Search results for: Vieussens valve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 214

Search results for: Vieussens valve

214 Human Coronary Sinus Venous System as a Target for Clinical Procedures

Authors: Wiesława Klimek-Piotrowska, Mateusz K. Hołda, Mateusz Koziej, Katarzyna Piątek, Jakub Hołda

Abstract:

Introduction: The coronary sinus venous system (CSVS), which has always been overshadowed by the coronary arterial tree, has recently begun to attract more attention. Since it is a target for clinicians the knowledge of its anatomy is essential. Cardiac resynchronization therapy, catheter ablation of cardiac arrhythmias, defibrillation, perfusion therapy, mitral valve annuloplasty, targeted drug delivery, and retrograde cardioplegia administration are commonly used therapeutic methods involving the CSVS. The great variability in the course of coronary veins and tributaries makes the diagnostic and therapeutic processes difficult. Our aim was to investigate detailed anatomy of most common clinically used CSVS`s structures: the coronary sinus with its ostium, great cardiac vein, posterior vein of the left ventricle, middle cardiac vein and oblique vein of the left atrium. Methodology: This is a prospective study of 70 randomly selected autopsied hearts dissected from adult humans (Caucasian) aged 50.1±17.6 years old (24.3% females) with BMI=27.6±6.7 kg/m2. The morphology of the CSVS was assessed as well as its precise measurements were performed. Results: The coronary sinus (CS) with its ostium was present in all hearts. The mean CS ostium diameter was 9.9±2.5mm. Considered ostium was covered by its valve in 87.1% with mean valve height amounted 5.1±3.1mm. The mean percentage coverage of the CS ostium by the valve was 56%. The Vieussens valve was present in 71.4% and was unicuspid in 70%, bicuspid in 26% and tricuspid in 4% of hearts. The great cardiac vein was present in all cases. The oblique vein of the left atrium was observed in 84.3% of hearts with mean length amounted 20.2±9.3mm and mean ostium diameter 1.4±0.9mm. The average length of the CS (from the CS ostium to the Vieussens valve) was 31.1±9.5mm or (from the CS ostium to the ostium of the oblique vein of the left atrium) 28.9±10.1mm and both were correlated with the heart weight (r=0.47; p=0.00 and r=0.38; p=0.006 respectively). In 90.5% the ostium of the oblique vein of the left atrium was located proximally to the Vieussens valve, in remaining cases was distally. The middle cardiac vein was present in all hearts and its valve was noticed in more than half of all the cases (52.9%). The posterior vein of the left ventricle was observed in 91.4% of cases. Conclusions: The CSVS is vastly variable and none of basic hearts parameters is a good predictor of its morphology. The Vieussens valve could be a significant obstacle during CS cannulation. Caution should be exercised in this area to avoid coronary sinus perforation. Because of the higher incidence of the presence of the oblique vein of the left atrium than the Vieussens valve, the vein orifice is more useful in determining the CS length.

Keywords: cardiac resynchronization therapy, coronary sinus, Thebesian valve, Vieussens valve

Procedia PDF Downloads 259
213 Numerical Simulations for Nitrogen Flow in Piezoelectric Valve

Authors: Pawel Flaszynski, Piotr Doerffer, Jan Holnicki-Szulc, Grzegorz Mikulowski

Abstract:

Results of numerical simulations for transonic flow in a piezoelectric valve are presented. The valve is the main part of an adaptive pneumatic shock absorber. Flow structure in the valve domain and the influence of the flow non-uniformity in the valve on a mass flow rate is investigated. Numerical simulation results are compared with experimental data.

Keywords: pneumatic valve, transonic flow, numerical simulations, piezoelectric valve

Procedia PDF Downloads 469
212 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve

Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao

Abstract:

An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.

Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing

Procedia PDF Downloads 269
211 In Vitro Evaluation of an Artificial Venous Valve

Authors: Joon Hock Yeo, Munirah Ismail

Abstract:

Chronic venous insufficiency is a condition where the venous wall or venous valves fail to operate properly. As such, it is difficult for the blood to return from the lower extremities back to the heart. Chronic venous insufficiency affects many people worldwide. In last decade, there have been many new and innovative designs of prosthetic venous valves to replace the malfunction native venous valves. However, thus far, to the authors’ knowledge, there is no successful prosthetic venous valve. In this project, we have developed a venous valve which could operate under low pressure. While further testing is warranted, this unique valve could potentially alleviate problems associated with chronic venous insufficiency.

