Search results for: adaptive random testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5989

Search results for: adaptive random testing

3859 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 354
3858 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention

Authors: Ashish Kumar, Kaptan Singh, Amit Saxena

Abstract:

Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.

Keywords: K-nearest neighbor, random forest, decision tree, pre-processing

Procedia PDF Downloads 93
3857 A Review of Methods for Handling Missing Data in the Formof Dropouts in Longitudinal Clinical Trials

Authors: A. Satty, H. Mwambi

Abstract:

Much clinical trials data-based research are characterized by the unavoidable problem of dropout as a result of missing or erroneous values. This paper aims to review some of the various techniques to address the dropout problems in longitudinal clinical trials. The fundamental concepts of the patterns and mechanisms of dropout are discussed. This study presents five general techniques for handling dropout: (1) Deletion methods; (2) Imputation-based methods; (3) Data augmentation methods; (4) Likelihood-based methods; and (5) MNAR-based methods. Under each technique, several methods that are commonly used to deal with dropout are presented, including a review of the existing literature in which we examine the effectiveness of these methods in the analysis of incomplete data. Two application examples are presented to study the potential strengths or weaknesses of some of the methods under certain dropout mechanisms as well as to assess the sensitivity of the modelling assumptions.

Keywords: incomplete longitudinal clinical trials, missing at random (MAR), imputation, weighting methods, sensitivity analysis

Procedia PDF Downloads 415
3856 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210

Procedia PDF Downloads 349
3855 Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels

Authors: Gülşen Akın Evingür, Önder Pekcan

Abstract:

The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel.

Keywords: composite gels, fluorescence, fractal, scaling

Procedia PDF Downloads 307
3854 Nonparametric Copula Approximations

Authors: Serge Provost, Yishan Zang

Abstract:

Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.

Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation

Procedia PDF Downloads 74
3853 Incidence of Disasters and Coping Mechanism among Farming Households in South West Nigeria

Authors: Fawehinmi Olabisi Alaba, O. R. Adeniyi

Abstract:

Farming households faces lots of disaster which contribute to endemic poverty. Anticipated increases in extreme weather events will exacerbate this. Primary data was administered to farming household using multi-stage random sampling technique. The result of the analysis shows that majority of the respondents (69.9%) are male, have mean household size, years of formal education and age of 5±1.14, 6±3.41, and 51.06±10.43 respectively. The major (48.9%) type of disaster experienced is flooding. Major coping mechanism adopted is sourcing for support from family and friends. Age, education, experience, access to extension agent, and mitigation control method contribute significantly to vulnerability to disaster. The major adaptation method (62.3%) is construction of drainage. The study revealed that the coping mechanisms employed may become less effective as increasingly fragile livelihood systems struggle to withstand disaster shocks. Thus there is need for training of the farmers on measures to adapt to mitigate the shock from disasters.

Keywords: adaptation, disasters, flooding, vulnerability

Procedia PDF Downloads 260
3852 Comparative Analysis of Photosynthetic and Antioxidative Responses of Two Species of Anabaena under Ni and As(III) Stress

Authors: Shivam Yadav, Neelam Atri

Abstract:

Cyanobacteria, the photosynthetic prokaryotes are indispensable components of paddy soil contribute substantially to the nitrogen economy however often appended with metal load. They are well known to play crucial roles in maintenance of soil fertility and rice productivity. Nickel is one such metal that plays a vital role in the cellular physiology, however at higher concentrations it exerts adverse effects. Arsenic is another toxic metalloid that negatively affects the cyanobacterial proliferation. However species-specific comparative responses under As and Ni is largely unknown. The present study focuses on the comparative effects of nickel (Ni2+) and arsenite (As(III)) on two diazotrophic cyanobacterial species (Anabaena doliolum and Anabaena sp. PCC7120) in terms of antioxidative aspects. Oxidative damage measured in terms of lipid peroxidation and peroxide content was significantly higher after As(III) than Ni treatment as compared to control. Similarly, all the studied enzymatic and non-enzymatic parameters of antioxidative defense system except glutathione reductase (GR) showed greater induction against As(III) than Ni. Moreover, integrating comparative analysis of all studied parameters also demonstrated interspecies variation in terms of stress adaptive strategies reflected through higher sensitivity of Anabaena doliolum over Anabaena PCC7120.

