Search results for: flow length
5094 Design and Fabrication of Micro-Bubble Oxygenator
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng
Abstract:
This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.Keywords: micro-bubble, oxygenator, nozzle, piezoelectric
Procedia PDF Downloads 3245093 Forecasting Free Cash Flow of an Industrial Enterprise Using Fuzzy Set Tools
Authors: Elena Tkachenko, Elena Rogova, Daria Koval
Abstract:
The paper examines the ways of cash flows forecasting in the dynamic external environment. The so-called new reality in economy lowers the predictability of the companies’ performance indicators due to the lack of long-term steady trends in external conditions of development and fast changes in the markets. The traditional methods based on the trend analysis lead to a very high error of approximation. The macroeconomic situation for the last 10 years is defined by continuous consequences of financial crisis and arising of another one. In these conditions, the instruments of forecasting on the basis of fuzzy sets show good results. The fuzzy sets based models turn out to lower the error of approximation to acceptable level and to provide the companies with reliable cash flows estimation that helps to reach the financial stability. In the paper, the applicability of the model of cash flows forecasting based on fuzzy logic was analyzed.Keywords: cash flow, industrial enterprise, forecasting, fuzzy sets
Procedia PDF Downloads 2125092 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation
Authors: Ying Xin, Shigeki Kametani
Abstract:
This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system
Procedia PDF Downloads 3015091 Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling
Authors: Youb Said, Fourar Ali
Abstract:
To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model.Keywords: modeling, free surface flow, turbulence, bottom roughness, finite volume, K-ε model, energy dissipation
Procedia PDF Downloads 3825090 Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber
Authors: Masek A., Diakowska K., Zaborski M.
Abstract:
Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation.Keywords: renewable resources, biopolymer, degradation, polylactide
Procedia PDF Downloads 3775089 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets
Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li
Abstract:
Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet
Procedia PDF Downloads 1335088 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study
Abstract:
A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio
Procedia PDF Downloads 3745087 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 3075086 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter
Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez
Abstract:
The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow
Procedia PDF Downloads 5115085 Soret and Dufour Effect on Variable Viscosity and Thermal Conductivity of an Inclined Magnetic Field with Dissipation in Non-Darcy Porous Medium
Authors: Rasaq A. Kareem, Sulyman O. Salawu
Abstract:
The study of Soret and Dufour effect on variable viscosity and thermal conductivity of an inclined magnetic field with dissipation in non-Darcy porous medium over a continuously stretching sheet for power-law variation in the sheet temperature and concentration are investigated. The viscosity of the fluid flow and thermal conductivity are considered to vary as a function of temperature. The local similarity solutions for different values of the physical parameters are presented for velocity, temperature and concentration. The result shows that variational increase in the values of Soret and Dufour parameters increase the temperature and concentration distribution. Finally, the effects of skin friction, Nusselt and Sherwood numbers which are of physical and engineering interest are considered and discussed.Keywords: Dufour, non-Darcy Flow, Soret, thermal conductivity, variable viscosity
Procedia PDF Downloads 3335084 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications
Authors: Mallikarjunachari Gangapuram
Abstract:
The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.Keywords: hematite, hydrogel, nanoindentation, nano-DMA
Procedia PDF Downloads 1965083 Human Coronary Sinus Venous System as a Target for Clinical Procedures
Authors: Wiesława Klimek-Piotrowska, Mateusz K. Hołda, Mateusz Koziej, Katarzyna Piątek, Jakub Hołda
Abstract:
Introduction: The coronary sinus venous system (CSVS), which has always been overshadowed by the coronary arterial tree, has recently begun to attract more attention. Since it is a target for clinicians the knowledge of its anatomy is essential. Cardiac resynchronization therapy, catheter ablation of cardiac arrhythmias, defibrillation, perfusion therapy, mitral valve annuloplasty, targeted drug delivery, and retrograde cardioplegia administration are commonly used therapeutic methods involving the CSVS. The great variability in the course of coronary veins and tributaries makes the diagnostic and therapeutic processes difficult. Our aim was to investigate detailed anatomy of most common clinically used CSVS`s structures: the coronary sinus with its ostium, great cardiac vein, posterior vein of the left ventricle, middle cardiac vein and oblique vein of the left atrium. Methodology: This is a prospective study of 70 randomly selected autopsied hearts dissected from adult humans (Caucasian) aged 50.1±17.6 years old (24.3% females) with BMI=27.6±6.7 kg/m2. The morphology of the CSVS was assessed as well as its precise measurements were performed. Results: The coronary sinus (CS) with its ostium was present in all hearts. The mean CS ostium diameter was 9.9±2.5mm. Considered ostium was covered by its valve in 87.1% with mean valve height amounted 5.1±3.1mm. The mean percentage coverage of the CS ostium by the valve