Search results for: mozduran formation
1267 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application
Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran
Abstract:
Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.Keywords: electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity
Procedia PDF Downloads 1491266 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia PDF Downloads 2061265 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol
Authors: Aminah Muchdar
Abstract:
Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean
Procedia PDF Downloads 2181264 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions
Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs
Abstract:
Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.Keywords: biological waste, sorption, metal ions, ferrofluid
Procedia PDF Downloads 1421263 Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan
Authors: Bilal Wadood, Suleman Khan, Sajjad Ahmed
Abstract:
The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low.Keywords: cycle, deposition, microfacies, reservoir
Procedia PDF Downloads 1511262 A Study of Indoor Comfort in Affordable Contemporary Courtyard Housing with Outdoor Welfare in Afghan Sustainable Neighborhoods
Authors: Mohammad Saraj Sharifzai, Keisuke Kitagawa, Ahmad Javid Habib Mohammad Kamil Halimee, Daishi Sakaguchi
Abstract:
The main purpose of this research is to recognize indoor comfort in contemporary Afghan courtyard house with outdoor welfare in housing layout and neighborhood design where sustainability is a local consideration. This research focuses on three new neighborhoods (Gawoond) in three different provinces of Afghanistan. Since 2001, the capital Kabul and major cities including Kandahar, which will be compared with Peshawar city in Pakistan, have faced a fast, rough-and-tumble process of urban innovation. The effects of this innovation necessitate reconsideration of the formation of sustainable urban environments and in-house thermal comfort. The lack of sustainable urban life in many newly developed Afghan neighborhoods can pose a major challenge to the process of sustainable urban development. Several factors can affect the success or failure of new neighborhoods in the context of urban life. For thermal analysis, we divide our research into three different climatic zones. This study is an evaluation of the environmental impacts of the interior comfort of contemporary courtyard housing with the exterior welfare of neighborhood sustainable design strategy in dry and cold, semi-hot and arid, and semi-humid and hot climates in Afghan cities and Peshawar.Keywords: Afghan contemporary courtyard house, neighbourhood, street pattern and housing layout, sustainability, welfare, comfort, climate zone, Afghanistan
Procedia PDF Downloads 4291261 The Impact of Diabetes Mellitus on Skin and Soft Tissue Infections
Authors: Stephanie Cheng, Benjamin Poh, Vivyan Tay, Sachin Mathur
Abstract:
Aim: Diabetes mellitus (DM) is a worldwide pandemic affecting 500 million people. It is known to be associated with increased susceptibility to soft tissue infections (STI). Despite being a major public health burden, the literature relating the effects of DM and the presentation, severity and healing of STIs in general surgical patients remain limited. Methods: We conducted a retrospective review of all patients admitted with STI in a tertiary teaching hospital over a 12-month period. Patient demographics and surgical outcomes were collected and analyzed. Results: During the study period, 1059 patients were admitted for STIs, of which 936 (88%) required surgical intervention. Diabetic patients were presented with a higher body-mass index (BMI) (28 vs 26), larger abscess size (24 vs 14 cm²) and a longer length of stay (LOS)(4.4 days vs 2.9 days). They also underwent a higher proportion of wide debridement as well as application of negative pressure wound therapy (NPWT) (42% vs 35%). More diabetic patients underwent subsequent re-operation within the same sitting (8 vs 4). There were no differences in re-admission rates within 30 days nor subsequent abscess formation in those followed for 6 months. Conclusion: The incidence of STIs among DM patients represents a significant disease burden; surgeons should consider intensive patient counseling and partnering with primary care providers in order to help reduce the incidence of future STI admissions based on lifestyle modification and glucose control.Keywords: general surgery, emergency general surgery, acute care surgery, soft tissue infections, diabetes mellitus
Procedia PDF Downloads 501260 Antibacterial Activity of Silver Nanoparticles of Extract of Leaf of Nauclea latifolia (Sm.) against Some Selected Clinical Isolates
Authors: Mustapha Abdulsalam, R. N. Ahmed
Abstract:
