Search results for: coconut shells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 269

Search results for: coconut shells

89 Mechanical Behavior of a Pipe Subject to Buckling

Authors: H. Chenine, D. Ouinas, Z. Bennaceur

Abstract:

The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study, we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.

Keywords: finite element analysis, circular notches, buckling, tank made composite materials

Procedia PDF Downloads 216
88 Buckling a Reservoir Composite Provided with Notches

Authors: H. Chenine, D. Ouinas, Z. Bennaceur

Abstract:

The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.

Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials

Procedia PDF Downloads 359
87 Product Development of Standard Multi-Layer Sweet (Khanom- Chan) Recipe to Healthy for Thai Dessert

Authors: Tidarat Sanphom

Abstract:

Aim of this research is to development of Standard Layer pudding (Khanom-Chan) recipe to healthy Thai dessert. The objective are to study about standard recipe in multi-layer sweet. It was found that the appropriate recipe in multi-layer sweet, was consisted of rice starch 56 grams, tapioca starch 172 grams, arrowroot flour 98 grams, mung been-flour 16 grams, coconut milk 774 grams, fine sugar 374 grams, pandan leaf juice 47 grams and oil 5 grams.Then the researcher studied about the ratio of rice-berries flour to rice starch in multi-layer sweet at level of 30:70, 50:50, and only rice-berry flour 100 percentage. Result sensory evaluation, it was found the ratio of rice-berry flour to rice starch 30:70 had well score. The result of multi-layer sweet with rice-berry flour reduced sugar 20, 40 and 60 percentage found that 20 percentage had well score. Calculated total calories and calories from fat in Sweet layer cake with rice-berry flour reduced sugar 20 percentage had 250.04 kcal and 65.16 kcal.

Keywords: multi-layer sweet (Khanom-Chan), rice-berry flour, leaf juice, desert

Procedia PDF Downloads 433
86 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 116
85 Effect of Different Media and Mannitol Concentrations on Growth and Development of Vandopsis lissochiloides (Gaudich.) Pfitz. under Slow Growth Conditions

Authors: J. Linjikao, P. Inthima, A. Kongbangkerd

Abstract:

In vitro conservation of orchid germplasm provides an effective technique for ex situ conservation of orchid diversity. In this study, an efficient protocol for in vitro conservation of Vandopsis lissochiloides (Gaudich.) Pfitz. plantlet under slow growth conditions was investigated. Plantlets were cultured on different strength of Vacin and Went medium (½VW and ¼VW) supplemented with different concentrations of mannitol (0, 2, 4, 6 and 8%), sucrose (0 and 3%) and 50 g/L potato extract, 150 mL/L coconut water. The cultures were incubated at 25±2 °C and maintained under 20 µmol/m2s light intensity for 24 weeks without subculture. At the end of preservation period, the plantlets were subcultured to fresh medium for growth recovery. The results found that the highest leaf number per plantlet could be observed on ¼VW medium without adding sucrose and mannitol while the highest root number per plantlet was found on ½VW added with 3% sucrose without adding mannitol after 24 weeks of in vitro storage. The results showed that the maximum number of leaves (5.8 leaves) and roots (5.0 roots) of preserved plantlets were produced on ¼VW medium without adding sucrose and mannitol. Therefore, ¼VW medium without adding sucrose and mannitol was the best minimum growth conditions for medium-term storage of V. lissochiloides plantlets.

Keywords: preservation, vandopsis, germplasm, in vitro

Procedia PDF Downloads 144
84 Mechanical Testing on Bioplastics Obtained from Banana and Potato Peels in the City of Bogotá, Colombia

Authors: Juan Eduardo Rolon Rios, Fredy Alejandro Orjuela, Alexander Garcia Mariaca

Abstract:

For banana and potato wastes, their peels are processed in order to make animal food with the condition that those wastes must not have started the decomposition process. One alternative to taking advantage of those wastes is to obtain a bioplastic based on starch from banana and potato shells. These products are 100% biodegradables, and researchers have been studying them for different applications, helping in the reduction of organic wastes and ordinary plastic wastes. Without petroleum affecting the prices of bioplastics, bioplastics market has a growing tendency and it is seen that it can keep this tendency in the medium term up to 350%. In this work, it will be shown the results for elasticity module and percent elongation for bioplastics obtained from a mixture of starch of bananas and potatoes peels, with glycerol as plasticizer. The experimental variables were the plasticizer percentage and the mixture between banana starch and potato starch. The results show that the bioplastics obtained can be used in different applications such as plastic bags or sorbets, verifying their admissible degradation percentages for each one of these applications. The results also show that they agree with the data found in the literature due to the fact that mixtures with a major amount of potato starch had the best mechanical properties because of the potato starch characteristics.

