Search results for: benign breast disease
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4497

Search results for: benign breast disease

4317 Delayed Contralateral Prophylactic Mastectomy (CPM): Reasons and Rationale for Patients with Unilateral Breast Cancer

Authors: C. Soh, S. Muktar, C. M. Malata, J. R. Benson

Abstract:

Introduction Reasons for requesting CPM include prevention of recurrence, peace of mind and moving on after breast cancer. Some women seek CPM as a delayed procedure but factors influencing this are poorly understood. Methods A retrospective analysis examined patients undergoing CPM as either an immediate or delayed procedure with or without breast reconstruction (BR) between January 2009 and December 2019. A cross-sectional survey based on validated questionnaires (5 point Likert scale) explored patients’ decision-making process in terms of timing of CPM and any BR. Results A total of 123 patients with unilateral breast cancer underwent CPM with 39 (32.5%) delayed procedures with or without BR. The response rate amongst patients receiving questionnaires (n=33) was 22/33 (66%). Within this delayed CPM cohort were three reconstructive scenarios 1) unilateral immediate BR with CPM (n=12); 2) delayed CPM with concomitant bilateral BR (n=22); 3) delayed bilateral BR after delayed CPM (n=3). Two patients had delayed CPM without BR. The most common reason for delayed CPM was to complete all cancer treatments (including radiotherapy) before surgery on the unaffected breast (score 2.91). The second reason was unavailability of genetic test results at the time of therapeutic mastectomy (score 2.64) whilst the third most cited reason was a subsequent change in family cancer history. Conclusion Factors for delayed CPM are patient-driven with few women spontaneously changing their mind having initially decided against immediate CPM for reasons also including surgical duration. CPM should be offered as a potentially delayed option with informed discussion of risks and benefits.

Keywords: Breast Cancer, CPM, Prophylactic, Rationale

Procedia PDF Downloads 112
4316 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 135
4315 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
4314 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 84
4313 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 325
4312 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 153
4311 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks

Procedia PDF Downloads 223
4310 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells

Authors: S. Pradhan, D. Pradhan, G. Tripathy

Abstract:

Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.

Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells

Procedia PDF Downloads 311
4309 Reconstruction Post-mastectomy: A Literature Review on Its Indications and Techniques

Authors: Layaly Ayoub, Mariana Ribeiro

Abstract:

Introduction: Breast cancer is currently considered the leading cause of cancer-related deaths among women in Brazil. Mastectomy, essential in this treatment, often necessitates subsequent breast reconstruction to restore physical appearance and aid in the emotional and psychological recovery of patients. The choice between immediate or delayed reconstruction is influenced by factors such as the type and stage of cancer, as well as the patient's overall health. The decision between autologous breast reconstruction or implant-based reconstruction requires a detailed analysis of individual conditions and needs. Objectives: This study analyzes the techniques and indications used in post-mastectomy breast reconstruction. Methodology: Literature review conducted in the PubMed and SciELO databases, focusing on articles that met the inclusion and exclusion criteria and descriptors. Results: After mastectomy, breast reconstruction is commonly performed. It is necessary to determine the type of technique to be used in each case depending on the specific characteristics of each patient. The tissue expander technique is indicated for patients with sufficient skin and tissue post-mastectomy, who do not require additional radiotherapy, and who opt for a less complex surgery with a shorter recovery time. This procedure promotes the gradual expansion of soft tissues where the definitive implant will be placed. Both temporary and permanent expanders offer flexibility, allowing for adjustment in the expander size until the desired volume is reached, enabling the skin and tissues to adapt to the breast implant area. Conversely, autologous reconstruction is indicated for patients who will undergo radiotherapy, have insufficient tissue, and prefer a more natural solution. This technique uses the transverse rectus abdominis muscle (TRAM) flap, the latissimus dorsi muscle flap, the gluteal flap, and local muscle flaps to shape a new breast, potentially combined with a breast implant. Conclusion: In this context, it is essential to conduct a thorough evaluation regarding the technique to be applied, as both have their benefits and challenges.

Keywords: indications, post-mastectomy, breast reconstruction, techniques

Procedia PDF Downloads 29
4308 Case Report: Clinical Improvement of Forbrain Neurologic Signs in 3- Month- Old Persian Mastiff Dog with Calvarial Hyperostosis Syndrome after Corticosteroid, Antiepileptic and Antibiotic Therapy

Authors: Hamidreza Jahani, Zahra Salehzadeh, Ehsan Amini, Mohsen Tohidifar

Abstract:

Calvarial Hyperostosis Syndrome (CHS) is a benign bone disease of the skull. It is a non-neoplastic and proliferative bone disease, and the main feature of the disease is progressive and asymmetrical bone involvement. CHS is mostly reported in young male and female bullmastiff dogs and less frequently in other breeds. The etiology of CHS is unknown. This is the first case report of CHS in Iran. A 3-month-old male Persian Mastiff was presented with chief complaints of multiple episodes of seizure, pacing, bizarre behavior, delayed growth, head pressing, and difficulty in opening the mouth. Central blindness and open fontanelles were observed in clinical examination. No abnormality was found in the complete blood count and routine blood biochemical tests. CT scan findings include cortical thickening of frontal and parietal bones and enlargement of the left retropharyngeal lymph node. For treatment, oral clindamycin for two weeks, prednisolone and phenobarbital for one month, respectively, were administrated, and the case showed improvement after a week and recovered after one month.