was 56%. The Vieussens valve was present in 71.4% and was unicuspid in 70%, bicuspid in 26% and tricuspid in 4% of hearts. The great cardiac vein was present in all cases. The oblique vein of the left atrium was observed in 84.3% of hearts with mean length amounted 20.2±9.3mm and mean ostium diameter 1.4±0.9mm. The average length of the CS (from the CS ostium to the Vieussens valve) was 31.1±9.5mm or (from the CS ostium to the ostium of the oblique vein of the left atrium) 28.9±10.1mm and both were correlated with the heart weight (r=0.47; p=0.00 and r=0.38; p=0.006 respectively). In 90.5% the ostium of the oblique vein of the left atrium was located proximally to the Vieussens valve, in remaining cases was distally. The middle cardiac vein was present in all hearts and its valve was noticed in more than half of all the cases (52.9%). The posterior vein of the left ventricle was observed in 91.4% of cases. Conclusions: The CSVS is vastly variable and none of basic hearts parameters is a good predictor of its morphology. The Vieussens valve could be a significant obstacle during CS cannulation. Caution should be exercised in this area to avoid coronary sinus perforation. Because of the higher incidence of the presence of the oblique vein of the left atrium than the Vieussens valve, the vein orifice is more useful in determining the CS length.Keywords: cardiac resynchronization therapy, coronary sinus, Thebesian valve, Vieussens valve
Procedia PDF Downloads 3065082 Removal of Acetaminophen with Chitosan-Nano Activated Carbon Beads from Aqueous Sources
Authors: Parisa Amouzgar, Chan Eng Seng, Babak Salamatinia
Abstract:
Pharmaceutical products are being increasingly detected in the environment. However, conventional treatment systems do not provide an adequate treatment for pharmaceutical drug elimination and still there is not a regulated standard for their limitation in water. Since decades before, pharmaceuticals have been in the water but only recently, their levels in the environment have been recognized and quantified as potentially hazardous to ecosystems. In this study chitosan with a bio-based NAC (Ct-NAC) were made as beads with extrusion dripping method and investigated for acetaminophen removal from water. The effects of beading parameters such as flow rate in dripping, the distance from dipping tip to the solution surface, concentration of chitosan and percentage of NAC were analyzed to find the optimum condition. Based on the results, the overall adsorption rate and removal efficiency increased during the time till the equilibrium rate which was 80% removal of acetaminophen. The maximum adsorption belonged to the beads with 1.75% chitosan, 60% NAC, flow-rate of 1.5 ml/min while the distance of dripping was 22.5 cm.Keywords: pharmaceuticals, water treatment, chitosan nano activated carbon beads, Acetaminophen
Procedia PDF Downloads 3615081 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production
Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia
Abstract:
Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models
Procedia PDF Downloads 1475080 Estimating the Effect of Fluid in Pressing Process
Authors: A. Movaghar, R. A. Mahdavinejad
Abstract:
To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.Keywords: pressing, notch, matrix, flow function, vortex
Procedia PDF Downloads 2935079 Study on Improvement the Performance of Construction Project Using Lean Principles
Authors: Sumaya Adina
Abstract:
The productivity of the construction industry has faced numerous challenges, rising costs, and scarce resources over the past forty years; therefore, one approach for improving and enhancing the framework is the use of lean techniques. Lean method outcomes from the use of a brand-form of manufacturing control in production. At a time when sustainability and efficiency are essential, lean offers a clear path to make the construction industry fit for the future. An excessive number of construction professionals and experts have efficiently optimised development initiatives using lean construction (LC) techniques to reduce waste, maximise value creation, and focus on the process that creates real added value and continuous improvement, strengthening flexibility and adaptability. The present research has been undertaken to study the improvement in the performance of construction projects using lean principles. The study work is divided into three stages. Initially, a questionnaire survey was conducted on visual management techniques to improve the performance of the construction projects. The questionnaire was distributed to civil engineers, architects, site managers, project managers, and full-time executives, with nearly 100 questionnaires shared with respondents. A total of 83 responses were received to determine the reliability of the data, and analysis was done using SPSS software. In the second stage, the impact of value stream mapping on the real-time project is determined and its performance in the form of time and cost reduction is evaluated. The case study examines a bunker-building project located in Kabul Afghanistan; the project was planned conventionally without considering the lean concepts. To reduce overall kinds of waste in the project, a plan was developed using the Vico Control software to visualize the value stream of the project. Finally, the impact of value stream mapping on the project's total cash flow is evaluated and compared by plotting the total cash flow curve using Vico software. As a result, labour costs were reduced by 33%. The duration of the project was reduced by 17% reducing the duration of the project also improved the cash flow of the entire project by 14% and increased the cash flow from negative 67% to negative 44%.Keywords: lean construction, cost and time overrun, value stream mapping, construction effeciency