Keywords: prosthetic venous valve, bi-leaflet valve, chronic venous insufficiency, valve hemodynamics

Procedia PDF Downloads 153
210 Normally Closed Thermoplastic Microfluidic Valves with Microstructured Valve Seats: A Strategy to Avoid Permanently Bonded Valves during Channel Sealing

Authors: Kebin Li, Keith Morton, Matthew Shiu, Karine Turcotte, Luke Lukic, Teodor Veres

Abstract:

We present a normally closed thermoplastic microfluidic valve design that uses microstructured valve seats to locally prevent the membrane from bonding to the valve seat during microfluidic channel sealing. The microstructured valve seat reduces the adhesion force between the contact surfaces of the valve seat and the membrane locally, allowing valve open and close operations while simultaneously providing a permanent and robust bond elsewhere to cover and seal the microfluidic channel network. Dynamic valve operation including opening and closing times can be tuned by changing the valve seat diameter as well as the density of the microstructures on the valve seats. The influence of the microstructured valve seat on the general flow behavior through the microfluidic devices was also studied. A design window for the fabrication of valve structure is identified and discussed to minimize the fabrication complexity.

Keywords: hot-embossing, injection molding, microfabrication, microfluidics, microvalves, thermoplastic elastomer

Procedia PDF Downloads 252
209 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction

Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh

Abstract:

This works presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting. The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the velocity distributions, streamlines and path lines. Frequency spectrum of the pressure pulsations downstream the valves, and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance. These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe. CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.

Keywords: butterfly valve vibration analysis, computational fluid dynamics, fluid flow circuit design, fluctuation

Procedia PDF Downloads 403
208 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 351
207 Optimal Design of 3-Way Reversing Valve Considering Cavitation Effect

Authors: Myeong-Gon Lee, Yang-Gyun Kim, Tae-Young Kim, Seung-Ho Han

Abstract:

The high-pressure valve uses one set of 2-way valves for the purpose of reversing fluid direction. If there is no accurate control device for the 2-way valves, lots of surging can be generated. The surging is a kind of pressure ripple that occurs in rapid changes of fluid motions under inaccurate valve control. To reduce the surging effect, a 3-way reversing valve can be applied which provides a rapid and precise change of water flow directions without any accurate valve control system. However, a cavitation occurs due to a complicated internal trim shape of the 3-way reversing valve. The cavitation causes not only noise and vibration but also decreasing the efficiency of valve-operation, in which the bubbles generated below the saturated vapor pressure are collapsed rapidly at higher pressure zone. The shape optimization of the 3-way reversing valve to minimize the cavitation effect is necessary. In this study, the cavitation index according to the international standard ISA was introduced to estimate macroscopically the occurrence of the cavitation effect. Computational fluid dynamic analysis was carried out, and the cavitation effect was quantified by means of the percent of cavitation converted from calculated results of vapor volume fraction. In addition, the shape optimization of the 3-way reversing valve was performed by taking into account of the percent of cavitation.

Keywords: 3-Way reversing valve, cavitation, shape optimization, vapor volume fraction

Procedia PDF Downloads 335
206 Design and Development of an Expanded Polytetrafluoroethylene Valved Conduit with Sinus of Valsalva

Authors: Munirah Ismail, Joon Hock Yeo

Abstract:

Babies born with Tetralogy of Fallot, a congenital heart defect, are required to undergo reconstruction surgery to create a valved conduit. As the child matures, the partially reconstructed pulmonary conduit increases in diameter, while the size of the reconstructed valve remains the same. As a result, follow up surgery is required to replace the undersized valve. Thus, in this project, we evaluated the in-vitro performance of a bi-leaflet valve design in terms of percentage regurgitation with increasing artery (conduit) diameters. Results revealed percentage regurgitations ranging from 13% to 34% for conduits tested. It was observed that percentage of regurgitation increased exponentially with increasing diameters. While the amount of regurgitation may seem severe, it is deemed acceptable, and this valve could potentially reduce the frequency of re-operation in the lifetime of pediatric patients.

Keywords: pulmonary heart valve, tetralogy of fallot, expanded polytetrafluoroethylene valve, pediatric heart valve replacement

Procedia PDF Downloads 142
205 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 203
204 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion

Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park

Abstract:

In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.

