Search results for: titanium milled bar retainer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 513

Search results for: titanium milled bar retainer

333 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations

Authors: Jyh Sheen, Yong-Lin Wang

Abstract:

This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.

Keywords: microwave measurement, dielectric constant, mixture rules, composites

Procedia PDF Downloads 349
332 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD

Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer

Abstract:

Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.

Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film

Procedia PDF Downloads 274
331 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy

Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi

Abstract:

Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method.  In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.

Keywords: ball milling, compressive strengths, microstructure, porous titanium alloy

Procedia PDF Downloads 286
330 Saccharification and Bioethanol Production from Banana Pseudostem

Authors: Elias L. Souza, Noeli Sellin, Cintia Marangoni, Ozair Souza

Abstract:

Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h).

Keywords: biofuels, biomass, saccharification, bioethanol

Procedia PDF Downloads 331
329 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 280
328 The Effects of Separating Inferior Alveolar Neurovascular Bundles on Osteogenesis of Tissue-Engineered Bone and Vascularization

Authors: Lin Feng, E. Lingling, Hongchen Liu

Abstract:

In order to evaluate the effects of autologous blood vessels and nerves on vascularization. A dog model of tissue-engineered bone vascularization was established by constructing inferior alveolar neurovascular bundles through the mandibular canal. Sixteen 12-month-old healthy beagles were randomly divided into two groups (n=8). Group A retained inferior alveolar neurovascular bundles, and Group B retained inferior alveolar nerves. Bone marrow mesenchymal stem cells were injected into β-tricalcium phosphate to prepare internal tissue-engineered bone scaffold. A personalized titanium mesh was then prepared by rapid prototyping and fixed by external titanium scaffold. Two dogs in each group were sacrificed on the 30th, 45th, 60th, and 90th postoperative days respectively. The bone was visually examined, scanned by CT, and subjected to HE staining, immunohistochemical staining, vascular casting and PCR to detect the changes in osteogenesis and vascularization.The two groups had similar outcomes in regard to osteogenesis and vascularization (P>0.05) both showed remarkable regenerative capacities. The model of tissue-engineered bone vascularization is potentially applicable in clinical practice to allow satisfactory osteogenesis and vascularization.

Keywords: inferior alveolar neurovascular bundle, osteogenesis, tissue-engineered bone, vascularization

Procedia PDF Downloads 376
327 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures

Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro

Abstract:

Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.

Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo

Procedia PDF Downloads 368
326 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass

Authors: Demet Tatar, Bahattin Düzgün

Abstract:

In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.

Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis

Procedia PDF Downloads 371
325 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 250
324 Development of Wide Bandgap Semiconductor Based Particle Detector

Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin

Abstract:

The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.

Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors

Procedia PDF Downloads 62
323 Microstructure of Ti – AlN Composite Produced by Selective Laser Melting

Authors: Jaroslaw Mizera, Pawel Wisniewski, Ryszard Sitek

Abstract:

Selective Laser Melting (SLM) is an advanced additive manufacturing technique used for producing parts made of wide range of materials such as: austenitic steel, titanium, nickel etc. In the our experiment we produced a Ti-AlN composite from a mixture of titanium and aluminum nitride respectively 70% at. and 30% at. using SLM technique. In order to define the size of powder particles, laser diffraction tests were performed on HORIBA LA-950 device. The microstructure and chemical composition of the composite was examined by Scanning Electron Microscopy (SEM). The chemical composition in micro areas of the obtained samples was determined by of EDS. The phase composition was analyzed by X-ray phase analysis (XRD). Microhardness Vickers tests were performed using Zwick/Roell microhardness machine under the load of 0.2kG (HV0.2). Hardness measurements were made along the building (xy) and along the plane of the lateral side of the cuboid (xz). The powder used for manufacturing of the samples had a mean particle size of 41μm. It was homogenous with a spherical shape. The specimens were built chiefly from Ti, TiN and AlN. The dendritic microstructure was porous and fine-grained. Some of the aluminum nitride remained unmelted but no porosity was observed in the interface. The formed material was characterized by high hardness exceeding 700 HV0.2 over the entire cross-section.

