number of papers related to the academic stress. Aims: Through this study, we aimed to evaluate the research concerning academic learning stress (ALS), by a retrospective analysis of PubMed publications. Methods: We evaluated the ALS, considering: a) different keywords as - ‘academic stress’ (AS), ‘academic stressors’ (ASs), ‘academic learning stress’ (ALS), ‘academic student stress’ (ASS), ‘academic stress college’ (ASC), ‘medical academic stress’ (MAS), ‘non-medical academic stress’ (NMAS), ‘student stress’ (SS), ‘nursing student stress’ (NS), ‘college student stress’ (CSS), ‘university student stress’ (USS), ‘medical student stress’ (MSS), ‘dental student stress’ (DSS), ‘non-medical student stress’ (NMSS), ‘learning students stress’ (LSS), ‘medical learning student stress’ (MLSS), ‘non-medical learning student stress’ (NMLSS); b) the year average for decades; c) some selection filters provided by PubMed website: Article types - Journal Article (JA), Clinical Trial (CT), Review (R); Species - Humans (H); Sex - Male (M) and Female (F); Ages - 13-18, 19-24, 19-44. Statistical evaluation was made on the basis of the Student test. Results: There were differences between keywords, referring to all filters. Nevertheless, for all keywords were noted the following: the majority of studies have indicated that subjects were humans; there were no important differences between the number of subjects M and F; the age of participants was mentioned only in some studies, predominating those with teenagers and subjects between 19-24 years. Conclusions: 1) PubMed publications document that concern for the research field of academic stress, lasts for 56 years and was materialized in more than 5.010 papers. 2) Number of publications in the field of academic stress varies depending on the selected keywords: those with a general framing (AS, ASs, ALS, ASS, SS, USS, LSS) are more numerous than those with a specific framing (ASC, MAS, NMAS, NS, CSS, MSS, DSS, NMSS, MLSS, NMLSS); those concerning the academic medical environment (MAS, NS, MSS, DSS, MLSS) prevailed compared to the non-medical environment (NMAS, NMSS, NMLSS). 3) Most of the publications are included at JA, of which a small percentage are CT and R. 4) Most of the academic stress studies were conducted with subjects both M and F, most aged under 19 years and between 19-24 years.Keywords: academic stress, student stress, academic learning stress, medical student stress
Procedia PDF Downloads 56010127 Teaching Neuroscience from Neuroscience: an Approach Based on the Allosteric Learning Model, Pathfinder Associative Networks and Teacher Professional Knowledge
Authors: Freddy Rodriguez Saza, Erika Sanabria, Jair Tibana
Abstract:
Currently, the important role of neurosciences in the professional training of the physical educator is known, highlighting in the teaching-learning process aspects such as the nervous structures involved in the adjustment of posture and movement, the neurophysiology of locomotion, the process of nerve impulse transmission, and the relationship between physical activity, learning, and cognition. The teaching-learning process of neurosciences is complex, due to the breadth of the contents, the diversity of teaching contexts required, and the demanding ability to relate concepts from different disciplines, necessary for the correct understanding of the function of the nervous system. This text presents the results of the application of a didactic environment based on the Allosteric Learning Model in morphophysiology students of the Faculty of Military Physical Education, Military School of Cadets of the Colombian Army (Bogotá, Colombia). The research focused then, on analyzing the change in the cognitive structure of the students on neurosciences. Methodology. [1] The predominant learning styles were identified. [2] Students' cognitive structure, core concepts, and threshold concepts were analyzed through the construction of Pathfinder Associative Networks. [3] Didactic Units in Neuroscience were designed to favor metacognition, the development of Executive Functions (working memory, cognitive flexibility, and inhibitory control) that led students to recognize their errors and conceptual distortions and to overcome them. [4] The Teacher's Professional Knowledge and the role of the assessment strategies applied were taken into account, taking into account the perspective of the Dynamizer, Obstacle, and Questioning axes. In conclusion, the study found that physical education students achieved significant learning in neuroscience, favored by the development of executive functions and by didactic environments oriented with the predominant learning styles and focused on increasing cognitive networks and overcoming difficulties, neuromyths and neurophobia.Keywords: allosteric learning model, military physical education, neurosciences, pathfinder associative networks, teacher professional knowledge
Procedia PDF Downloads 23510126 Fight against Money Laundering with Optical Character Recognition
Authors: Saikiran Subbagari, Avinash Malladhi
Abstract:
Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition
Procedia PDF Downloads 14410125 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit
Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari
Abstract:
Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.Keywords: framework, mobile technology, augmented reality, pre-literacy skills
Procedia PDF Downloads 59310124 Neuronal Mechanisms of Observational Motor Learning in Mice
Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho
Abstract:
Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive
Procedia PDF Downloads 8610123 The Use of Authentic Videos to Change Learners’ Negative Attitudes and Perceptions toward Grammar Learning
Authors: Khaldi Youcef
Abstract:
This investigation seeks to inquire into the effectiveness of using authentic videos for grammar teaching purposes. In this investigation, an English animated situation, Hercules, was used as a type of authentic multimedia to teach a particular grammatical structure, namely conditional sentences. This study also aims at investigating the EFL learners’ attitudes toward grammar learning after being exposed to such an authentic video. To reach that purpose, 56 EFL learners were required ultimately to respond to a questionnaire with an aim to reveal their attitudes towards grammar as a language entity and as a subject for being learned. Then, as a second stage of the investigation, the EFL learners were divided into a control group and an experimental group with 28 learners in each. The first group was taught grammar -conditional sentences- using a deductive-inductive approach, while the second group was exposed to an authentic video to learn conditional sentences. There was a post-lesson stage that included a questionnaire to be answered by learners of each group. The aim of this stage is to capture any change in learners' attitudes shown in the pre-lesson questionnaire. The findings of the first stage revealed learners' negative attitudes towards grammar learning. And the third stage results showed the effectiveness of authentic videos in entirely turning learners' attitudes toward grammar learning to be significantly positive. Also, the utility of authentic videos in highly motivating EFL learners can be deduced. The findings of this survey asserted the need for incorporation and integration of authentic videos in EFL classrooms as they resulted in rising effectively learners’ awareness of grammar and looking at it from a communicative perspective.Keywords: multimedia, authentic videos, negative attitudes, grammar learning, EFL learners
Procedia PDF Downloads 9710122 Web-Based Learning in Nursing: The Sample of Delivery Lesson Program
Authors: Merve Kadioğlu, Nevin H. Şahin
Abstract:
Purpose: This research is organized to determine the influence of the web-based learning program. The program has been developed to gain information about normal delivery skill that is one of the topics of nursing students who take the woman health and illness. Material and Methods: The methodology of this study was applied as pre-test post-test single-group quasi-experimental. The pilot study consisted of 28 nursing student study groups who agreed to participate in the study. The findings were gathered via web-based technologies: student information form, information evaluation tests, Web Based Training Material Evaluation Scale and web-based learning environment feedback form. In the analysis of the data, the percentage, frequency and Wilcoxon Signed Ranks Test were used. The Web Based Instruction Program was developed in the light of full learning model, Mayer's research-based multimedia development principles and Gagne's Instructional Activities Model. Findings: The average scores of it was determined in accordance with the web-based educational material evaluation scale: ‘Instructional Suitability’ 4.45, ‘Suitability to Educational Program’ 4.48, ‘Visual Adequacy’ 4.53, ‘Programming Eligibility / Technical Adequacy’ 4.00. Also, the participants mentioned that the program is successful and useful. A significant difference was found between the pre-test and post-test results of the seven modules (p < 0.05). Results: According to pilot study data, the program was rated ‘very good’ by the study group. It was also found to be effective in increasing knowledge about normal labor.Keywords: normal delivery, web-based learning, nursing students, e-learning
Procedia PDF Downloads 17610121 The Effect of Observational Practice on the Volleyball Service Learning with Emphasis on the Role of Self–Efficacy
Authors: Majed Zobairy, Payam Mohammadpanahi
Abstract:
Introduction: Skill movement education is one of extremely important duty for sport coaches and sport teachers. Researchers have done lots of studies in this filed to gain the best methodology in movement learning. One of the essential aspects in skill movement education is observational learning. Observational learning, or learning by watching demonstrations, has been characterized as one of the most important methods by which people learn variety of skill and behaviours.The purpose of this study was determined the effect of observational practice on the volleyball service learning with emphasis on the Role of Self–Efficacy. Methods: The Sample consisted of100 male students was assigned accessible sampling technique and homogeneous manner with emphasis on the Role of Self–Efficacy level to 4 groups. The first group performed physical training, the second group performed observational practice task, the third practiced physically and observationally and the fourth group served as the control group. The experimental groups practiced in a one day acquisition and performed the retention task, after 72 hours. Kolmogorov-Smirnov test and independent t-test were used for Statistical analyses. Results and Discussion: Results shows that observation practice task group can significantly improve volleyball services skills acquisition (T=7.73). Also mixed group (physically and observationally) is significantly better than control group regarding to volleyball services skills acquisition (T=7.04). Conclusion: Results have shown observation practice task group and mixed group are significantly better than control group in acquisition test. The present results are in line with previous studies, suggesting that observation learning can improve performance. On the other hand, results shows that self-efficacy level significantly effect on acquisition movement skill. In other words, high self-efficacy is important factor in skill learning level in volleyball service.Keywords: observational practice, volleyball service, self–efficacy, sport science
Procedia PDF Downloads 39310120 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 12410119 Learning to Teach on the Cloud: Preservice EFL Teachers’ Online Project-Based Practicum Experience
Authors: Mei-Hui Liu
Abstract:
This paper reports 20 preservice EFL teachers’ learning-to-teach experience when they were engaged in an online project-based practicum implemented on a Cloud Platform. This 10-month study filled in the literature gap by documenting the impact of online project-based instruction on preservice EFL teachers’ professional development. Data analysis showed that the online practicum was regarded as a flexible mechanism offering chances of teaching practices without geographical barriers. Additionally, this project-based practice helped the participants integrate the theories they had learned and further foster them how to create a self-directed online learning environment. Furthermore, these preservice teachers with experiences of technology-enabled practicum showed their motivation to apply technology and online platforms into future instructional practices. Yet, this study uncovered several concerns encountered by these participants during this online field experience. The findings of this study rendered meaning and lessons for teacher educators intending to integrate online practicum into preservice training courses.Keywords: online teaching practicum, project-based learning, teacher preparation, English language education
Procedia PDF Downloads 36910118 Response of First Bachelor of Medicine, Bachelor of Surgery (MBBS) Students to Integrated Learning Program
Authors: Raveendranath Veeramani, Parkash Chand, H. Y. Suma, A. Umamageswari
Abstract:
Background and Aims: The aim of this study was to evaluate students’ perception of Integrated Learning Program[ILP]. Settings and Design: A questionnaire was used to survey and evaluate the perceptions of 1styear MBBS students at the Department of Anatomy at our medical college in India. Materials and Methods: The first MBBS Students of Anatomy were involved in the ILP on the Liver and extra hepatic biliary apparatus integrating the Departments of Anatomy, Biochemistry and Hepato-biliary Surgery. The evaluation of the ILP was done by two sets of short questionnaire that had ten items using the Likert five-point grading scale. The data involved both the students’ responses and their grading. Results: A majority of students felt that the ILP was better in as compared to the traditional lecture method of teaching.The integrated teaching method was better at fulfilling learning objectives (128 students, 83%), enabled better understanding (students, 94%), were more interesting (140 students, 90%), ensured that they could score better in exams (115 students, 77%) and involved greater interaction (100 students, 66%), as compared to traditional teaching methods. Most of the students (142 students, 95%) opined that more such sessions should be organized in the future. Conclusions: Responses from students show that the integrated learning session should be incorporated even at first phase of MBBS for selected topics so as to create interest in the medical sciences at the entry level and to make them understand the importance of basic science.Keywords: integrated learning, students response, vertical integration, horizontal integration
Procedia PDF Downloads 19810117 Collaborative Learning Strategies in Engineering Tuition Focused on Students’ Engagement
Authors: Maria Gonzalez Alriols, Itziar Egues, Maria A. Andres, Mirari Antxustegi
Abstract:
Peer to peer learning is an educational tool very useful to enhance teamwork and reinforce cooperation between mates. It is particularly successful to work with students of different level of previous knowledge, as it often happens among pupils of subjects in the first course of science and engineering studies. Depending on the performed pre-university academic itinerary, the acquired knowledge in disciplines as mathematics, physics, or chemistry may be quite different. This fact is an added difficulty to the tuition of first-course basic science subjects of engineering degrees, with inexperienced students that do not know each other. In this context, peer to peer learning applied in small groups facilitates the communication between mates and makes it easier for the students with low level to be helped by the ones with better prior knowledge. In this work, several collaborative learning strategies were designed to be applied in the tuition of the subject 'chemistry', which is imparted in the first course of an engineering degree. Students were organized in groups combining mates with different level of prior knowledge. The teaching role was offered to the more experienced students who were responsible for designing learning pills to help the other mates in their group. This workload was rewarded with an extra mark, and more extra points were offered to all the group mates if every student in the group reached a determined level at the end of the semester. It was very important to start these activities from the beginning of the semester in order to avoid absenteeism. The obtained results were positive as a higher percentage of mates signed up and passed the final exam, the obtained final marks were higher, and a much better atmosphere was observed in the class.Keywords: peer to peer tuition, collaborative learning, engineering instruction, chemistry
Procedia PDF Downloads 13910116 The Use of Creativity to Nudge Students Into Heutagogy: An Implementation in Graduate Business Education
Authors: Ricardo Bragança, Tom Vinaimont
Abstract:
This paper discusses the introduction of processes of self-determined learning (heutagogy) into a graduate course on financial modeling, using elements of entangled pedagogy and Biggs’ constructive alignment. To encourage learners to take control of their own learning journey and develop critical thinking and problem-solving skills, each session in the course receives tailor-made media-enhanced pedagogical assets. The design of those assets specifically supports entangled pedagogy, which opposes technological or pedagogical determinism in support of the collaborative integration of pedagogy and technology. Media assets for each of the ten sessions in this course consist of three components. The first component in this three-pronged approach is a game-cut-like cinematographic representation that introduces the context of the session. The second component represents a character from an open-source-styled community that encourages self-determined learning. The third component consists of a character, which refers to the in-person instructor and also aligns learning outcomes and assessment tasks, using Biggs’ constructive alignment, to the cinematographic and open-source-styled component. In essence, the course's metamorphosis helps students apply the concepts they've studied to actual financial modeling issues. The audio-visual media assets create a storyline throughout the course based on gamified and real-world applications, thus encouraging student engagement and interaction. The structured entanglement of pedagogy and technology also guides the instructor in the design of the in-class interactions and directs the focus on outcomes and assessments. The transformation process of this graduate course in financial modeling led to an institutional teaching award in 2021. The transformation of this course may be used as a model for other courses and programs in many disciplines to help with intended learning outcomes integration, constructive alignment, and Assurance of Learning.Keywords: innovative education, active learning, entangled pedagogy, heutagogy, constructive alignment, project based learning, financial modeling, graduate business education
Procedia PDF Downloads 7010115 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 7510114 Practice of Applying MIDI Technology to Train Creative Teaching Skills
Authors: Yang Zhuo
Abstract:
This study explores the integration of MIDI technology as one of the important digital technologies in music teaching, from the perspective of teaching practice, into the process of cultivating students' teaching skills. At the same time, the framework elements of the learning environment for music education students are divided into four aspects: digital technology supported learning space, new knowledge learning, teaching methods, and teaching evaluation. In teaching activities, more attention should be paid to students' subjectivity and interaction between them so as to enhance their emotional experience in teaching practice simulation. In the process of independent exploration and cooperative interaction, problems should be discovered and solved, and basic knowledge of music and teaching methods should be exercised in practice.Keywords: music education, educational technology, MIDI, teacher training