Keywords: antioxidative system, arsenic, cyanobacteria, nickel

Procedia PDF Downloads 154
3851 The Influence of Positive and Negative Affect on Perception and Judgement

Authors: Annamarija Paula

Abstract:

Modern psychology is divided into three distinct domains: cognition, affect, and conation. Historically, psychology devalued the importance of studying the effect in order to explain human behavior as it supposedly lacked both rational thought and a scientific foundation. As a result, affect remained the least studied domain for years to come. However, the last 30 years have marked a significant change in perspective, claiming that not only is affect highly adaptive, but it also plays a crucial role in cognitive processes. Affective states have a crucial impact on human behavior, which led to fundamental advances in the study of affective states on perception and judgment. Positive affect and negative affect are distinct entities and have different effects on social information processing. In addition, emotions of the same valence are manifested in distinct and unique physiological reactions indicating that not all forms of positive or negative affect are the same or serve the same purpose. The effect plays a vital role in perception and judgments, which impacts the validity and reliability of memory retrieval. The research paper analyzes key findings from the past three decades of observational and empirical research on affective states and cognition. The paper also addresses the limitations connected to the findings and proposes suggestions for possible future research.

Keywords: memory, affect, perception, judgement, mood congruency effect

Procedia PDF Downloads 130
3850 Students’ Views on Mathematics Learning: A Cross-Sectional Survey of Senior Secondary Schools Students in Katsina State of Nigeria

Authors: Fahad Suleiman

Abstract:

The aim of this paper is to study students’ view on mathematics learning in Katsina State Senior Secondary Schools of Nigeria, such as their conceptions of mathematics, attitudes toward mathematics learning, etc. A questionnaire was administered to a random sample of 1,225 senior secondary two (SS II) students of Katsina State in Nigeria. The data collected showed a clear picture of the hurdles that affect the teaching and learning of mathematics in our schools. Problems such as logistics and operational which include shortage of mathematics teachers, non–availability of a mathematics laboratory, etc. were identified. It also depicted the substantial trends of changing views and attitudes toward mathematics across secondary schools. Students’ responses to the conception of mathematics were consistent and they demonstrated some specific characteristics of their views in learning mathematics. This survey has provided useful information regarding students’ needs and aspirations in mathematics learning for curriculum planners and frontline teachers for future curriculum reform and implementation.

Keywords: attitudes, mathematics, students, teacher

Procedia PDF Downloads 327
3849 An Axiomatic Approach to Constructing an Applied Theory of Possibility

Authors: Oleksii Bychkov

Abstract:

The fundamental difference between randomness and vagueness is that the former requires statistical research. These issues were studied by Zadeh L, Dubois D., Prad A. The theory of possibility works with expert assessments, hypotheses, etc. gives an idea of the characteristics of the problem situation, the nature of the goals and real limitations. Possibility theory examines experiments that are not repeated. The article discusses issues related to the formalization of a fuzzy, uncertain idea of reality. The author proposes to expand the classical model of the theory of possibilities by introducing a measure of necessity. The proposed model of the theory of possibilities allows us to extend the measures of possibility and necessity onto a Boolean while preserving the properties of the measure. Thus, upper and lower estimates are obtained to describe the fact that the event will occur. Knowledge of the patterns that govern mass random, uncertain, fuzzy events allows us to predict how these events will proceed. The article proposed for publication quite fully reveals the essence of the construction and use of the theory of probability and the theory of possibility.

Keywords: possibility, artificial, modeling, axiomatics, intellectual approach

Procedia PDF Downloads 33
3848 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing

Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan

Abstract:

This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.

Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium

Procedia PDF Downloads 297
3847 English Title Adaptive Comparison of Outdoor and Indoor Social Security in Damaged Area and New Residential Complex with Two-Way Anova Case Study: Qasr-Al-Dasht and Moalem District in Shiraz

Authors: Homa Parmoon, Narges Hamzeh

Abstract:

Since today's urban spaces are disposed towards behavioral disorders and lack of security, both qualitative and quantitative aspects of security especially social and physical security are considered as basic necessities in urban planning. This research focused on the variable of place of living, examined social security in the old and new textures, and investigated the amount of residents’ social security in Shiraz including safety, financial, emotional and moral security. To this end, two neighborhoods in region 1 of Shiraz- Qasr-Al-Dasht (old texture) and Moalem (new texture)- were examined through a comparative study of 60 samples lived in two neighborhoods. Data were gathered through two-way ANOVA between the variables of residential context and internal and external security. This analysis represents the significance or insignificance of the model as well as the individual effects of each independent variable on the dependent variable. It was tested by ANCOVA and F-test. Research findings indicated place of living has a significant effect on families’ social security. The safety, financial, emotional, and moral security also represented a great impact on social security. As a result, it can be concluded that social security changes with the changing in place of living.