Nauclea latifolia is one of the medicinal plants used in traditional Nigerian medicine in the treatment of various diseases such as fever, toothaches, malaria, diarrhea among several other conditions. Nauclea latifolia leaf extract acts as a capping and reducing agent in the formation of silver nanoparticles. Silver nanoparticles (AgNPs) were synthesized using a combination of aqueous extract of Nauclea latifolia and 1mM of silver nitrate (AgNO₃) solution to obtain concentrations of 100mg/ml-400mg/ml. Characterization of the particles was done by UV-Vis spectroscopy and Fourier transform infrared (FTIR). In this study, aqueous as well as ethanolic extract of leaf of Nauclea latifolia were investigated for antibacterial activity using the standard agar well diffusion technique against three clinical isolates (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). The Minimum Inhibitory Concentration (MIC) was achieved by microbroth dilution method and Minimum Bactericidal Concentration (MBC) was also determined by plate assay. Characterization by UV-visible spectrometry revealed peak absorbance of 0.463 at 450.0nm, while FTIR showed the presence of two functional groups. At 400mg/ml, the highest inhibitory activities were observed with S.aureus and E.coli with zones of inhibition measuring 20mm and 18mm respectively. The MIC was obtained at 400mg/ml while MBC was at a higher concentration. The data from this study indicate the potential of silver nanoparticle of Nauclea latifolia as a suitable alternative antibacterial agent for incorporation into orthodox medicine in health care delivery in Nigeria.Keywords: agar well diffusion, antimicrobial activity, Nauclea latifolia, silver nanoparticles
Procedia PDF Downloads 2071259 Effect of Iron Fortification on the Antibacterial Activity of Synbiotic Fermented Milk
Authors: Siti Helmyati, Euis Nurdiyawati, Joko Susilo, Endri Yuliati, Siti Fadhilatun Nashriyah, Kurnia Widyastuti
Abstract:
Background: Iron fortification is one of the most effective and sustainable strategies to overcome anemia. It contradictively, has negative effect on gut microbiota balance. Pathogenic bacteria required iron for their growth. The iron source have greatly affect iron absorption in the intestine. Probiotic can inhibit the growth of pathogen. Lactobacillus plantarum Dad 13, Indonesian local isolate provides many benefits for health while fructo-oligosaccharides (FOS) provides selective substrates for probiotics’ growth. Objective: To determine the effect of iron fortification (NaFeEDTA and FeSO4) on antibacterial activity of synbiotic fermented milk. Methods: The antibacterial activity test was performed using the disc diffusion method. Paper discs were soaked in three kinds of synbiotic fermented milk, which are: 1) fortified with NaFeEDTA, 2) FeSO4 and 3) control. Escherichia coli was inoculated on nutrient agar medium. The ability of inhibition was shown by the formation of clear zone around the paper disc and measured in diameter (mm). Results: Synbiotic fermented milk fortified with iron (either NaFeEDTA or FeSO4) had antibacterial activity against Escherichia coli with diameter of clear zone were 6.53 mm and 12.3 mm, respectively (p<0.05). Compared to control (10.73 mm), synbiotic fermented milk fortified with FeSO4 had similar antibacterial activity (p>0.05). Conclusions: In vitro, synbiotic fermented milk fortified with NaFeEDTA and FeSO4 had different antibacterial activity against Escherichia coli. Iron fortification compound affected the antibacterial activity of synbiotic fermented milk.Keywords: lactobacillus plantarum Dad 13, FOS, NaFeEDTA, FeSO4, antibacterial activity
Procedia PDF Downloads 5561258 Application of Interferometric Techniques for Quality Control Oils Used in the Food Industry
Authors: Andres Piña, Amy Meléndez, Pablo Cano, Tomas Cahuich
Abstract:
The purpose of this project is to propose a quick and environmentally friendly alternative to measure the quality of oils used in food industry. There is evidence that repeated and indiscriminate use of oils in food processing cause physicochemical changes with formation of potentially toxic compounds that can affect the health of consumers and cause organoleptic changes. In order to assess the quality of oils, non-destructive optical techniques such as Interferometry offer a rapid alternative to the use of reagents, using only the interaction of light on the oil. Through this project, we used interferograms of samples of oil placed under different heating conditions to establish the changes in their quality. These interferograms were obtained by means of a Mach-Zehnder Interferometer using a beam of light from a HeNe laser of 10mW at 632.8nm. Each interferogram was captured, analyzed and measured full width at half-maximum (FWHM) using the software from Amcap and ImageJ. The total of FWHMs was organized in three groups. It was observed that the average obtained from each of the FWHMs of group A shows a behavior that is almost linear, therefore it is probable that the exposure time is not relevant when the oil is kept under constant temperature. Group B exhibits a slight exponential model when temperature raises between 373 K and 393 K. Results of the t-Student show a probability of 95% (0.05) of the existence of variation in the molecular composition of both samples. Furthermore, we found a correlation between the Iodine Indexes (Physicochemical Analysis) and the Interferograms (Optical Analysis) of group C. Based on these results, this project highlights the importance of the quality of the oils used in food industry and shows how Interferometry can be a useful tool for this purpose.Keywords: food industry, interferometric, oils, quality control
Procedia PDF Downloads 3731257 Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite
Authors: S. Nqayi, B. Sondezi
Abstract:
A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions.Keywords: solid-state reaction, super-exchange coupling, ferromagnetic, Kneller’s law, entropy
Procedia PDF Downloads 221256 The Influences of Diagenetic Process on the Resistivity Values of Oil Sandstone Reservoirs