Keywords: Selective Laser Melting, Composite, SEM, microhardness

Procedia PDF Downloads 126
322 Development of β-Ti Alloy Powders for Additive Manufacturing for Application in Patient-Specific Orthopedic Implants

Authors: Eugene Ivanov, Eduardo del-Rio, Igor Kapchenko, Maija Nystrӧm, Juha Kotila

Abstract:

Series of low modulus beta Ti alloy billets and powders can be produced in commercial quantities using a combination of electron beam melting (EBM) and EIGA atomization processes. In the present study, TNZT alloy powder was produced and processed in the EOSINT M290 laser sintering system to produce parts for mechanical testing. Post heat treatments such as diffusion annealing to reduce internal stresses or hot isostatic pressing to remove closed pores were not applied. The density can visually be estimated to be > 99,9 %. According to EDS study Nb, Zr, and Ta are distributed homogeneously throughout the printed sample. There are no indications for any segregation or chemical inhomogeneity, i.e. variation of the element distribution. These points to the fact that under the applied experimental conditions the melt generated by the laser rapidly cools down in the SLM (Selective Laser Melting) process. The selective laser sintering yielded dense structures with relatively good surface quality. The mechanical properties, especially the elongation (24%) along with tensile strength ( > 500MPa) and modulus of elasticity (~60GPa), were found to be promising compared to titanium alloys in general.

Keywords: beta titanium alloys, additive manufacturing, powder, implants

Procedia PDF Downloads 216
321 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 115
320 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 160
319 Investigation on Polymer Based Nano-Silver as Food Packaging Materials

Authors: A. M. Metak, T. T. Ajaal, Amal Metak, Tawfik Ajaal

Abstract:

Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.

Keywords: nano-silver, antimicrobial food packaging, migration, titanium dioxide

Procedia PDF Downloads 350
318 Iron and/or Titanium Containing Microporous Silico-Alumino-Phosphates as a Photocatalyst for Hydrogen Production by Water Splitting

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis, the Silicoaluminophosphates materials have proved their efficiency as a good adsorbent and catalyst in several environmental and energetic applications. In this work, the photocatalytic hydrogen production from water splitting reactions has been conducted under visible radiations in the presence of a series of iron and/or titanium-containing microporous silico-alumino-phosphates materials synthesized by hydrothermal method, using triethylamine as an organic structuring agent to obtain the AFI structure type. These photo-catalysts were then characterized by various physicochemical methods to determine their structural, textural and morphological properties such as X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with X rays microanalysis, nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), and X-rays photoelectron spectroscopy (XPS) and the analysis revealed that these materials have significant photocatalytic properties. The hydrogen production process has been followed by photoelectrochemical characterization (PEC). The results showed that hydrogen is the only gas produced, and the reaction takes place in the conduction band where water is reduced to hydrogen. The electron recombination has also been avoided, as holes are entrapped using hole scavengers. In addition, these catalysts have been shown to remain stable during reuse for up to five cycles.

Keywords: photocatalysis, SAPO-5, hydrothermal synthesis, hydrogen production

Procedia PDF Downloads 47
317 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity

Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee

Abstract:

Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.

Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant

Procedia PDF Downloads 389
316 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 76
315 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating

Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang

Abstract:

The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.

Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying

Procedia PDF Downloads 252
314 Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering

Authors: Jerman Madonsela, Wallace Matizamhuka, Akiko Yamamoto, Ronald Machaka, Brendon Shongwe

Abstract:

In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed.

Keywords: biocompatibility, osteoblast, corrosion, surface wettability, protein adsorption

Procedia PDF Downloads 204
313 Nickel-Titanium Endodontic Instruments: The Evolution

Authors: Fadwa Chtioui

Abstract:

The field of endodontics has witnessed constant advancements in treatment methods and instrument design, particularly for nickel-titanium (NiTi) files. Despite these developments, it remains crucial for clinicians to have a thorough understanding of their characteristics and behavior to choose the appropriate instruments for different clinical and anatomical situations. Research Aim: The aim of this work is to study and discuss the impact of heat treatment developments on the properties of endodontic NiTi files, with the ultimate goal of providing ways to adapt these files to the anatomical features of dental roots. Methodology: This study involves both clinical cases and extensive bibliographic research. Findings: The study highlights the importance of heat treatment in the design and manufacture of NiTi files, as it significantly affects their physical and mechanical properties. It also provides insights into the ways in which NiTi files can be adapted to the complex geometries of dental roots for more effective endodontic treatments. Theoretical Importance: Theoretical implications of this study include a better understanding of the relationship between heat treatment and the properties of NiTi files, leading to improvements in both their manufacturing methods and clinical applications. Data Collection and Analysis Procedures: The data for this study was collected through clinical cases and an extensive review of relevant literature. Analysis was performed through qualitative and quantitative methods, examining the impact of heat treatment on the physical and mechanical properties of NiTi files. Questions Addressed: This study aims to answer questions concerning the properties of NiTi files and the impact of heat treatment on their behavior. It also seeks to examine ways in which these files can be adapted to complex dental root geometries for more effective endodontic treatments. Conclusion: In conclusion, this study emphasizes the importance of heat treatment in the design and manufacture of NiTi files, as it significantly impacts their physical and mechanical properties. Further research is necessary to explore additional methods for adapting NiTi files to the unique anatomies of dental roots to improve endodontic treatments further. Ultimately, this study provides valuable insights into the continued evolution of endodontic treatment and instrument design.

Keywords: endodontic files, nickel-titanium, tooth anatomy, heat treatment

Procedia PDF Downloads 48
312 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time

Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn

Abstract:

The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.

Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical

Procedia PDF Downloads 14
311 Mineral Chemistry of Barium and Titanium-Bearing Biotite in Alkaline Trachyte from Upper Benue Valley (Northern Cameroon)

Authors: Fadimatou Ngounouno Yamgouota, Isaac Bertrand Gbambié Mbowoub, Ismaila Ngounounob

Abstract:

Barium and titanium bearing biotite from alkaline trachyte of Upper Benue valley, Northern Cameroon is studied. The iron enrichment index of mica (average I.E.=0.40) is intermediate between annite and phlogopite. The biotite phenocrysts contain up to 6.2 wt. % BaO and 9.8 wt. % TiO2. The BaO content of electron-microprobe mica is positively correlated with the Al2O3, TiO2, and FeO contents, and negatively correlated with the SiO2, K2O, and MgO contents. Ba and Ti rich micas are generally found in in SiO2 deficient rocks, whereas Ba and Ti bearing mica in this study occur in silica-saturated rocks. Most of the phenocrysts analysed have deficiencies in their octahedral and interlayer sites. Deficiencies in the octahedral sites may arise from the Ti vacancy and partly the Ti tschermakite substitution. On the other hand, deficiencies in the interlayer-site are due to the replacement of K by Ba. The substitution mechanism in the Upper Benue valley mica is characterized by Ba + 2Ti + 3Al =(K + Na + Ca) + 3(Mg + Fe + Mn) + 3Si, with an excellent correlation coefficient. Biotite compositions from the Upper Benue valley area fall between the quartz-fayalite-magnetite (QFM) and nickel-nickel-oxide (NNO) oxygen fugacity buffers. All these show that Upper Benue valley mica with high Ba and Ti contents may be formed from magmas rich in these elements.

Keywords: Benue valley, trachyte, biotite, mineral chemistry, enrichment

Procedia PDF Downloads 281
310 Effects of Roasting as Preservative Method on Food Value of the Runner Groundnuts, Arachis hypogaea

Authors: M. Y. Maila, H. P. Makhubele

Abstract:

Roasting is one of the oldest preservation method used in foods such as nuts and seeds. It is a process by which heat is applied to dry foodstuffs without the use of oil or water as a carrier. Groundnut seeds, also known as peanuts when sun dried or roasted, are among the oldest oil crops that are mostly consumed as a snack, after roasting in many parts of South Africa. However, roasting can denature proteins, destroy amino acids, decrease nutritive value and induce undesirable chemical changes in the final product. The aim of this study, therefore, was to evaluate the effect of various roasting times on the food value of the runner groundnut seeds. A constant temperature of 160 °C and various time-intervals (20, 30, 40, 50 and 60 min) were used for roasting groundnut seeds in an oven. Roasted groundnut seeds were then cooled and milled to flour. The milled sundried, raw groundnuts served as reference. The proximate analysis (moisture, energy and crude fats) was performed and the results were determined using standard methods. The antioxidant content was determined using HPLC. Mineral (cobalt, chromium, silicon and iron) contents were determined by first digesting the ash of sundried and roasted seed samples in 3M Hydrochloric acid and then determined by Atomic Absorption Spectrometry. All results were subjected to ANOVA through SAS software. Relative to the reference, roasting time significantly (p ≤ 0.05) reduced moisture (71%–88%), energy (74%) and crude fat (5%–64%) of the runner groundnut seeds, whereas the antioxidant content was significantly (p ≤ 0.05) increased (35%–72%) with increasing roasting time. Similarly, the tested mineral contents of the roasted runner groundnut seeds were also significantly (p ≤ 0.05) reduced at all roasting times: cobalt (21%–83%), chromium (48%–106%) and silicon (58%–77%). However, the iron content was significantly (p ≤ 0.05) unaffected. Generally, the tested runner groundnut seeds had higher food value in the raw state than in the roasted state, except for the antioxidant content. Moisture is a critical factor affecting the shelf life, texture and flavor of the final product. Loss of moisture ensures prolonged shelf life, which contribute to the stability of the roasted peanuts. Also, increased antioxidant content in roasted groundnuts is essential in other health-promoting compounds. In conclusion, the overall reduction in the proximate and mineral contents of the runner groundnuts seeds due to roasting is sufficient to suggest influences of roasting time on the food value of the final product and shelf life.

Keywords: dry roasting, legume, oil source, peanuts

Procedia PDF Downloads 264
309 A Novel Hybrid Lubri-Coolant for Machining Difficult-to-Cut Ti-6Al-4V Alloy

Authors: Muhammad Jamil, Ning He, Wei Zhao

Abstract:

It is a rough estimation that the aerospace companies received orders of 37000 new aircraft, including the air ambulances, until 2037. And titanium alloys have a 15% contribution in modern aircraft's manufacturing owing to the high strength/weight ratio. Despite their application in the aerospace and medical equipment manufacturing industry, still, their high-speed machining puts a challenge in terms of tool wear, heat generation, and poor surface quality. Among titanium alloys, Ti-6Al-4V is the major contributor to aerospace application. However, its poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc., are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect regarding the hard-to-cut Ti-6Al-4V. Therefore, this study is devoted to exploring the effect of hybrid ethanol-ester oil MQL regarding the cutting temperature, surface integrity, and tool life. As the ethanol provides -OH group and ester oil of long-chain molecules provide a tribo-film on the tool-workpiece interface. This could be a green manufacturing alternative for the manufacturing industry.

Keywords: hybrid lubri-cooling, surface roughness, tool wear, MQL

Procedia PDF Downloads 72
308 Synthesis and Properties of Poly(N-(sulfophenyl)aniline) Nanoflowers and Poly(N-(sulfophenyl)aniline) Nanofibers/Titanium dioxide Nanoparticles by Solid Phase Mechanochemical and Their Application in Hybrid Solar Cell

Authors: Mazaher Yarmohamadi-Vasel, Ali Reza Modarresi-Alama, Sahar Shabzendedara

Abstract:

Purpose/Objectives: The first purpose was synthesize Poly(N-(sulfophenyl)aniline) nanoflowers (PSANFLs) and Poly(N-(sulfophenyl)aniline) nanofibers/titanium dioxide nanoparticles ((PSANFs/TiO2NPs) by a solid-state mechano-chemical reaction and template-free method and use them in hybrid solar cell. Also, our second aim was to increase the solubility and the processability of conjugated nanomaterials in water through polar functionalized materials. poly[N-(4-sulfophenyl)aniline] is easily soluble in water because of the presence of polar groups of sulfonic acid in the polymer chain. Materials/Methods: Iron (III) chloride hexahydrate (FeCl3∙6H2O) were bought from Merck Millipore Company. Titanium oxide nanoparticles (TiO2, <20 nm, anatase) and Sodium diphenylamine-4-sulfonate (99%) were bought from Sigma-Aldrich Company. Titanium dioxide nanoparticles paste (PST-20T) was prepared from Sharifsolar Co. Conductive glasses coated with indium tin oxide (ITO) were bought from Xinyan Technology Co (China). For the first time we used the solid-state mechano-chemical reaction and template-free method to synthesize Poly(N-(sulfophenyl)aniline) nanoflowers. Moreover, for the first time we used the same technique to synthesize nanocomposite of Poly(N-(sulfophenyl)aniline) nanofibers and titanium dioxide nanoparticles (PSANFs/TiO2NPs) also for the first time this nanocomposite was synthesized. Examining the results of electrochemical calculations energy gap obtained by CV curves and UV–vis spectra demonstrate that PSANFs/TiO2NPs nanocomposite is a p-n type material that can be used in photovoltaic cells. Doctor blade method was used to creat films for three kinds of hybrid solar cells in terms of different patterns like ITO│TiO2NPs│Semiconductor sample│Al. In the following, hybrid photovoltaic cells in bilayer and bulk heterojunction structures were fabricated as ITO│TiO2NPs│PSANFLs│Al and ITO│TiO2NPs│PSANFs /TiO2NPs│Al, respectively. Fourier-transform infrared spectra, field emission scanning electron microscopy (FE-SEM), ultraviolet-visible spectra, cyclic voltammetry (CV) and electrical conductivity were the analysis that used to characterize the synthesized samples. Results and Conclusions: FE-SEM images clearly demonstrate that the morphology of the synthesized samples are nanostructured (nanoflowers and nanofibers). Electrochemical calculations of band gap from CV curves demonstrated that the forbidden band gap of the PSANFLs and PSANFs/TiO2NPs nanocomposite are 2.95 and 2.23 eV, respectively. I–V characteristics of hybrid solar cells and their power conversion efficiency (PCE) under 100 mWcm−2 irradiation (AM 1.5 global conditions) were measured that The PCE of the samples were 0.30 and 0.62%, respectively. At the end, all the results of solar cell analysis were discussed. To sum up, PSANFLs and PSANFLs/TiO2NPs were successfully synthesized by an affordable and straightforward mechanochemical reaction in solid-state under the green condition. The solubility and processability of the synthesized compounds have been improved compared to the previous work. We successfully fabricated hybrid photovoltaic cells of synthesized semiconductor nanostructured polymers and TiO2NPs as different architectures. We believe that the synthesized compounds can open inventive pathways for the development of other Poly(N-(sulfophenyl)aniline based hybrid materials (nanocomposites) proper for preparing new generation solar cells.

Keywords: mechanochemical synthesis, PSANFLs, PSANFs/TiO2NPs, solar cell

Procedia PDF Downloads 47
307 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 285
306 The Effect on Rolling Mill of Waviness in Hot Rolled Steel

Authors: Sunthorn Sittisakuljaroen

Abstract:

The edge waviness in hot rolled steel is a common defect. Variables that effect for such defect include as raw material and machine. These variables are necessary to consider. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigate showed that not different to a standard significantly. Therefore the roll milled machine for sample need to adjustable rollers for press on metal sheet which was more appropriate to adjustable at both ends.

Keywords: edge waviness, hot rolling steel, metal sheet defect, SS 400, roll leveller

Procedia PDF Downloads 391
305 Amelioration of Over-Expression of bax, Nrf2 and NFК–β in Nano-Sized Titanium Dioxide-Intoxicated Mice by Potent Antioxidants

Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry

Abstract:

The increasing use of nanomaterials in consumer and industrial products has aroused global concern regarding their fate in biological systems resulting in demand for parallel risk assessment. The objective of this study is investigating either the effect of individual or combined doses of idebenone, carnosine and vitamin E on amelioration of some biochemical indices of nano sized titanium dioxide (TiO2 NPS) induced metabolic disorders in mice liver. TiO2-NPS was administered in an oral dose of 150 mg/kg for consecutive 14 days followed by oral daily doses of the aforementioned antioxidants for 1 month. TiO2-NPS induced a significant elevation in serum level of ALT and AST, hepatic inflammatory markers (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover, mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation-2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down-regulation in the antiapoptotic factor (bcl2) level. In conclusion, idebenone, carnosine and vitamin E ameliorated the deviated parameters with a variable degree with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.

Keywords: idebenone, carnosine, vitamin E, TiO2 NPS, caspase-3, NrF2, NF-KB

Procedia PDF Downloads 369
304 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation

Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad

Abstract:

Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.

Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization

Procedia PDF Downloads 233