Keywords: calvarial hyperostosis, Persian Mastiff, frontal bone, seizure

Procedia PDF Downloads 137
4307 Association of Non Synonymous SNP in DC-SIGN Receptor Gene with Tuberculosis (Tb)

Authors: Saima Suleman, Kalsoom Sughra, Naeem Mahmood Ashraf

Abstract:

Mycobacterium tuberculosis is a communicable chronic illness. This disease is being highly focused by researchers as it is present approximately in one third of world population either in active or latent form. The genetic makeup of a person plays an important part in producing immunity against disease. And one important factor association is single nucleotide polymorphism of relevant gene. In this study, we have studied association between single nucleotide polymorphism of CD-209 gene (encode DC-SIGN receptor) and patients of tuberculosis. Dry lab (in silico) and wet lab (RFLP) analysis have been carried out. GWAS catalogue and GEO database have been searched to find out previous association data. No association study has been found related to CD-209 nsSNPs but role of CD-209 in pulmonary tuberculosis have been addressed in GEO database.Therefore, CD-209 has been selected for this study. Different databases like ENSEMBLE and 1000 Genome Project has been used to retrieve SNP data in form of VCF file which is further submitted to different software to sort SNPs into benign and deleterious. Selected SNPs are further annotated by using 3-D modeling techniques using I-TASSER online software. Furthermore, selected nsSNPs were checked in Gujrat and Faisalabad population through RFLP analysis. In this study population two SNPs are found to be associated with tuberculosis while one nsSNP is not found to be associated with the disease.

Keywords: association, CD209, DC-SIGN, tuberculosis

Procedia PDF Downloads 309
4306 Differential Expression of Biomarkers in Cancer Stem Cells and Side Populations in Breast Cancer Cell Lines

Authors: Dipali Dhawan

Abstract:

Cancerous epithelial cells are confined to a primary site by the continued expression of adhesion molecules and the intact basal lamina. However, as the cancer progresses some cells are believed to undergo an epithelial-mesenchymal transition (EMT) event, leading to increased motility, invasion and, ultimately, metastasis of the cells from the primary tumour to secondary sites within the body. These disseminated cancer cells need the ability to self-renew, as stem cells do, in order to establish and maintain a heterogeneous metastatic tumour mass. Identification of the specific subpopulation of cancer stem cells amenable to the process of metastasis is highly desirable. In this study, we have isolated and characterized cancer stem cells from luminal and basal breast cancer cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-468, MCF7 and T47D) on the basis of cell surface markers CD44 and CD24; as well as Side Populations (SP) using Hoechst 33342 dye efflux. The isolated populations were analysed for epithelial and mesenchymal markers like E-cadherin, N-cadherin, Sfrp1 and Vimentin by Western blotting and Immunocytochemistry. MDA-MB-231 cell lines contain a major population of CD44+CD24- cells whereas MCF7, T47D and MDA-MB-231 cell lines show a side population. We observed higher expression of N-cadherin in MCF-7 SP cells as compared to MCF-7NSP (Non-side population) cells suggesting that the SP cells are mesenchymal like cells and hence express increased N-cadherin with stem cell-like properties. There was an expression of Sfrp1 in the MCF7- NSP cells as compared to no expression in MCF7-SP cells, which suggests that the Wnt pathway is expressed in the MCF7-SP cells. The mesenchymal marker Vimentin was expressed only in MDA-MB-231 cells. Hence, understanding the breast cancer heterogeneity would enable a better understanding of the disease progression and therapeutic targeting.