Keywords: finite element method, spring safety valve, gap, stress, strain, deformation

Procedia PDF Downloads 334
203 Design and Development of a Bi-Leaflet Pulmonary Valve

Authors: Munirah Ismail, Joon Hock Yeo

Abstract:

Paediatric patients who require ventricular outflow tract reconstruction usually need valve construction to prevent valvular regurgitation. They would face problems like lack of suitable, affordable conduits and the need to undergo several operations in their lifetime due to the short lifespan of existing valves. Their natural growth and development are also of concern, even if they manage to receive suitable conduits. Current prosthesis including homografts, bioprosthetic valves, mechanical valves, and bovine jugular veins either do not have the long-term durability or the ability to adapt to the growth of such patients. We have developed a new design of bi-leaflet valve. This new technique accommodates patients’ annular size growth while maintaining valvular patency. A mock circulatory system was set up to assess the hemodynamic performance of the bi-leaflet pulmonary valve. It was found that the percentage regurgitation was acceptable and thus, validates this novel concept.

Keywords: bi-leaflet pulmonary valve, pulmonary heart valve, tetralogy of fallot, mock circulatory system

Procedia PDF Downloads 133
202 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation

Authors: Aymen Laadhari, Gábor Székely

Abstract:

In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.

Keywords: hemodynamics, simulations, stagnation, valve

Procedia PDF Downloads 260
201 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring

Abstract:

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Keywords: dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA

Procedia PDF Downloads 146
200 Internal Leakage Analysis from Pd to Pc Port Direction in ECV Body Used in External Variable Type A/C Compressor

Authors: M. Iqbal Mahmud, Haeng Muk Cho, Seo Hyun Sang, Wang Wen Hai, Chang Heon Yi, Man Ik Hwang, Dae Hoon Kang

Abstract:

Solenoid operated electromagnetic control valve (ECV) playing an important role for car’s air conditioning control system. ECV is used in external variable displacement swash plate type compressor and controls the entire air conditioning system by means of a pulse width modulation (PWM) input signal supplying from an external source (controller). Complete form of ECV contains number of internal features like valve body, core, valve guide, plunger, guide pin, plunger spring, bellows etc. While designing the ECV; dimensions of different internal items must meet the standard requirements as it is quite challenging. In this research paper, especially the dimensioning of ECV body and its three pressure ports through which the air/refrigerant passes are considered. Here internal leakage test analysis of ECV body is being carried out from its discharge port (Pd) to crankcase port (Pc) when the guide valve is placed inside it. The experiments have made both in ordinary and digital system using different assumptions and thereafter compare the results.

Keywords: electromagnetic control valve (ECV), leakage, pressure port, valve body, valve guide

Procedia PDF Downloads 370
199 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 96
198 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 98
197 Anatomy of the Human Mitral Valve Leaflets: Implications for Transcatheter and Surgical Mitral Valve Repair Techniques

Authors: Agata Krawczyk-Ozog, Mateusz K. Holda, Mateusz Koziej, Danuta Sorysz, Zbigniew Siudak, Wieslawa Klimek-Piotrowska, Dariusz Dudek

Abstract:

Introduction: Rapid development of the surgical and less-invasive percutaneous mitral valve repair procedures greatly increase the interest of the mitral valve anatomy. The aim of this study was to characterize morphological variability of the mitral valve leaflets and to provide the size of their particular parts. Materials and Methods: In the study, we included 200 autopsied human hearts from Caucasian individuals (25% females) with mean age 47.5 (±17.9) without any valvular diseases. The morphology of the mitral valve was evaluated. The intercommissural and aorto-mural diameters of the mitral annulus were measured. All leaflets and their scallops were identified. The base and the height of the posteromedial commissure (PM-C), anterolateral commissure (AL-C), anterior leaflet (AL) and posterior leaflet (PL) with their scallops were measured. Results: The intercommissural diameter was 28.0±4.8 mm, the aorto-mural diameter 19.7±4.8 mm, circumference of the mitral annulus 89.9±12.6 mm and the area of the mitral valve 485.4±171.4 mm2. Classical mitral valves (AL+AL-C+PL(P1,P2,P3)+PM-C) were found in 141 (70.5%) specimens. In classical type, the mean AL base and height were 30.8±4.9 mm and 20.6±4.2 mm, while mean PL base and height 45.1±8.2 mm 12.9±2.8 mm respectively. The mean ratio of the AL base to PL base was 0.7±0.2. Variations in PL were found in 55 (27.5%) and in AL in 5 (2.5%) hearts. The most common variations were: valve with one accessory scallop (AcS) between P3 and PM-C (7%); AcS between P1 and AL-C (4%); connections of P2 and P3 scallops (4%); connections of P1 and P2 scallops (3%); AcS in AL (2.5%). All AcS were smaller than the main PL scallops. The mean intertrigonal distance was 21.9±3.8 mm. Conclusions: In all cases, the mitral valve is built by two main leaflets with possible variants in secondary to leaflets scallops (29.5%). The variations are largely associated with PL and are mostly related to the presence of AcS. Anatomically the AL is not divided into scallops, and it occupies 34.5% of the mitral annulus circumference. Understanding the anatomy of the mitral valve leaflets helps to planning and performing mitral valve repair procedures.

