Search results for: complex stainless steel
4820 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers
Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong
Abstract:
Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.Keywords: clad pipe, lamination layer parameters, monel, overlay welding
Procedia PDF Downloads 2734819 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads
Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom
Abstract:
Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete
Procedia PDF Downloads 2574818 The Korean Neo-Confucian Ideal of Pluralism and Han
Authors: Hyeon Sop Baek
Abstract:
This paper will investigate the Korean concept of han and suggest that the feeling of han is essentially inseparable from the central project of the Korean neo-Confucian philosophical tradition. Han is a complex sentiment, but one may characterize it as an internally directed complex of sentiments of frustration, sadness, and anger. In particular, this paper aims to demonstrate that the Korean neo-Confucian project's ultimate objective was to build a pluralistic world – where different people can coexist together in harmony and participate in building the ideal world. Nevertheless, the confrontation between the neo-Confucian idea – that every person has the intrinsic potential to be moral – and the bleakness of reality that made their objective virtually impossible to achieve led to the formation and development of the feeling of han. The paper will first examine the concept of han and what it entails and then investigate the core elements of Korean neo-Confucianism, examining the works of Korean neo-Confucians, including Toegye, Yulgok, and Jeong Dojeon. Furthermore, the concept of plurality will be drawn from the political theory of Hannah Arendt. While the Arendtian and Korean neo-Confucian philosophies are ultimately different, this paper will contend that the two philosophies' broader aims share many resonating points. Specifically, within both philosophies, the human plurality – that all humans are equal but not the same – underlies the foundation of an ideal political realm. From there, an argument that the difficulty faced by the neo-Confucians in Korea in constructing a polity based on the ideal of respect and human moral capacity ultimately contributed to the emergence of the sentiment han will be presented. In conclusion, this paper will demonstrate that the ultimate objectives of Korean Confucianism lie in closing the gap between the ideal and reality in moral cultivation as well as its political project of building an ideal, pluralistic world, and han emerges from the realization of the difficulty of achieving that goal. Finally, this paper will contest that han needs not be perceived negatively, and han can be a driving force for political participation in the contemporary democratic, pluralistic society.Keywords: Korea, Confucianism, neo-Confucianism, philosophy, han, Korean philosophy
Procedia PDF Downloads 1404817 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase
Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul
Abstract:
Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase
Procedia PDF Downloads 3614816 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine
Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine
Abstract:
The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.Keywords: faults, diagnosis, modelling, multiphase machine
Procedia PDF Downloads 644815 Fractionation of Biosynthetic Mixture of Gentamicins by Reactive Extraction
Authors: L. Kloetzer, M. Poştaru, A. I. Galaction, D. Caşcaval
Abstract:
Gentamicin is an aminoglycoside antibiotic industrially obtained by biosynthesis of Micromonospora purpurea or echinospora, the product being a complex mixture of components with very similar structures. Among them, three exhibit the most important biological activity: gentamicins C1, C1a, C2, and C2a. The separation of gentamicin from the fermentation broths at industrial scale is rather difficult and it does not allow the fractionation of the complex mixture of gentamicins in order to increase the therapeutic activity of the product. The aim of our experiments is to analyze the possibility to selectively separate the less active gentamicin, namely gentamicin C1, from the biosynthetic mixture by reactive extraction with di-(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in dichloromethane, followed selective re-extraction of the most active gentamicins C1a, C2, and C2a. The experiments on the reactive extraction of gentamicins indicated the possibility to separate selectively the gentamicin C1 from the mixture obtained by biosynthesis. The extraction selectivity is positively influenced by increasing the pH-value of an aqueous solution and by using a D2EHPA concentration in organic phase closer to the value needed for an equimolecular ratio between the extractant and this gentamicin. For quantifying the selectivity of separation, the selectivity factor, calculated as the ratio between the degree of reactive extraction