Authors: Mohamed M. A. Rahoma
Abstract:
A better understanding of the factors that control the resistivity values of Sandstone reservoirs is very important for petroleum exploration and production. This study is an attempt to find out the factors that could be the reason for the decrease in resistivity values of the Lower Akakus Sandstones, which are the main reservoir in the area in an onshore field located in the northern part of Ghadames Basin - Northwest of Libya in the contracted area 47, block 2 The study achieved is based on: 30 core chip samples taken from two wells (A3-47/02 and J1-47/02) and Routine Core Analysis (RCA). The results of petrography analysis (thin section, X-ray diffraction and SEM) demonstrated that the depth sits (intervals) which illustrated low resistivity values have a relatively high content of diagenetic clay and cement minerals, hence we can conclude that diagenetic events have a more significant impact on the resistivity values of studied interval for possibly two following reasons: The first essential reason, the extensive micro pores that mostly exist within clay minerals (Chlorite and Kaolinite where, about 30-50 % of their composition considered micro pores), resistivity log read low as noticed through the study. The highest value of micro pores recorded in core1 of J1-47/02 well due to most likely the kaolinite amount which was a slightly higher than the chlorite amount in this well (the bond water porosity for chlorite clay considered relatively the lowest porosity compared to other clay minerals). The second reason, the presence of diagenetic cement minerals (Siderite and Hematite, which contain an iron element as one of their components) within the studied interval as remarked from my study may cause decreasing in resistivity of the formation of the reservoir.Keywords: diagenetic cement, diagenetic clay, resistivity, petrography analysis
Procedia PDF Downloads 211255 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia
Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa
Abstract:
Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials
Procedia PDF Downloads 1821254 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network
Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi
Abstract:
Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication
Procedia PDF Downloads 4521253 Value-Added Products from Recycling of Solid Waste in Steel Plants
Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu
Abstract:
Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.Keywords: calcium ferrite, flux, slag formation, solid waste
Procedia PDF Downloads 2151252 A Look at the History of Calligraphy in Decoration of Mosques in Iran: 630-1630 AD
Authors: Cengiz Tavşan, Niloufar Akbarzadeh
Abstract:
Architecture in Iran has a continuous history from at least 5000 BC to the present, and numerous Iranian pre-Islamic elements have contributed significantly to the formation of Islamic art. At first, decoration was limited to small objects and containers and then progressed in the art of plaster and brickwork. They later applied in architecture as well. The art of gypsum and brickwork, which was prevalent in the form of motifs (animals and plants) in pre-Islam, was used in the aftermath of Islam with the art of calligraphy in decorations. The splendor and beauty of Iranian architecture, especially during the Islamic era, are related to decoration and design. After the invasion of Iran by the Arabs and the introduction of Islam to Iran, the arrival of the Iranian classical architecture significantly changed, and we saw the Arabic calligraphy decoration of the mosques in Iran. The principles of aesthetics in the art of calligraphy in Iran are based precisely on the principles of the beauty of ancient Iranian and Islamic art. On the other hand, after Islam, calligraphy was one of the most important sources of Islamic art in Islam and one of the important features of Islamic culture. First, the calligraphy had no cultural meaning and was only for decoration and beautification, it had the same meaning only in the inscriptions; however, over time, it became meaningful. This article provides a summary of the history of calligraphy in the mosques (from the entrance to Islam until the Safavid period), which cannot ignore the role of the calligraphy in their decorative ideas; and also, the important role that decorative elements play in creating a public space in terms of social and aesthetic performance. This study was conducted using library studies and field studies. The purpose of this study is to show the characteristics of architecture and art of decorations in Iran, especially in the mosque's architecture, which reaches the pinnacle of progress. We will see that religious beliefs and artistic practices are merging and trying to bring a single concept.Keywords: Islamic art, Islamic architecture, decorations in Iranian mosques, calligraphy
Procedia PDF Downloads 2761251 Effect of Barium Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Sprayed ZnO Thin Films
Authors: Halima Djaaboube, Redha Aouati, Ibtissem Loucif, Yassine Bouachiba, Mouad Chettab, Adel Taabouche, Sihem Abed, Salima Ouendadji, Abderrahmane Bouabellou
Abstract:
Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and therefore the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping, this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO.