Keywords: accessory scallop, commissure, connected scallops, human heart, mitral leaflets, mitral valve

Procedia PDF Downloads 348
196 Advanced Techniques in Robotic Mitral Valve Repair

Authors: Abraham J. Rizkalla, Tristan D. Yan

Abstract:

Purpose: Durable mitral valve repair is preferred to a replacement, avoiding the need for anticoagulation or re-intervention, with a reduced risk of endocarditis. Robotic mitral repair has been gaining favour globally as a safe, effective, and reproducible method of minimally invasive valve repair. In this work, we showcase the use of the Davinci© Xi robotic platform to perform several advanced techniques, working synergistically to achieve successful mitral repair in advanced mitral disease. Techniques: We present the case of a Barlow type mitral valve disease with a tall and redundant posterior leaflet resulting in severe mitral regurgitation and systolic anterior motion. Firstly, quadrangular resection of P2 is performed to remove the excess and redundant leaflet. Secondly, a sliding leaflet plasty of P1 and P3 is used to reconstruct the posterior leaflet. To anchor the newly formed posterior leaflet to the papillary muscle, CV-4 Goretex neochordae are fashioned using the innovative string, ruler, and bulldog technique. Finally, mitral valve annuloplasty and closure of a patent foramen ovale complete the repair. Results: There was no significant residual mitral regurgitation and complete resolution of the systolic anterior motion of the mitral valve on post operative transoesophageal echocardiography. Conclusion: This work highlights the robotic approach to complex repair techniques for advanced mitral valve disease. Familiarity with resection and sliding plasty, neochord implantation, and annuloplasty allows the modern cardiac surgeon to achieve a minimally-invasive and durable mitral valve repair when faced with complex mitral valve pathology.

Keywords: robotic mitral valve repair, Barlow's valve, sliding plasty, neochord, annuloplasty, quadrangular resection

Procedia PDF Downloads 44
195 Improving the Flow Capacity (CV) of the Valves

Authors: Pradeep A. G, Gorantla Giridhar, Vijay Turaga, Vinod Srinivasa

Abstract:

The major problem in the flow control valve is of lower Cv, which will reduce the overall efficiency of the flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. The traditional method of prototyping and testing takes a lot of time. That is where CFD comes into the picture with very quick and accurate validation along with visualization, which is not possible with the traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish the correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves, like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. The combination of optimized wetted surface and introduction of parabolic plug improved the Flow capacity (Cv) of the valve significantly.

Keywords: flow control valves, flow capacity (Cv), CFD simulations, design validation

Procedia PDF Downloads 118
194 Gas Lift Optimization Using Smart Gas Lift Valve

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie

Abstract:

Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.

Keywords: Effect of gas lift valve port size, effect water cut, vertical flow performance

Procedia PDF Downloads 256
193 Numerical Investigation of Blood Flow around a Leaflet Valve through a Perforating Vein

Authors: Zohreh Sheidaei, Farhad Sadegh Moghanlou, Rahim Vesal

Abstract:

Diseases related to leg venous system are common worldwide. An incompetent vein with deformed wall and insufficient valves affects flow field of blood and disrupts the process of blood circulating system. Having enough knowledge about the flow field through veins will help find new ways to cure the related diseases. In the present study, blood flow around a leaflet valve of a perforating vein is investigated numerically by Finite Element Method. Flow behavior and vortexes, generated around the leaflet valves, are studied considering valve opening percentage. Obtained velocity and pressure fields show mechanical stresses on vein wall and these valves and consequently introduce the regions susceptible to deformation.

Keywords: fluid flow, leaflet valve, numerical investigation, perforating vein

Procedia PDF Downloads 373
192 Structural Design of a Relief Valve Considering Strength

Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee

Abstract:

A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.