Keywords: cancer stem cells, epithelial to mesenchymal transition, biomarkers, breast cancer

Procedia PDF Downloads 524
4305 Incidence of Breast Cancer and Enterococcus Infection: A Retrospective Analysis

Authors: Matthew Cardeiro, Amalia D. Ardeljan, Lexi Frankel, Dianela Prado Escobar, Catalina Molnar, Omar M. Rashid

Abstract:

Introduction: Enterococci comprise the natural flora of nearly all animals and are ubiquitous in food manufacturing and probiotics. However, its role in the microbiome remains controversial. The gut microbiome has shown to play an important role in immunology and cancer. Further, recent data has suggested a relationship between gut microbiota and breast cancer. These studies have shown that the gut microbiome of patients with breast cancer differs from that of healthy patients. Research regarding enterococcus infection and its sequala is limited, and further research is needed in order to understand the relationship between infection and cancer. Enterococcus may prevent the development of breast cancer (BC) through complex immunologic and microbiotic adaptations following an enterococcus infection. This study investigated the effect of enterococcus infection and the incidence of BC. Methods: A retrospective study (January 2010- December 2019) was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using a Humans Health Insurance Database. International Classification of Disease (ICD) 9th and 10th codes, Current Procedural Terminology (CPT), and National Drug Codes were used to identify BC diagnosis and enterococcus infection. Patients were matched for age, sex, Charlson Comorbidity Index (CCI), antibiotic treatment, and region of residence. Chi-squared, logistic regression, and odds ratio were implemented to assess the significance and estimate relative risk. Results: 671 out of 28,518 (2.35%) patients with a prior enterococcus infection and 1,459 out of 28,518 (5.12%) patients without enterococcus infection subsequently developed BC, and the difference was statistically significant (p<2.2x10⁻¹⁶). Logistic regression also indicated enterococcus infection was associated with a decreased incidence of BC (RR=0.60, 95% CI [0.57, 0.63]). Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 398 out of 11,523 (3.34%) patients with a prior enterococcus infection and treated with antibiotics were compared to 624 out of 11,523 (5.41%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed BC. Results remained statistically significant (p<2.2x10-16) with a relative risk of 0.57 (95% CI [0.54, 0.60]). Conclusion & Discussion: This study shows a statistically significant correlation between enterococcus infection and a decrease incidence of breast cancer. Further exploration is needed to identify and understand not only the role of enterococcus in the microbiome but also the protective mechanism(s) and impact enterococcus infection may have on breast cancer development. Ultimately, further research is needed in order to understand the complex and intricate relationship between the microbiome, immunology, bacterial infections, and carcinogenesis.

Keywords: breast cancer, enterococcus, immunology, infection, microbiome

Procedia PDF Downloads 173
4304 The Role of High-Intensity Focused Ultrasound (HIFU) in the Treatment of Fibroadenomas: A Systematic Review

Authors: Ahmed Gonnah, Omar Masoud, Mohamed Abdel-Wahab, Ahmed ElMosalamy, Abdulrahman Al-Naseem

Abstract:

Introduction: Fibroadenomas are solid, mobile, and non-tender benign breast lumps, with the highest prevalence amongst young women aged between 15 and 35. Symptoms can include discomfort, and they can become problematic, particularly when they enlarge, resulting in many referrals for biopsies, with fibroadenomas accounting for 30-75% of the cases. Diagnosis is based on triple assessment that involves a clinical examination, ultrasound imaging and mammography, as well as core needle biopsies. Current management includes observation for 6-12 months, with the indication of definitive surgery, in cases that are older than 35 years or with fibroadenoma persistence. Serious adverse effects of surgery might include nipple-areolar distortion, scarring and damage to the breast tissue, as well as the risks associated with surgery and anesthesia, making it a non-feasible option. Methods: A literature search was performed on the databases EMBASE. MEDLINE/PubMed, Google scholar and Ovid, for English language papers published between 1st of January 2000 and 17th of March 2021. A structured protocol was employed to devise a comprehensive search strategy with keywords and Boolean operators defined by the research question. The keywords used for the search were ‘HIFU’, ‘High-Intensity Focused Ultrasound’, ‘Fibroadenoma’, ‘Breast’, ‘Lesion’. This review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: Recently, a thermal ablative technique, High Intensity Focused Ultrasound (HIFU), was found to be a safe, non-invasive, and technically successful alternative, having displayed promising outcomes in reducing the volume of fibroadenomas, pain experienced by patients, and the length of hospitalization. Quality of life improvement was also evidenced, exhibited by the disappearance of symptoms, and enhanced physical activity post-intervention, in addition to patients’ satisfaction with the cosmetic results and future recommendation of the procedure to other patients. Conclusion: Overall, HIFU is a well-tolerated treatment associated with a low risk of complications that can potentially include erythema, skin discoloration and bruising, with the majority of this self-resolving shortly after the procedure.