of gentamicin C1 and the overall extraction degree of gentamicins were used. The possibility to remove the gentamicin C1 at an extractant concentration of 10 g l-1 and pH = 8 is presented. In these conditions, it was obtained the maximum value of the selectivity factor of 2.14, which corresponds to the modification of the gentamicin C1 concentration from 31.92% in the biosynthetic mixture to 72% in the extract. The re-extraction of gentamicins C1, C1a, C2, and C2a with sulfuric acid from the extract previously obtained by reactive extraction (mixture A – extract obtained by non-selective reactive extraction; mixture B – extract obtained by selective reactive extraction) allows for separating selectively the most active gentamicins C1a, C2, and C2a. For recovering only the active gentamicins C1a, C2, and C2a, the re-extraction must be carried out at very low acid concentrations, far below those corresponding to the stoichiometry of its chemical reactions with these gentamicins. Therefore, the mixture resulted by re-extraction contained 92.6% gentamicins C1a, C2, and C2a. By bringing together the aqueous solutions obtained by reactive extraction and re-extraction, the overall content of the active gentamicins in the final product becomes 89%, their loss reaching 0.3% related to the initial biosynthetic product.Keywords: di-(2-ethylhexyl) phosphoric acid, gentamicin, reactive extraction, selectivity factor
Procedia PDF Downloads 3244814 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development
Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez
Abstract:
Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture
Procedia PDF Downloads 3014813 Properties of Ground Granulated Blast Furnace Slag Based Geopolymer Concrete
Authors: Niragi Dave, Ruchika Lalit
Abstract:
Concrete is one of the most widely used materials across the globe mostly second to water and generating high carbon dioxide emission during its whole manufacturing due to the presence of cement as an ingredient. Therefore it is necessary to find an alternative material to the Portland cement. This study focused on the use of Ground Granulated Blast Furnace Slag as geopolymer binder. Geopolymer concrete can be an alternative material which is produced by the chemical reaction of inorganic molecules. On the other hand, waste generating from power plants and other industries like iron and steel industries can be effectively used which has disposal problems. Therefore in this study geopolymer concrete is manufactured by 100% replacement of cement content by ground granulated blast furnace slag and a combination of sodium silicate and sodium hydroxide is used as an alkaline solution. The results have shown that the compressive strengths increased with increasing curing time and type of alkali activators. Naphthalene sulfonate-based superplasticizer performed better than other superplasticizers. All the specimens have been cast at ambient temperature.Keywords: alkali activators, concrete, geopolymer, ground granulated blast furnace slag
Procedia PDF Downloads 3274812 A Proposed Inclusive Motor Skill Intervention Programme for Pre-schoolers in Low Resources Areas in Preparation of School Readiness
Authors: J. Van der Walt, N. A. Plastow, M. Unger
Abstract:
Gross and fine motor skill difficulties among children affect their ability to learn and progress in school. Research indicates that children in low socio-economic areas are at a higher risk of motor skill difficulties, while therapy resources are limited. The Hopscotch motor skill programme is a well-researched accessible in-school intervention developed by occupational and physiotherapists through complex intervention development. The development stage of the complex intervention development model firstly included a prevalence study in a low-resourced area in the West Coast of South Africa, indicating a high prevalence with significant motor skill difficulties among pre-school children at 14.5% with fine motor skill difficulties at 24.6%. A scoping review identifies motor skill interventions for pre-school children and a proposed a framework of fundamental concepts to consider when developing a motor skill intervention. a Delphi-study considered the framework and encouraged collaboration between therapists and educators to make the programme accessible, resource and cost effective, specifically geared towards a rural, low resourced area. The results from the Delphi study, together with the proposed framework from the scoping review was used to develop the Hopscotch programme, adopting a task-shifting approach. The eight-week small-group programme is facilitated by teachers with the support of therapists. The programme aims to improve the motor skills of pre-school aged children with motor skill difficulties to promote academic readiness through obstacle courses, ball skill games and fine motor games and crafts. A randomised controlled trial is planned as a next stage to determine the preliminary effect of the programme on the motor and early academic skills of pre-school children.Keywords: accesible learning, motor skill intervention, school readiness, task shifting