Keywords: bioplastics, fruit waste, mechanical testing, mechanical properties

Procedia PDF Downloads 293
83 Catalytic Deoxygenation of Non-Edible Oil to Renewable Fuel by Using Calcium-Based Nanocatalyst

Authors: Hwei Voon Lee, N. Asikin-Mijana, Y. H. Taufiq-Yap, J. C. Juan, N. A. Rahman

Abstract:

Cracking–Deoxygenation process is one of the important reaction pathways for the production of bio-fuel with desirable n-C17 hydrocarbon chain via removal of oxygen compounds. Calcium-based catalyst has attracted much attention in deoxygenation process due to its relatively high capacity in removing oxygenated compounds in the form of CO₂ and CO under decarboxylation and decarbonylation reaction, respectively. In the present study, deoxygenation of triolein was investigated using Ca(OH)₂ nanocatalyst derived from low cost natural waste shells. The Ca(OH)₂ nanocatalyst was prepared via integration techniques between surfactant treatment (anionic and non-ionic) and wet sonochemical effect. Results showed that sonochemically assisted surfactant treatment has successfully enhanced the physicochemical properties of Ca(OH)₂ nanocatalyst in terms of nanoparticle sizes (∼50 nm), high surface area(∼130 m²g⁻¹), large porosity (∼18.6 nm) and strong basic strength. The presence of superior properties from surfactant treated Ca(OH)₂ nanocatalysts rendered high deoxygenation degree, which is capable of producing high alkane and alkene selectivity in chain length of n-C17(high value of C17/(n-C17+ n-C18)ratio = 0.88). Furthermore, both Ca(OH)₂–EG and Ca(OH)₂–CTAB nanocatalysts showed high reactivity with 47.37% and 44.50%, respectively in total liquid hydrocarbon content of triolein conversion with high H/C and low O/C ratio.

Keywords: clamshell, cracking, decarboxylation-decarbonylation, hydrocarbon

Procedia PDF Downloads 188
82 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil

Authors: Kirstin Burger, Paul Watts, Nicole Vorster

Abstract:

Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.

Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis

Procedia PDF Downloads 187
81 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method

Procedia PDF Downloads 119
80 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India

Authors: Preethi Grace Theva Neethi Dhas

Abstract:

A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.

Keywords: fecal sludge management, nutrient cycle, soil health, composting

Procedia PDF Downloads 78
79 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 370
78 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency

Authors: Kanyarat Sikhao, Nichakorn Khondee

Abstract:

Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.

Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms

Procedia PDF Downloads 141
77 Physico-Chemical and Antibacterial Properties of Neem Extracts

Authors: C. C. Igwe

Abstract:

Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group.

Keywords: anti-bacterial, neem extract, physico-chemical analyses, staphylococcus aureus

Procedia PDF Downloads 74
76 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).

Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis

Procedia PDF Downloads 188
75 Effects of Rumen Protozoa and Nitrate on Fermentation and Methane Production

Authors: S. H. Nguyen, L. Li, R. S. Hegarty

Abstract:

Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in-vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing coconut oil distillate 4.5% (COD) for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation. On d 48, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 48, 55, 62 and 69 were incubated for 23h in-vitro (experiment 1). On day 82, 2% of NO3 (as NaNO3) was included in in-vitro incubations (experiment 2) to test for additivity of NO3 and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production, with methane production rate significantly higher from refaunated heifers than from defaunated heifers 7, 14 and 21 d after refaunation. Concentration and proportions of major VFA, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in-vitro.

Keywords: defaunation, nitrate, fermentation, methane production

Procedia PDF Downloads 559
74 Numerical Homogenization of Nacre

Authors: M. Arunachalam, M. Pandey

Abstract:

Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.