Procedia PDF Downloads 8210113 Motivation on Vocabulary and Reading Skill via Teacher-Created Website for Thai Students
Authors: P. Klinkesorn, S. Yordchim, T. Gibbs, J. Achariyopas
Abstract:
Vocabulary and reading skill were examined in terms of teaching and learning via teacher-created website. The aims of this study are 1) to survey students’ opinions on the teacher-created website for learning vocabulary and reading skill 2) to survey the students’ motivation for learning vocabulary and reading skill through the teacher-created website. Motivation was applied to the results of the questionnaires and interview forms. Finding suggests that Teacher-Created Website can increase students’ motivation to read more, build up a large stock of vocabulary and improve their understanding of the vocabulary. Implications for developing both social engagement and emotional satisfaction are discussed.Keywords: motivation, teacher-created website, Thai students, vocabulary and reading skill
Procedia PDF Downloads 46210112 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 39710111 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 9010110 Errors and Misconceptions for Students with Mathematical Learning Disabilities: Quest for Suitable Teaching Strategy
Authors: A. K. Tsafe
Abstract:
The study investigates the efficacy of Special Mathematics Teaching Strategy (SMTS) as against Conventional Mathematics Teaching Strategy (CMTS) in teaching students identified with Mathematics Learning Disabilities (MLDs) – dyslexia, Down syndrome, dyscalculia, etc., in some junior secondary schools around Sokoto metropolis. Errors and misconceptions in learning Mathematics displayed by these categories of students were observed. Theory of variation was used to provide a prism for viewing the MLDs from theoretical perspective. Experimental research design was used, involving pretest-posttest non-randomized approach. Pretest was administered to the intact class taught using CMTS before the class was split into experimental and control groups. Experimental group of the students – those identified with MLDs was taught with SMTS and later mean performance of students taught using the two strategies was sought to find if there was any significant difference between the performances of the students. A null hypothesis was tested at α = 0.05 level of significance. T-test was used to establish the difference between the mean performances of the two tests. The null hypothesis was rejected. Hence, the performance of students, identified with MLDs taught using SMTS was found to be better than their earlier performance taught using CMTS. The study, therefore, recommends amongst other things that teachers should be encouraged to use SMTS in teaching mathematics especially when students are found to be suffering from MLDs and exhibiting errors and misconceptions in the process of learning mathematics.Keywords: disabilities, errors, learning, misconceptions
Procedia PDF Downloads 9610109 A Development of Creative Instruction Model through Digital Media
Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom
Abstract:
This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.Keywords: teaching learning model, digital media, creative instruction model, Bo Kluea school
Procedia PDF Downloads 14210108 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology
Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy
Abstract:
Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.Keywords: legacy systems, redocumentation, big data analysis, parallel processing
Procedia PDF Downloads 4410107 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index
Authors: Kwaku Damoah
Abstract:
The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index
Procedia PDF Downloads 6110106 Impact of Flooding on Food Calorie Intake and Health Outcomes among Small Holder Farm Households in Koton Karfe Local Government Area of Kogi State, Nigeria
Authors: Cornelius Michael Ekenta, Aderonke Bashirat Mohammed, Sefi Ahmed
Abstract:
The research examined the impact of flooding on food calorie intake and health challenges among smallholder farm households in Koton Karfe Local Government Area of Kogi State, Nigeria. Purposive and random sampling techniques were used to select 130 farm households in selected villages in the area. Primary data were generated through the administration of a well-structured questionnaire. Data were analyzed with descriptive statistics, Double Difference Estimator (DDE), Calorie Intake Estimation Function, t-test, and multiple regressions. The result shows that farm households lost an average of 132, 950kg of selected crops amounting to about N20m ($56, 542) loose in income. Food daily calorie intake indicates a loss of an average of 715.18Kcal, showing a significant difference in calorie intake before and after flooding (t = 2.0629) at 5% probability. Furthermore, the health challenges most prevalent during flooding were malaria fever, typhoid fever, cholera, and dysentery. The determinants of daily calorie intake were age, household size, level of income, flooding, health challenges, and food price. The study concluded that flooding had negative impacts on crop output and income, daily food calorie intact, and health challenges of a farm household in the study area. It was recommended that the State Government should make adequate and proper arrangements to relocate residents of the area at the warning of possible flooding by the National Metrological Centre and should, through the State Emergency Management Agency (SEMA), provide relieve items to the residents to cushion the effects of the flooding.Keywords: calorie, cholera, flooding, health challenges, impact