Keywords: social security, damaged area, two-way ANOVA, Shiraz

Procedia PDF Downloads 139
3846 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 110
3845 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit

Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey

Abstract:

Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.

Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D

Procedia PDF Downloads 183
3844 Perceived Parenting Styles and Body Dissatisfaction among Women

Authors: Tazvin Ijaz, Aisha Shahid Sheikh

Abstract:

The current study was conducted to explore the relationship between body dissatisfaction and the perceived parenting styles of women. For the purpose of study a sample of adult women (N=308) was drawn through the process of stratified random sampling. The sample consisted of women belonging to different categories which were based on their occupation. Two instruments, the Body Dissatisfaction Scale (BDSS) and Perceived Parenting Styles (PPSS) were used in the study to find the relationship between the two variables. The results showed that the controlling parenting style in father led to higher body dissatisfaction while the nurturing parenting style lead to lesser symptoms of body dissatisfaction. The results also proved that the controlling parenting style in mother also lead to high symptoms of body dissatisfaction as well. It was revealed that the women with high education showed more body dissatisfaction than women with lower education. It was also seen that there was a significant difference in the body dissatisfaction of working and the non-working women.

Keywords: body dissatisfaction, perceived parenting styles, Pakistani women, gender

Procedia PDF Downloads 330
3843 Reminiscence Bump in Autobiographical Memory of Freedom Fighters in Bangladesh

Authors: Eamin Zahan Heanoy, Asheek Mohammad Shimul

Abstract:

The purpose of the present study was to address theoretical issues of reminiscence bump in autobiographical memory using the freedom fighters of Bangladesh as participants. It was assumed that they had a lot of negative memories during the liberation war in 1971 and those events would reflect the construction of reminiscence bump. Three hundred and twenty (320) freedom fighters were selected using mixed method (purposive and random) sampling technique. The freedom fighters were taken from 10 randomly chosen districts of 64. The participants recalled and dated autobiographical memories from across the lifespan. The age of the participants was between 50 to 80+ years. Memories were encoded at the time of the age when the events occurred. As expected the reminiscence bump, preferential recall of memories from second and third decade was observed. Results indicate that the bump for the participants was found 16 to 26 years. And most remarkably, they recalled most of the memories from 1971, the liberation war. Different retrieval curve has been found for male and female participants. The results have been discussed in the light of recent developments in reminiscence bump research.

Keywords: autobiographical memory, freedom fighters, liberation war, reminiscence bump

Procedia PDF Downloads 233
3842 Physical Model Testing of Storm-Driven Wave Impact Loads and Scour at a Beach Seawall

Authors: Sylvain Perrin, Thomas Saillour

Abstract:

The Grande-Motte port and seafront development project on the French Mediterranean coastline entailed evaluating wave impact loads (pressures and forces) on the new beach seawall and comparing the resulting scour potential at the base of the existing and new seawall. A physical model was built at ARTELIA’s hydraulics laboratory in Grenoble (France) to provide insight into the evolution of scouring overtime at the front of the wall, quasi-static and impulsive wave force intensity and distribution on the wall, and water and sand overtopping discharges over the wall. The beach was constituted of fine sand and approximately 50 m wide above mean sea level (MSL). Seabed slopes were in the range of 0.5% offshore to 1.5% closer to the beach. A smooth concrete structure will replace the existing concrete seawall with an elevated curved crown wall. Prior the start of breaking (at -7 m MSL contour), storm-driven maximum spectral significant wave heights of 2.8 m and 3.2 m were estimated for the benchmark historical storm event dated of 1997 and the 50-year return period storms respectively, resulting in 1 m high waves at the beach. For the wave load assessment, a tensor scale measured wave forces and moments and five piezo / piezo-resistive pressure sensors were placed on the wall. Light-weight sediment physical model and pressure and force measurements were performed with scale 1:18. The polyvinyl chloride light-weight particles used to model the prototype silty sand had a density of approximately 1 400 kg/m3 and a median diameter (d50) of 0.3 mm. Quantitative assessments of the seabed evolution were made using a measuring rod and also a laser scan survey. Testing demonstrated the occurrence of numerous impulsive wave impacts on the reflector (22%), induced not by direct wave breaking but mostly by wave run-up slamming on the top curved part of the wall. Wave forces of up to 264 kilonewtons and impulsive pressure spikes of up to 127 kilonewtons were measured. Maximum scour of -0.9 m was measured for the new seawall versus -0.6 m for the existing seawall, which is imputable to increased wave reflection (coefficient was 25.7 - 30.4% vs 23.4 - 28.6%). This paper presents a methodology for the setup and operation of a physical model in order to assess the hydrodynamic and morphodynamic processes at a beach seawall during storms events. It discusses the pros and cons of such methodology versus others, notably regarding structures peculiarities and model effects.