Keywords: finite element, homogenization, inelastic deformation, staggered arrangement

Procedia PDF Downloads 318
73 Deposit Characteristics of Jakarta, Indonesia: A Stratigraphy Study of Jakarta Subsurface

Authors: Girlly Marchlina Listyono, Abdurrokhim Abdurrokhim, Emi Sukiyah, Pulung Arya Pranantya

Abstract:

Jakarta Area is composed by deposit which has various lithology characteristics. Based on its lithology types, colors, textures, mineral dan organic content from 22 wells scattered on Jakarta, lithofacies analysis and intra-wells data correlation can be done. From the analysis, it can be interpretated that Jakarta deposit deposited in marine, transition and terrestrial depositional environments. Terrestrial deposit characterized by domination of relatively coarse clastics and content of remaining roots, woods, plants, high content of quartz, lithic fragment, calcareous and oxidated appearace. The thickness of terrestrial deposit is thickening to south. Transitional deposit characterized by fine to medium clastics with dark color, high content of organic matter, various thickness in any ways. Marine deposit characterized by finer clastics, contain remain of shells, fosil, coral, limestone fragments, glauconites, calcareous. Marine deposit relatively thickening to north. Those lateral variety caused by tectonic, subsidence and stratigraphic condition. Deposition of Jakarta deposit from the data research was started on marine depositional environment which surrounded by the event of cycle of regression and transgression then ended with regression which ongoing until form shore line in north Jakarta nowadays.

Keywords: deposit, Indonesia, Jakarta, sediment, stratigraphy

Procedia PDF Downloads 254
72 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope

Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov

Abstract:

Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.

Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions

Procedia PDF Downloads 324
71 Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core

Authors: Ralf Gliniorz, Carolin Petzoldt, Andreas Ehrlich, Sandra Gelbrich, Lothar Kroll

Abstract:

The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising.

Keywords: biobased facade, cardboard core, natural fibre skins, sandwich element

Procedia PDF Downloads 212
70 The Application of Karonda Friuts (Carissa carandas Linn.) for Ice Cream-Making

Authors: A. Pornpitakdumrong

Abstract:

The aim of this research study was to develop recipe of Karanda ice cream as healthy promoting ice cream by high protein, low fat and naturally raw material, which found in local area. The results were found that appropriate condition for Karanda ice cream including incubation period, temperature and frozen time, which were 8-12 hours, -20 to -25 °C and 2-4 hours, respectively. Small fruit variety Karanda should selected only ripe fruits for Karanda ice cream made. Because of unripe fruits were contained resin and need to be air dried for reducing level of resin. Therefore, large fruit variety Karanda can be use both ripe and unripe fruits for Karanda ice cream made by without any astringent and bitter taste. However, small fruit variety Karanda was proper to made ice cream for trade, because occurring of industry to select the ripe fruits and commercially frozen, which be providing for the whole year compared with large variety fruits were rarely, low harvesting amount and short shelf life. Karanda ice cream produced from flesh part was attractive but was not accepted by consumers. It may due to resin contained with Karanda pulp, which led to be rough texture of ice cream. We were choose only Karanda juice, which was more appropriated and used Karanda juice with water by 1:1 ratio, because undiluted juice was sour taste. Most acceptance recipe of karanda ice cream product was sixth recipe by 91% of consumers, which was contained soy protein to made ice cream was delicate and swell, milk powder (little amount) to made ice cream was greasy, corn powder as stabilizer and undiluted coconut milk (little amount) to improve ice cream odor and similar to apricot odor.

Keywords: karonda fruits, Carissa carandas Linn, ice cream, healthy ice cream

Procedia PDF Downloads 410
69 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)

Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava

Abstract:

Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.

Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms

Procedia PDF Downloads 155
68 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 81
67 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 388
66 Ebola Virus Glycoprotein Inhibitors from Natural Compounds: Computer-Aided Drug Design

Authors: Driss Cherqaoui, Nouhaila Ait Lahcen, Ismail Hdoufane, Mehdi Oubahmane, Wissal Liman, Christelle Delaite, Mohammed M. Alanazi

Abstract:

The Ebola virus is a highly contagious and deadly pathogen that causes Ebola virus disease. The Ebola virus glycoprotein (EBOV-GP) is a key factor in viral entry into host cells, making it a critical target for therapeutic intervention. Using a combination of computational approaches, this study focuses on the identification of natural compounds that could serve as potent inhibitors of EBOV-GP. The 3D structure of EBOV-GP was selected, with missing residues modeled, and this structure was minimized and equilibrated. Two large natural compound databases, COCONUT and NPASS, were chosen and filtered based on toxicity risks and Lipinski’s Rule of Five to ensure drug-likeness. Following this, a pharmacophore model, built from 22 reported active inhibitors, was employed to refine the selection of compounds with a focus on structural relevance to known Ebola inhibitors. The filtered compounds were subjected to virtual screening via molecular docking, which identified ten promising candidates (five from each database) with strong binding affinities to EBOV-GP. These compounds were then validated through molecular dynamics simulations to evaluate their binding stability and interactions with the target. The top three compounds from each database were further analyzed using ADMET profiling, confirming their favorable pharmacokinetic properties, stability, and safety. These results suggest that the selected compounds have the potential to inhibit EBOV-GP, offering new avenues for antiviral drug development against the Ebola virus.