Procedia PDF Downloads 14310105 The Influence of Teacher’s Non-Verbal Communication on Ondo State Secondary School Students’ Learning Outcomes in English Language
Authors: Bola M. Tunde-Awe
Abstract:
The study investigated the influence of teacher’s non-verbal communication on secondary school students’ learning outcomes in English language. The study was a survey research. Participants were three hundred Senior Secondary School II students randomly selected from ten schools in Akoko South West Local Government Area of Ondo State, Nigeria. The instrument used for data collection was a questionnaire containing twenty items on a four-point Likert scale which measured teacher’s use of three types of non-verbal communication modes: body movement, eye contact and spatial distance. The data collected was analysed using simple percentage. Findings revealed that teacher’s use of these non-verbal communication modes enhanced learners’ learning outcomes in English language: a total of 271 (90.33%) participants affirmed that teacher’s body language influenced their learning of English; 224 (74.66%) maintained the same stand for eye contact; while 202 (67.33%) affirmed that teacher’s spatial distance had positive influence. Consequent upon these findings, it was recommended that teachers of English language should constantly utilize non-verbal communication in their instructional delivery. Also, non-verbal communication modes should be included in teacher education programme to equip prospective pre-service teachers with the art of non-verbal communication.Keywords: non-verbal communication, body language, eye contact, spatial distance, learning outcomes
Procedia PDF Downloads 41810104 A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique
Authors: Wanlapa Boonsod, Nisachon Yangprasong, Udomsak Kitthawee
Abstract:
Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00).Keywords: convection, heat transfer, physics education, POE
Procedia PDF Downloads 21610103 Social Media Engagement in Academic Library to Advocate Participatory Service towards Dynamic Learning Community
Authors: Siti Marlia Abd Rahim, Mad Khir Johari Abdullah Sani
Abstract:
The ever-increasing use of social media applications by library users has raised concerns about the purpose and effectiveness of these platforms in academic libraries. While social media has the potential to revolutionize library services, its usage for non-educational purposes and security concerns have hindered its full potential. This paper aims to address the user behavioral factors affecting social media engagement in academic libraries and examine the impact of social media engagement on user participation. Additionally, it seeks to measure the effect of user participation in social media on the development of powerful learning communities.Keywords: social media adoption, social media engagement, academic library, social media in academic library, learning community
Procedia PDF Downloads 11410102 Deep Learning Based Road Crack Detection on an Embedded Platform
Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan
Abstract:
It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.Keywords: deep learning, embedded platform, real-time processing, road crack detection
Procedia PDF Downloads 33710101 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 15110100 Undergraduate Students’ Learning Experience and Practices in Multilingual Higher Education Institutions: The Case of the University of Luxembourg
Authors: Argyro Maria Skourmalla
Abstract:
The present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, has adopted a new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. With around 7.000 students, more than half of which are international students, the University is a meeting point for languages and cultures. This paper includes data from an online survey that with undergraduate students from different disciplines at the University of Luxembourg. Students shared their personal experience and opinions regarding language use in this higher education context, as well as practices they use in learning in this multilingual context. Findings show the role of technology in assisting students in different aspects of learning this multilingual context. At the same time, more needs to be done to avoid an exclusively monolingual paradigm in higher education. Findings also show that some languages remain ‘unseen’ in this context. Overall, even though linguistic diversity in this University is seen as an asset, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.Keywords: higher education, learning, linguistic diversity, multilingual practices
Procedia PDF Downloads 64