Keywords: beach, impacts, scour, seawall, waves

Procedia PDF Downloads 153
3841 Motivating Factors to Use Electric Vehicles Based on Behavioral Intention Model in South Korea

Authors: Seyedsamad Tahani, Samira Ghorbanpour

Abstract:

The global warming crisis forced humans to consider their place in the world and the earth's future. In this regard, Electric Vehicles (EVs) are a significant step toward protecting the environment. By identifying factors that influence people's behavior intentions toward using Electric Vehicles (EV), we proposed a theoretical model by extending the Technology Acceptance Model (TAM), including three more concepts, Subjective Norm (SN), Self-Efficacy (SE), and Perceived Behavior Control (PBC). The study was conducted in South Korea, and a random sample was taken at a specific time. In order to collect data, a questionnaire was created in a Google Form and sent via Kakao Talk, a popular social media application used in Korea. There were about 220 participants in this survey. However, 201 surveys were completely done. The findings revealed that all factors in the TAM model and the other added concepts such as subjective norms, self-efficacy and perceived behavior control significantly affect the behavioral intention of using EVs.

Keywords: electric vehicles, behavioral intention, perceived trust, perceived enjoyment, self-efficacy

Procedia PDF Downloads 134
3840 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning

Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana

Abstract:

Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.

Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning

Procedia PDF Downloads 36
3839 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 280
3838 Design of Composite Joints from Carbon Fibre for Automotive Parts

Authors: G. Hemath Kumar, H. Mohit, K. Karthick

Abstract:

One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.

Keywords: carbon fiber, FRP composite, MMC, automotive

Procedia PDF Downloads 409
3837 The Determinant Factors of Technology Adoption for Improving Firm’s Performance; Toward a Conceptual Model

Authors: Zainal Arifin, Avanti Fontana

Abstract:

Considering that TOE framework is the most useful instrument for studying technology adoption in firm context, this paper will analyze the influence of technological, organizational and environmental (TOE) factors to the Dynamic capabilities (DCs) associated with technology adoption strategy for improving the firm’s performance. Focusing on the determinant factors of technology adoption at the firm level, the study will contribute to the broader study of resource base view (RBV) and dynamic capability (DC). There is no study connecting directly the TOE factors to the DCs, this paper proposes technology adoption as a functional competence/capability which mediates a relationship between technology adoptions with firm’s performance. The study wants to show a conceptual model of the indirect effects of DCs at the firm level, which can be key predictors of firm performance in dynamic business environment. The results of this research is mostly relevant to top corporate executives (BOD) or top management team (TMT) who seek to provide some supporting ‘hardware’ content and condition such as technological factors, organizational factors, environmental factors, and to improve firm's ‘software ‘ ability such as adaptive capability, absorptive capability and innovative capability, in order to achieve a successful technology adoption in organization. There are also mediating factors which are elaborated at this paper; timing and external network. A further research for showing its empirical results is highly recommended.