Procedia PDF Downloads 1211250 Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke
Authors: Ramazan F. Akkoc, Elif Erdem, Nalan Kaya, Gonca Ozan, D. Özlem Dabak, Enver Ozan
Abstract:
Maternal tobacco smoke exposure is known to cause growth retardation in the neonatal skeletal system. Alpha lipoic acid, a natural antioxidant found in some foods, limits the activities of osteoclasts and supports the osteoblast's bone formation mechanism. In this study, it was aimed to investigate the effects of alpha lipoic acid (ALA) on the height, long bones and tail lengths of pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1) control group, 2) tobacco smoke group, 3) tobacco smoke + ALA group, and 4) ALA group. Rats in the group 2 (tobacco smoke), group 3 (tobacco smoke + ALA) were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group 3 (tobacco smoke + ALA). Only alpha lipoic acid was administered to the rats in the group 4. On day 21 postpartum, the height and tail lengths of the pups in all groups were measured, and the length of the extremity long bones was measured after decapitation. All morphometric measurements performed in group 2 (tobacco smoke) showed a significant decrease compared to group 1 (control), while all measurements in group 3 (tobacco smoke + ALA) showed a significant increase compared to group 2 (tobacco smoke). It has been shown that ALA has a protective effect against the regression of height, long bones and tail lengths of pups exposed to maternal tobacco smoke.Keywords: alpha lipoic acid, bone, morphometry, rat, tobacco smoke
Procedia PDF Downloads 3661249 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment
Procedia PDF Downloads 3241248 Assessment of Groundwater Quality in Kaltungo Local Government Area of Gombe State
Authors: Rasaq Bello, Grace Akintola Sunday, Yemi Sikiru Onifade
Abstract:
Groundwater is required for the continuity of life and sustainability of the ecosystem. Hence, this research was purposed to assess groundwater quality for domestic use in Kaltungo Local Government Area, Gombe State. The work was also aimed at determining the thickness and resistivity of the topsoil, areas suitable for borehole construction, quality and potentials of groundwater in the study area. The study area extends from latitude N10015’38” - E11008’01” and longitude N10019’29” - E11013’05”. The data was acquired using the Vertical Electrical Sounding (VES) method and processed using IP12win software. Twenty (20) Vertical Electrical Soundings were carried out with a maximum current electrode separation (AB) of 150m. The VES curves generated from the data reveal that all the VES points have five to six subsurface layers. The first layer has a resistivity value of 7.5 to 364.1 Ωm and a thickness ranging from 0.8 to 7.4m, and the second layer has a resistivity value of 1.8 to 600.3 Ωm thickness ranging from 2.6 to 31.4m, the third layer has resistivity value of 23.3 to 564.4 Ωm thickness ranging from 10.3 to 77.8m, the fourth layer has resistivity value of 19.7 to 640.2 Ωm thickness ranging from 8.2m to 120.0m, the fifth layer has resistivity value of 27 to 234 Ωm thickness ranging from 8.2 to 53.7m and the six-layer is the layer that extended beyond the probing depth. The VES curves generated from the data revealed KQHA curve type for VES 1, HKQQ curve for VES 4, HKQ curve for VES 5, KHA curve for VES 11, QQHK curve for VES 12, HAA curve for VES 6 and VES 19, HAKH curve for VES 7, VES 8, VES 10 and VES 18, HKH curve for VES 2, VES 3, VES 9, VES 13, VES 14, VES 15, VES 16, VES 17 and VES 20. Values of the Coefficient of Anisotropy, Reflection Coefficient, and Resistivity Contrast obtained from the Dar-Zarrouk parameters indicated good water prospects for all the VES points in this study, with VES points 4, 9 and 18 having the highest prospects for groundwater exploration.Keywords: formation parameters, groundwater, resistivity, resistivity contrast, vertical electrical sounding
Procedia PDF Downloads 551247 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix
Authors: J. Plocek, P. Holec, S. Kubickova, B. Pacakova, I. Matulkova, A. Mantlikova, I. Němec, D. Niznansky, J. Vejpravova
Abstract:
This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nano crystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nano composites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900–1200 °C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nano crystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ~ 4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nano particles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nano crystals were found to be just moderately modified in comparison to the bulk phases.Keywords: sol-gel method, nanocomposites, Rietveld refinement, Raman spectroscopy, Fourier transform infrared spectroscopy, magnetic properties, spinel, chromite
Procedia PDF Downloads 2161246 Influence of Yeast Strains on Microbiological Stability of Wheat Bread
Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina
Abstract:
Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.Keywords: bakers' yeasts, killer toxin, rope in bread, Saccharomyces cerevisiæ