Procedia PDF Downloads 1954811 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene
Authors: Małgorzata Golonka, Jadwiga Laska
Abstract:
Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.Keywords: self-healing polymers, polyethylene, microcapsules, extrusion
Procedia PDF Downloads 294810 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin
Authors: Julio Jesus Salazar, Julio Jesus De Lama
Abstract:
the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.Keywords: hydrology, internet of things, machine learning, river basin
Procedia PDF Downloads 1604809 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 724808 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 204807 Research Project on Learning Rationality in Strategic Behaviors: Interdisciplinary Educational Activities in Italian High Schools
Authors: Giovanna Bimonte, Luigi Senatore, Francesco Saverio Tortoriello, Ilaria Veronesi
Abstract:
The education process considers capabilities not only to be seen as a means to a certain end but rather as an effective purpose. Sen's capability approach challenges human capital theory, which sees education as an ordinary investment undertaken by individuals. A complex reality requires complex thinking capable of interpreting the dynamics of society's changes to be able to make decisions that can be rational for private, ethical and social contexts. Education is not something removed from the cultural and social context; it exists and is structured within it. In Italy, the "Mathematical High School Project" is a didactic research project is based on additional laboratory courses in extracurricular hours where mathematics intends to bring itself in a dialectical relationship with other disciplines as a cultural bridge between the two cultures, the humanistic and the scientific ones, with interdisciplinary educational modules on themes of strong impact in younger life. This interdisciplinary mathematics presents topics related to the most advanced technologies and contemporary socio-economic frameworks to demonstrate how mathematics is not only a key to reading but also a key to resolving complex problems. The recent developments in mathematics provide the potential for profound and highly beneficial changes in mathematics education at all levels, such as in socio-economic decisions. The research project is built to investigate whether repeated interactions can successfully promote cooperation among students as rational choice and if the skill, the context and the school background can influence the strategies choice and the rationality. A Laboratory on Game Theory as mathematical theory was conducted in the 4th year of the Mathematical High Schools and in an ordinary scientific high school of the Scientific degree program. Students played two simultaneous games of repeated Prisoner's Dilemma with an indefinite horizon, with two different competitors in each round; even though the competitors in each round will remain the same for the duration of the game. The results highlight that most of the students in the two classes used the two games with an immunization strategy against the risk of losing: in one of the games, they started by playing Cooperate, and in the other by the strategy of Compete. In the literature, theoretical models and experiments show that in the case of repeated interactions with the same adversary, the optimal cooperation strategy can be achieved by tit-for-tat mechanisms. In higher education, individual capacities cannot be examined independently, as conceptual framework presupposes a social construction of individuals interacting and competing, making individual and collective choices. The paper will outline all the results of the experimentation and the future development of the research.Keywords: game theory, interdisciplinarity, mathematics education, mathematical high school
Procedia PDF Downloads 744806 Wear Damage of Glass Fiber Reinforced Polyimide Composites with the Addition of Graphite
Authors: Mahmoudi Noureddine
Abstract:
The glass fiber (GF) reinforced polyimide (PL) composites filled with graphite powders were fabricated by means of hot press molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring-on-block test rig at dry sliding condition. The wear mechanisms were also discussed, based on scanning electron microscopic examination of the worn surface of the PL composites and the transfer film formed on the counterpart. With the increasing normal loads, the friction coefficient of the composites increased under the dry sliding, owing to inconsistent influences of shear strength and real contact areas. Experimental results revealed that the incorporation of graphite significantly improve the wear resistance of the glass fibers reinforced polyimide composites. For best combination of friction coefficient and wear rate, the optimal volume content of graphite in the composites appears to be 45 %. It was also found that the tribological properties of the glass fiber reinforced PL composites filled with graphite powders were closely related with the sliding condition such as sliding rate and applied load.Keywords: composites, fiber, friction, wear