Keywords: technology adoption, TOE framework, dynamic capability, resources based view

Procedia PDF Downloads 332
3836 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 74
3835 Optimizing Load Shedding Schedule Problem Based on Harmony Search

Authors: Almahd Alshereef, Ahmed Alkilany, Hammad Said, Azuraliza Abu Bakar

Abstract:

From time to time, electrical power grid is directed by the National Electricity Operator to conduct load shedding, which involves hours' power outages on the area of this study, Southern Electrical Grid of Libya (SEGL). Load shedding is conducted in order to alleviate pressure on the National Electricity Grid at times of peak demand. This approach has chosen a set of categories to study load-shedding problem considering the effect of the demand priorities on the operation of the power system during emergencies. Classification of category region for load shedding problem is solved by a new algorithm (the harmony algorithm) based on the "random generation list of category region", which is a possible solution with a proximity degree to the optimum. The obtained results prove additional enhancements compared to other heuristic approaches. The case studies are carried out on SEGL.

Keywords: optimization, harmony algorithm, load shedding, classification

Procedia PDF Downloads 397
3834 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 167
3833 The Language Use of Middle Eastern Freedom Activists' Speeches: A Gender Perspective

Authors: Sulistyaningtyas

Abstract:

Examining the role of Middle Eastern freedom activists’ speech based on gender perspective is considered noteworthy because the society in the Middle East is patriarchal. This research aims to examine the language use of the Middle Eastern freedom activists’ speeches through gender perspective. The data sources are from male and female Middle Eastern freedom activists’ speech videos. In analyzing the data, the theories employed are about Language Style from Gender Perspective and The Language for Speech. The result reveals that there are sets of spoken language differences between male and female speakers. In using the language for speech, both male and female speakers produce metaphor, euphemism, the ‘rule of three’, parallelism, and pronouns in random frequency of production, which cannot be separated by genders. Moreover, it cannot be concluded that one gender is more potential than the other to influence the audience in delivering speech. There are other factors, particularly non-verbal factors, existing to give impacts on how a speech can influence the audience.

Keywords: gender perspective, language use, Middle Eastern freedom activists, speech

Procedia PDF Downloads 421
3832 Pretreatment of Cattail (Typha domingensis) Fibers to Obtain Cellulose Nanocrystals

Authors: Marivane Turim Koschevic, Maycon dos Santos, Marcello Lima Bertuci, Farayde Matta Fakhouri, Silvia Maria Martelli

Abstract:

Natural fibers are rich raw materials in cellulose and abundant in the world, its use for the cellulose nanocrystals extraction is promising as an example cited is the cattail, macrophyte native weed in South America. This study deals with the pre-treatment cattail of crushed fibers, at six different methods of mercerization, followed by the use of bleaching. As a result, have found The positive effects of treating fibers by means of optical microscopy and spectroscopy, Fourier transform (FTIR). The sample selected for future testing of cellulose nanocrystals extraction was treated in 2.5% NaOH for 2 h, 60 °C in the first stage and 30vol H2O2, NaOH 5% in the proportion 30/70% (v/v) for 1 hour 60 °C, followed by treatment at 50/50% (v/v) 15 minutes, 50°C, with the same constituents of the solution.

Keywords: cellulose nanocrystal, chemical treatment, mercerization, natural fibers

Procedia PDF Downloads 293
3831 Factors Affecting the Climate Change Adaptation in Agriculture in Central and Western Nepal

Authors: Maharjan Shree Kumar

Abstract:

Climate change impacts are observed in all livelihood sectors primarily in agriculture and forestry. Multiple factors have influenced the climate vulnerabilities and adaptations in agricultural at the household level. This study focused on the factors affecting adaptation in agriculture in Madi and Deukhuri valleys of Central and Western Nepal. The systematic random sampling technique was applied to select 154 households in Madi and 150 households in Deukhuri. The main purpose of the study was to analyze the socio-economic factors that either influence or restrain the farmers’ adaptation to climate change at the household level by applying the linear probability model. Based on the analysis, it is revealed that crop diversity, education, training and total land holding (acre) were positively significant for adaptation choices the study sites. Rest of the variables were not significant though indicated positive as expected except age, occupation, ethnicity, family size, and access to credit.

Keywords: adaptation, agriculture, climate, factors, Nepal

Procedia PDF Downloads 152
3830 Modeling Influence on Petty Corruption Attitudes

Authors: Nina Bijedic, Drazena Gaspar, Mirsad Hadzikadic

Abstract:

Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.

Keywords: agent-based model, attitude, influence, petty corruption, society

Procedia PDF Downloads 199