Keywords: EBOV-GP, Ebola virus glycoprotein, high-throughput drug screening, molecular docking, molecular dynamics, natural compounds, pharmacophore modeling, virtual screening

Procedia PDF Downloads 23
65 Experimental Exploration of Recycled Materials for Potential Application in Interior Design

Authors: E. P. Bhowmik, R. Singh

Abstract:

Certain materials casually thrown away as by-product household waste, such as used tea leaves, used coffee remnants, eggshells, peanut husks, coconut coir, unwanted paper, and pencil shavings- have scope in the hidden properties that they offer as recyclable raw ingredients. This paper aims to explore and experiment with the sustainable potential of such disposed wastes, obtained from domestic and commercial backgrounds, that could otherwise contribute to the field of interior design if mass-collected and repurposed. Research has been conducted on available recorded methods of mass-collection, storage, and processing of such materials by certain brands, designers, and researchers, as well as the various application and angles possible with regards to re-usage. A questionnaire survey was carried out to understand the willingness of the demographics for efforts of the mass collection and their openness to such unconventional materials for interiors. An experiment was also conducted where the selected waste ingredients were used to create small samples that could be used as decorative panels. Comparisons were made for properties like color, smell, texture, relative durability, and weight- and accordingly, applications were suggested. The experiment, therefore, helped to propose to recycle of the common household as a potential surface finish for floors, walls, and ceilings, and even founding material for furniture and decor accessories such as pottery and lamp shades; for non-structural application in both residential and commercial interiors. Common by-product wastes often see their ends at landfills- laymen unaware of their sustainable possibilities dispose of them. However, processing these waste materials and repurposing them by incorporating them into interiors would serve as a sustainable alternative to ethical dilemmas in the construction of interior design/architecture elements.

Keywords: interior materials, mass-collection, sustainable, waste recycle

Procedia PDF Downloads 104
64 Development of a Dairy Drink Made of Cocoa, Coffee and Orange By-Products with Antioxidant Activity

Authors: Gianella Franco, Karen Suarez, María Quijano, Patricia Manzano

Abstract:

Agro-industries generate large amounts of waste, which are mostly untapped. This research was carried out to use cocoa, coffee and orange industrial by-products to develop a dairy drink. The product was prepared by making a 10% aqueous extract of the mixture of cocoa and coffee beans shells and orange peel. Extreme Vertices Mixture Design was applied to vary the proportions of the ingredients of the aqueous extract, getting 13 formulations. Each formulation was mixed with skim milk and pasteurized. The attributes of taste, smell, color and appearance were evaluated by a semi-trained panel by multiple comparisons test, comparing the formulations against a standard marked as "R", which consisted of a coffee commercial drink. The formulations with the highest scores were selected to maximize the Total Polyphenol Content (TPC) through a process of linear optimization resulting in the formulation 80.5%: 18.37%: 1.13% of cocoa bean shell, coffee bean shell and orange peel, respectively. The Total Polyphenol Content was 4.99 ± 0.34 mg GAE/g of drink, DPPH radical scavenging activity (%) was 80.14 ± 0.05 and caffeine concentration of 114.78 mg / L, while the coffee commercial drink presented 3.93 ± 0.84 mg GAE / g drink, 55.54 ± 0.03 % and 47.44 mg / L of TPC, DPPH radical scavenging activity and caffeine content, respectively. The results show that it is possible to prepare an antioxidant - rich drink with good sensorial attributes made of industrial by-products.

Keywords: DPPH, polyphenols, waste, food science

Procedia PDF Downloads 468
63 Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb

Authors: Sebai Amal, Massuel Sylvain

Abstract:

Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model.

Keywords: Hydrodynamic modeling, lithological modeling, hydraulic, semi-arid, merguellil, central Tunisia

Procedia PDF Downloads 764
62 High Phosphate-Containing Foods and Beverages: Perceptions of the Future Healthcare Providers on Their Harmful Effect in Excessive Consumption

Authors: ATM Emdadul Haque

Abstract:

Phosphorus is an essential nutrient which is regularly consumed with food and exists in the body as phosphate. Phosphate is an important component of cellular structures and needed for bone mineralization. Excessive accumulation of phosphate is an important driving factor of mortality in chronic renal failure patients; of relevance, these patients are usually provided health care by doctors, nurses, and pharmacists. Hence, this study was planned to determine the level of awareness of the future healthcare providers about the phosphate-containing foods and beverages and to access their knowledge on the harmful effects of excess phosphate consumption. A questionnaire was developed and distributed among the year-1 medical, nursing and pharmacy students. 432 medical, nursing and pharmacy students responded with age ranging from 18-24 years. About 70% of the respondents were female with a majority (90.7%) from Malay ethnicity. Among the respondents, 29.9% were medical, 35.4% were the pharmacy and 34.7% were nursing students. 79.2% students knew that phosphate was an important component of the body, but only 61.8% knew that consuming too much phosphate could be harmful to the body. Despite 97% of the students knew that carbonated soda contained high sugar, surprisingly 77% of them did not know the presence of high phosphate in the same soda drinks; in the similar line of observation, 67% did not know the presence of it in the fast food. However, it was encouraging that 94% of the students wanted to know more about the effects of phosphate consumption, 74.3% were willing to give up drinking soda and eating fast food, and 52% considered taking green coconut water instead of soda drinks. It is, therefore, central to take an educational initiative to increase the awareness of the future healthcare providers about phosphate-containing food and its harmful effects in excessive consumptions.

Keywords: high phosphate containing foods and beverages, excessive consumption, future health care providers, phosphorus

Procedia PDF Downloads 370
61 Effects of Accelerated Environment Aging on the Mechanical Properties of a Coir Fiber Reinforced Polyester Composite

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

Coir natural fiber reinforced polyester composites were exposed to an accelerated environment aging in order to study the influence on the mechanical properties. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. A physical and mechanical characterization was necessary to found the best behavior between three types of coconut. Composites were fabricated by hand lay-up technique and samples were cut by water jet technique. An accelerated aging test simulates environmental climate conditions in a hygrothermal and ultraviolet chamber. Samples were exposed to the UV/moisture rich environment for 500 and 1000 hours. The tests were performed in accordance with ASTM G154. An additional water absorption test was carried out by immersing specimens in a water bath. Mechanical behaviors of the composites were tested by tensile, flexural and impact test according to ASTM standards, after aging and compared with unaged composite specimens. It was found that accelerated environment aging affects mechanical properties in comparison with unaged ones. Tensile and flexural strength were lower after aging, meantime elongation at break and flexural deflection increased. Impact strength was found that reduced after aging. Other result revealed that the percentage of moisture uptake increased with aging. This results showed that composite materials reinforced with natural fibers required an improvement adding a protective barrier to reduce water absorption and increase UV resistance.

Keywords: coir fiber, polyester composites, environmental aging, mechanical properties

Procedia PDF Downloads 272
60 Surface Morphology and Wetting Behavior of the Aspidiotus spp. Scale Covers

Authors: Meril Kate Mariano, Billy Joel Almarinez Divina Amalin, Jose Isagani Janairo

Abstract:

The scale insects Aspidiotus destructor and Aspidiotus rigidus exhibit notable scale covers made of wax which provides protection against water loss and is capable to resist wetting, thus making them a desirable model for biomimetic designs. Their waxy covers enable them to infest mainly leaves of coconut trees despite the harsh wind and rain. This study aims to describe and compare the micro morphological characters on the surfaces of their scale covers consequently, how these micro structures affect their wetting properties. Scanning electron microscope was used for the surface characterization while an optical contact angle meter was employed in the wetting measurement. The scale cover of A. destructor is composed of multiple overlapping layers of wax that is arranged regularly while that of A. rigidus is composed of a uniform layer of wax with much more prominent wax ribbons irregularly arranged compared to the former. The protrusions found on the two organisms are formed by the wax ribbons that differ in arrangement with their height being A. destructor (3.57+1.29) < A. rigidus (4.23+1.22) and their density A. destructor (15+2.94) < A. rigidus (18.33+2.64). These morphological measurements could affect the contact angle (CA θ) measurement of A. destructor (102.66+9.78°) < A. rigidus (102.77 + 11.01°) wherein the assessment that the interaction of the liquid to the microstructures of the substrate is a large factor in the wetting properties of the insect scales is realized. The calculated surface free energy of A. destructor (38.47 mJ/m²) > A. rigidus (31.02 mJ/m²) shows inverse proportionality with the CA measurement. The dispersive interaction between the surface and liquid is more prevalent compared to the polar interaction for both Aspidiotus species, which was observed using the Fowkes method. The results of this study have possible applications to be a potential biomimetic design for various industries such as textiles and coatings.

Keywords: Aspidiotus spp., biomimetics, contact angle, surface characterization, wetting behavior

Procedia PDF Downloads 121