Procedia PDF Downloads 2351245 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress
Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan
Abstract:
HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation
Procedia PDF Downloads 2241244 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency
Authors: Kanyarat Sikhao, Nichakorn Khondee
Abstract:
Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms
Procedia PDF Downloads 1411243 Using Vertical Electrical Soundings Data to Investigate and Assess Groundwater Resources for Irrigation in the Canal Command Area
Authors: Vijaya Pradhan, S. M. Deshpande, D. G. Regulwar
Abstract:
Intense hydrogeological research has been prompted by the rising groundwater demand in typical hard rock terrain. In the current study, groundwater resources for irrigation in the canal command of the Jayakwadi Reservoir in the Indian state of Maharashtra are located using Vertical Electrical Soundings (VES). A Computer Resistivity Monitor is used to monitor the geoelectric field (CRM). Using Schlumberger setups, the investigation was carried out at seven different places in the region. Plotting of the sounding curves is the outcome of the data processing. The underlying layers and groundwater potential in the research region have been examined by analyzing these curves using curve-matching techniques, also known as partial curve matching. IPIWin2 is used to examine the relationship between resistivity and electrode spacing. The resistivity value in a geological formation is significantly reduced when groundwater is present. Up to a depth of 35 meters, the resistivity readings are minimal; beyond that, they continuously increase, suggesting a lack of water in deeper strata. As a result, the wells may only receive water up to a depth of 35 meters. In addition, the trap may occasionally fracture at deeper depths, retaining a limited amount of water in the cracks and producing a low yield. According to the findings, weathered basalt or soil make up the top layer (5–10 m), which is followed by a layer of amygdaloidal basalt (10–35 m) that is somewhat cracked and either hard basalt or compact basalt underneath.Keywords: vertical electrical soundings (VES), resistivity, electrode spacing, Schlumberger configurations, partial curve matching.
Procedia PDF Downloads 261242 Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit
Authors: Omid Gholipoor Bashiri, Ghafur Mosavi, Aliasghar Behnamghader, Seyed Mahmood Rabiee
Abstract:
Objective: To determine the effect of selected bone graft on the compression properties of radial bone in rabbit. Design-Experimental in vivo study. Animals: A total of 45 adult male New Zealand white rabbits. Procedures: The rabbits were anesthetized and a one-cm-full thickness piece of radial bone was removed using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on the basis of the material used to fill the bone defect: group 1: the paste of bone cement calcium phosphate; group II: the paste of calcium phosphate mixture with type I collagen; group III: tricalcium phosphate mixed with hydroxyapatite (TCP & HP) with 5% porosity; group IV: the same scaffold as group III with 10% porosity; and group V: the same scaffold as group III and IV with 20% porosity, with 9 rabbits in each group. Subsequently subdivided into 3 subgroups of 3 rabbits each. Results: There was a significant increase in compression properties of radial bone in the group II and V in 2nd and 3rd months as compared with groups I, III and IV. The mean endurable crack-strength in group II and V were slightly higher than that of normal radius (P<0.05). Conclusion and clinical relevance: Application of calcium phosphate paste with type I collagen and scaffold of tricalcium phosphate with hydroxyapatite having 20% porosity indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.Keywords: calcium phosphate, tricalcium phosphate, hydroxyapatite, radial bone, compressive properties, porosity, type i collagen, rabbit
Procedia PDF Downloads 4531241 Structural Insights into the Bypass of the Major Deaminated Purines by Translesion Synthesis DNA Polymerase
Authors: Hunmin Jung, Michael Hawkins, Seongmin Lee
Abstract:
The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.Keywords: DNA damage, DNA polymerase, deamination, mutagenesis, tautomerization, translesion synthesis
Procedia PDF Downloads 1351240 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction
Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare
Abstract:
The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction
Procedia PDF Downloads 1951239 Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys
Authors: Askar Kilmametov, Julia Ivanisenko, Boris Straumal, Horst Hahn
Abstract:
The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure.Keywords: bulk nanostructured materials, high pressure phase transitions, severe plastic deformation, titanium alloys
Procedia PDF Downloads 4191238 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method
Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere
Abstract:
The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.Keywords: finite element method, convection, buried cables, steady-state rating
Procedia PDF Downloads 131