Procedia PDF Downloads 3564805 Energy Consumption Forecast Procedure for an Industrial Facility
Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova
Abstract:
We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting
Procedia PDF Downloads 4464804 Using CFRP Sheets and Anchors on Sand-Lightweight Perlite Concrete to Evaluate the Flexural Behaviour of T-Beams
Authors: Mohammed Zaki, Hayder Rasheed
Abstract:
This paper evaluates the flexural response of sand-lightweight Perlite concrete using full-scale reinforced concrete T beams strengthened and anchored with carbon fiber reinforced polymer (CFRP) materials. Four specimens were prepared with the same geometry, steel reinforcements, concrete properties, and span lengths. The anchored beams had a similar number of CFRP sheets but were secured utilizing different arrangements of CFRP fiber anchors. That will allow for effective and easily making comparisons to examine the flexural strengthening behavior of sand-lightweight Perlite concrete beams with anchors. The experimental outcomes were also compared with the numerical study and the comparisons were discussed. The test results showed an improvement in flexural behavior due to the use of CFRP sheets and anchors. Interestingly, the anchored beams recorded similar ultimate strength regardless of the number of CFRP fiber anchors used due to the failure by excessive wide cracks in the concrete.Keywords: perlite concrete, CFRP fiber anchors, lightweight concrete, full-scale T-beams
Procedia PDF Downloads 864803 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as Per ASCE
Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail
Abstract:
An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i. e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey-ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP 2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.Keywords: infill wall, pushover analysis, response modification factor, seismic assessment
Procedia PDF Downloads 3934802 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method
Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay
Abstract:
Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method
Procedia PDF Downloads 4734801 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures
Authors: Mostafa Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy
Procedia PDF Downloads 4534800 Proposing an Index for Determining Key Knowledge Management Processes in Decision Making Units Using Fuzzy Quality Function Deployment (QFD), Data Envelopment Analysis (DEA) Method
Authors: Sadegh Abedi, Ali Yaghoubi, Hamidreza Mashatzadegan
Abstract:
This paper proposes an approach to identify key processes required by an organization in the field of knowledge management and aligning them with organizational objectives. For this purpose, first, organization’s most important non-financial objectives which are impacted by knowledge management processes are identified and then, using a quality house, are linked with knowledge management processes which are regarded as technical elements. Using this method, processes that are in need of improvement and more attention are prioritized based on their significance. This means that if a process has more influence on organization’s objectives and is in a dire situation comparing to others, is prioritized for choice and improvement. In this research process dominance is considered to be an influential element in process ranking (in addition to communication matrix). This is the reason for utilizing DEA techniques for prioritizing processes in quality house. Results of implementing the method in Khuzestan steel company represents this method’s capability of identifying key processes that require improvements in organization’s knowledge management system.Keywords: knowledge management, organizational performance, fuzzy data, envelopment analysis
Procedia PDF Downloads 4194799 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression
Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud
Abstract:
Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.Keywords: Aire, central tolerance, miRNAs, transcription termination
Procedia PDF Downloads 3834798 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 1834797 Seismic Behaviour of CFST-RC Columns
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance
Procedia PDF Downloads 2464796 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem
Authors: Ebrahim Asadi-Gangraj
Abstract:
Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan
Procedia PDF Downloads 1894795 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340
Authors: Theena Thayalan, K. N. Ramesh Babu
Abstract:
Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.Keywords: FEM, machining, residual stress, XRF
Procedia PDF Downloads 3484794 Influence of Psychosocial Factors on Physical Activity Level among Individuals with Asthma