Procedia PDF Downloads 125078 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology
Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei
Abstract:
With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.Keywords: water droplet, aerosol particle, collision and coagulation, multi-monte carlo method
Procedia PDF Downloads 3125077 Mathematical Modelling of Wastewater Collection System in Cha-Am Municipality Using PCSWMM
Authors: Thawtar Htun, Kim N. Irvine, Ranjna Jindal
Abstract:
This study aimed at modelling the wastewater collection system in Cha-Am Municipality using PCSWMM to investigate the quantity of combined sewage delivered to the aeration lagoon treatment system (ALTS). Cha-Am is a small sea resort town in Petchaburi Province located about 175 km southwest of Bangkok and is facing increasing development so it is important to understand current system performance and plan for future build out. PCSWMM was calibrated using observed ALTS inflow data for the period 15 June to 20 July 2015. The model was validated using observed ALTS inflow data for the periods 19 July to 20 October 2015 and 1 October to 31 December 2015, respectively. The 1:1 lines between modeled and observed peak flow and event volume for the calibration events qualitatively showed good correspondence. The r2 values between modeled and observed peak flow (99%) and event volume (89%) also were strong.Keywords: combined sewer system, mathematical modelling, PCSWMM, wastewater collection system
Procedia PDF Downloads 2155076 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies
Authors: M. Jerold, V. Sivasubramanian
Abstract:
In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.Keywords: algae, biosorption, zero-valent, dye, wastewater
Procedia PDF Downloads 2055075 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem
Authors: Watchara Songserm, Teeradej Wuttipornpun
Abstract:
This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry
Procedia PDF Downloads 4925074 Modeling of Drug Distribution in the Human Vitreous
Authors: Judith Stein, Elfriede Friedmann
Abstract:
The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body
Procedia PDF Downloads 1395073 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL
Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson
Abstract:
The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.Keywords: PCR, optimisation, microfluidics, COMSOL
Procedia PDF Downloads 1675072 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling
Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine
Abstract:
Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method
Procedia PDF Downloads 2065071 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule
Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang
Abstract:
This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm
Procedia PDF Downloads 915070 An Integrated CFD and Experimental Analysis on Double-Skin Window
Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen
Abstract:
Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there’s always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.Keywords: solar energy, double-skin façades, thermal buoyancy, fluid machinery
Procedia PDF Downloads 5025069 Polymorphisms of Calpastatin Gene and Its Association with Growth Traits in Indonesian Thin Tail Sheep
Authors: Muhammad Ihsan Andi Dagong, Cece Sumantri, Ronny Rachman Noor, Rachmat Herman, Mohamad Yamin
Abstract:
Calpastatin involved in various physiological processes in the body such as the protein turnover, growth, fusion and mioblast migration. Thus, allegedly Calpastatin gene diversity (CAST) have an association with growth and potential use as candidate genes for growth trait. This study aims to identify the association between the genetic diversity of CAST gene with some growth properties such as body dimention (morphometric), body weight and daily weight gain in sheep. A total of 157 heads of Thin Tail Sheep (TTS) reared intensively for fattening purposes in the uniform environmental conditions. Overall sheep used were male, and maintained for 3 months. The parameters of growth properties were measured among others: body weight gain (ADG) (g/head / day), body weight (kg), body length (cm), chest circumference (cm), height (cm). All the sheep were genotyped by using PCR-SSCP (single strand conformational polymorphism) methods. CAST gene in locus fragment intron 5 - exon 6 were amplified with a predicted length of about 254 bp PCR products. Then the sheep were stratified based on their CAST genotypes. The result of this research showed that no association were found between the CAST gene variations with morphometric body weight, but there was a significant association with daily body weight gain (ADG) in sheep observed. CAST-23 and CAST-33 genotypes has higher average daily gain than other genotypes. CAST-23 and CAST-33 genotypes that carrying the CAST-2 and CAST-3 alleles potential to be used in the selection of the nature of the growth trait of the TTS sheep.Keywords: body weight, calpastatin, genotype, growth trait, thin tail sheep
Procedia PDF Downloads 3265068 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam
Authors: Hammadi Larbi
Abstract:
Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy
Procedia PDF Downloads 345067 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity
Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys
Abstract:
In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity
Procedia PDF Downloads 1495066 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network
Authors: T. Lydon, A. McNabola, P. Coughlan
Abstract:
Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network
Procedia PDF Downloads 2645065 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes
Authors: Omolola A. Tajelawi, Hari L. Garbharran
Abstract:
Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses
Procedia PDF Downloads 338