Keywords: relief valve, structural analysis, structural design, strength, safety factor

Procedia PDF Downloads 256
191 Device for Thermal Depolymerisation of Organic Substrates Prior to Methane Fermentation

Authors: Marcin Dębowski, Mirosław Krzemieniewski, Marcin Zieliński

Abstract:

This publication presents a device designed to depolymerise and structurally change organic substrate, for use in agricultural biogas plants or sewage treatment plants. The presented device consists of a heated tank equipped with an inlet valve for the crude substrate and an outlet valve for the treated substrate. The system also includes a gas conduit, which is at its tip equipped with a high-pressure solenoid valve and a vacuum relief solenoid valve. A conduit behind the high-pressure solenoid valve connects to the vacuum tank equipped with the outlet valve. The substrate introduced into the device is exposed to agents such as high temperature and cavitation produced by abrupt, short-term reduction of pressure within the heated tank. The combined effect of these processes is substrate destruction rate increase of about 20% when compared to using high temperature alone, and about 30% when compared to utilizing only cavitation. Energy consumption is greatly reduced, as the pressure increase is generated by heating the substrate. Thus, there is a 18% reduction of energy consumption when compared to a device designed to destroy substrate through high temperature alone, and a 35% reduction if compared to using cavitation as the only means of destruction.

Keywords: thermal depolymerisation, organic substrate, biogas, pre-treatment

Procedia PDF Downloads 531
190 The Clinical Use of Ahmed Valve Implant as an Aqueous Shunt for Control of Uveitic Glaucoma in Dogs

Authors: Khaled M. Ali, M. A. Abdel-Hamid, Ayman A. Mostafa

Abstract:

Objective: Safety and efficacy of Ahmed glaucoma valve implantation for the management of uveitis induced glaucoma evaluated on the five dogs with uncontrollable glaucoma. Materials and Methods: Ahmed Glaucoma Valve (AGV®; New World Medical, Rancho Cucamonga, CA, USA) is a flow restrictive, non-obstructive self-regulating valve system. Preoperative ocular evaluation included direct ophthalmoscopy and measurement of the intraocular pressure (IOP). The implant was examined and primed prior to implantation. The selected site of the valve implantation was the superior quadrant between the superior and lateral rectus muscles. A fornix-based incision was made through the conjunectiva and Tenon’s capsule. A pocket is formed by blunt dissection of Tenon’s capsule from the episclera. The body of the implant was inserted into the pocket with the leading edge of the device around 8-10 mm from the limbus. Results: No post operative complications were detected in the operated eyes except a persistent corneal edema occupied the upper half of the cornea in one case. Hyphaema was very mild and seen only in two cases which resolved quickly two days after surgery. Endoscopical evaluation for the operated eyes revealed a normal ocular fundus with clearly visible optic papilla, tapetum and retinal blood vessels. No evidence of hemorrhage, infection, adhesions or retinal abnormalities was detected. Conclusion: Ahmed glaucoma valve is safe and effective implant for treatment of uveitic glaucoma in dogs.

Keywords: Ahmed valve, endoscopy, glaucoma, ocular fundus

Procedia PDF Downloads 534
189 Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding

Authors: B. S. So, Y. H. Yoon, J. O. Jung, K. S. Bae

Abstract:

Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test.

Keywords: hybrid metal injection molding, swing valve, turbocharger, double injection

Procedia PDF Downloads 173
188 Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System

Authors: Gupta Rajesh, Paudel Sagar, Sharma Utkarsh, Singh Amit Kumar

Abstract:

Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance.

Keywords: nuclear reactor coolant system, thermal stratification, turbulent penetration, coupled fluent-structural analysis, Von-Misses stress

Procedia PDF Downloads 249
187 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, check valve, micropump, piezoelectric

Procedia PDF Downloads 416
186 Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves

Authors: Abdullah M. Alzahrani

Abstract:

Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 (r = 0.3) but t-PA and PAI-1 were strongly correlated with each other (r = 0.6). Over expression of PAI-1 was proportional to the calcium content of theAS valves. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The over expression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.

Keywords: aortic valve, PAI-1, tPA gene, uPA gene

Procedia PDF Downloads 441
185 Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine

Authors: Gurlal Singh, Rupinder Singh

Abstract:

The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine.

Keywords: exhaust gas, automobiles, solenoid, airbrake

Procedia PDF Downloads 222