Authors: Awotidebe Taofeek, Oyinsuyi Oluwafunmbi
Abstract:
Psychosocial factors play a significant role in physical activity participation in diseased conditions and the general population. However, little is known about the role of exercise self-efficacy (ESE), exercise perceived barriers (EPB), and social support (SOS) in patients with asthma. This study investigated the influence of psychosocial factors on physical activity participation in patients with asthma in ile-ife. This cross-sectional study involved 130 patients with asthma. They were recruited from the Chest Clinic of the Obafemi Awolowo University Teaching Hospitals Complex, Ile-ife using purposive sampling technique. Ethical approval was obtained from the Ethics and Research Committee of the Obafemi Awolowo University Teaching Hospitals Complex, Ile-ife, Nigeria. Socio-demographic characteristics of respondents were recorded. Information on ESE, EPB, and SOS were obtained using Exercise Self-Efficacy, Exercise Benefit, and Barrier and Medical Outcome Social Support Scales respectively. Physical activity level was assessed in the last 7 days using international physical activity questionnaire. Descriptive and inferential statistics were used to analyze the data. Alpha level was set at p<0.5. The mean age of the respondents was 25.15 ± 9.38, and a majority, 110 (84.60%), engaged in low physical activity, 69(53%) had low exercise self-efficacy. However, less than two-third 80 (62.20%) reported high social support, with the majority of 95 (73.10%) reported high exercise perceived barriers. The means of ESE for male and femalerespondents were 29.01 ± 20.62 and 24.35 ± 17.36, respectively. The means of SOS formale and female respondents were 49.52 ± 22.22 and 61.87 ± 22.66, respectively. Themeans of EPB for male and female respondents were 53.37 ± 10.23 and 57.43 ± 9.65, respectively. The respondents were comparable in exercise self-efficacy and physicalactivity level (p>0.05). However, there were significant differences in social support (t=-2.791; p=0.006) and exercise perceived barriers (t=-2.108, p=0.037).Theresultsshowthattherewasasignificantrelationshipbetweenexerciseperceivedbarriersandlowphysicalactivitylevel(r=-0.216;p=0.023).TherewasasignificantassociationbetweenExerciseself-efficacyandmarried individuals(OR=0.967;95%CI=0.936-0.998;p= 0.037). Similarly, However,thereweresignificantassociationsbetweensocialsupport Andagegroup35-54years(OR=1.036;95%CI=1.007-1.067;p=0.014),females(OR= 1.024;95%CI=1.006;p=0.009)andmarriedindividuals(OR=1.049;95%CI=1.020-1.079. p=0.001).Therewasasignificantassociationbetweenexerciseperceivedbarriersand females(OR=1.043;95%CI=1.002-1.085;p=0.040).However, thereweresignificant associationsbetweenexerciseperceivedbarriersandoccupationgroup;civilservants (OR=1.092;95%CI=1.009-1.182;p=0.028),retiree(OR=1.092;95%CI=1.040-1.469;p= 0.016)andstudents(OR=1.110;95%CI=1.040;p=0.002). Inconclusion,agreaterpercentageofpatientswithasthmahadlowphysicalactivityleveland it was associatedwithhighexerciseperceivedbarriers,whileexerciseself-efficacyandsocialsupportwerenot.Keywords: asthma, psychosocial factors, physical activity, physical fitness
Procedia PDF Downloads 1254793 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan
Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte
Abstract:
The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.Keywords: nanoparticles, whiskers, chitosan, chromium
Procedia PDF Downloads 1374792 Parametric Optimization of Electric Discharge Machining Process Using Taguchi's Method and Grey Relation Analysis
Authors: Pushpendra S. Bharti
Abstract:
Process yield of electric discharge machining (EDM) is directly related to optimal combination(s) of process parameters. Optimization of process parameters of EDM is a multi-objective optimization problem owing to the contradictory behavior of performance measures. This paper employs Grey Relation Analysis (GRA) method as a multi-objective optimization technique for the optimal selection of process parameters combination. In GRA, multi-response optimization is converted into optimization of a single response grey relation grade which ultimately gives the optimal combination of process parameters. Experiments were carried out on die-sinking EDM by taking D2 steel as work piece and copper as electrode material. Taguchi's orthogonal array L36 was used for the design of experiments. On the experimental values, GRA was employed for the parametric optimization. A significant improvement has been observed and reported in the process yield by taking the parametric combination(s) obtained through GRA.Keywords: electric discharge machining, grey relation analysis, material removal rate, optimization
Procedia PDF Downloads 4094791 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach
Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf
Abstract:
Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.Keywords: classification, defect, surface, detection, hole
Procedia PDF Downloads 16