Keywords: ultrasound, HIFU, breast, efficacy, side effects, fibroadenoma

Procedia PDF Downloads 225
4303 PCR Based DNA Analysis in Detecting P53 Mutation in Human Breast Cancer (MDA-468)

Authors: Debbarma Asis, Guha Chandan

Abstract:

Tumor Protein-53 (P53) is one of the tumor suppressor proteins. P53 regulates the cell cycle that conserves stability by preventing genome mutation. It is named so as it runs as 53-kilodalton (kDa) protein on Polyacrylamide gel electrophoresis although the actual mass is 43.7 kDa. Experimental evidence has indicated that P53 cancer mutants loses tumor suppression activity and subsequently gain oncogenic activities to promote tumourigenesis. Tumor-specific DNA has recently been detected in the plasma of breast cancer patients. Detection of tumor-specific genetic materials in cancer patients may provide a unique and valuable tumor marker for diagnosis and prognosis. Commercially available MDA-468 breast cancer cell line was used for the proposed study.

Keywords: tumor protein (P53), cancer mutants, MDA-468, tumor suppressor gene

Procedia PDF Downloads 478
4302 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
4301 Activation of Spermidine/Spermine N1-Acetyltransferase 1 (SSAT-1) as Biomarker in Breast Cancer

Authors: Rubina Ghani, Sehrish Zia, Afifa Fatima Rafique, Shaista Emad

Abstract:

Background: Cancer is a leading cause of death worldwide, with breast cancer being the most common cancer in women. Pakistan has the highest rate of breast cancer cases among Asian countries. Early and accurate diagnosis is crucial for treatment outcomes and quality of life. Method: It is a case-control study with a sample size of 150. There were 100 suspected cancer cases, 25 healthy controls, and 25 diagnosed cancer cases. To analyze SSAT-1 mRNA expression in whole blood, Zymo Research Quick-RNA Miniprep and Innu SCRIPT—One Step RT-PCR Syber Green kits were used. Patients were divided into three groups: 100 suspected cancer cases, 25 controls, and 25 confirmed breast cancer cases. Result: The total mRNA was isolated, and the expression of SSAT-1 was measured using RT-qPCR. The threshold cycle (Ct) values were used to determine the amount of each mRNA. Ct values were then calculated by taking the difference between the CtSSAT-1 and Ct GAPDH, and further Ct values were calculated with the median absolute deviation for all the samples within the same experimental group. Samples that did not correlate with the results were taken as outliers and excluded from the analysis. The relative fold change is shown as 2^-Ct values. Suspected cases showed a maximum fold change of 32.24, with a control fold change of 1.31. Conclusion: The study reveals an overexpression of SSAT-1 in breast cancer. Furthermore, we can use SSAT-1 as a diagnostic, prognostic, and therapeutic marker for early diagnosis of cancer.

Keywords: breast cancer, spermidine/spermine, qPCR, mRNA

Procedia PDF Downloads 37
4300 Better Defined WHO International Classification of Disease Codes for Relapsing Fever Borreliosis, and Lyme Disease Education Aiding Diagnosis, Treatment Improving Human Right to Health

Authors: Mualla McManus, Jenna Luche Thaye

Abstract:

World Health Organisation International Classification of Disease codes were created to define disease including infections in order to guide and educate diagnosticians. Most infectious diseases such as syphilis are clearly defined by their ICD 10 codes and aid/help to educate the clinicians in syphilis diagnosis and treatment globally. However, current ICD 10 codes for relapsing fever Borreliosis and Lyme disease are less clearly defined and can impede appropriate diagnosis especially if the clinician is not familiar with the symptoms of these infectious diseases. This is despite substantial number of scientific articles published in peer-reviewed journals about relapsing fever and Lyme disease. In the USA there are estimated 380,000 people annually contacting Lyme disease, more cases than breast cancer and 6x HIV/AIDS cases. This represents estimated 0.09% of the USA population. If extrapolated to the global population (7billion), 0.09% equates to 63 million people contracting relapsing fever or Lyme disease. In many regions, the rate of contracting some form of infection from tick bite may be even higher. Without accurate and appropriate diagnostic codes, physicians are impeded in their ability to properly care for their patients, leaving those patients invisible and marginalized within the medical system and to those guiding public policy. This results in great personal hardship, pain, disability, and expense. This unnecessarily burdens health care systems, governments, families, and society as a whole. With accurate diagnostic codes in place, robust data can guide medical and public health research, health policy, track mortality and save health care dollars. Better defined ICD codes are the way forward in educating the diagnosticians about relapsing fever and Lyme diseases.

Keywords: WHO ICD codes, relapsing fever, Lyme diseases, World Health Organisation

Procedia PDF Downloads 193
4299 Developing a Health Literacy Questionnaire in Breast Cancer

Authors: Lida Moghaddam-Banaem, Mahmood Tavoosi, Soheila Khalili

Abstract:

Objective: The main objective of this study was designing a breast cancer health literacy questionnaire and assess its psychometric properties. Methods: A comprehensive literature review was performed to develop a primary questionnaire consisting of five domains. Qualitative and quantitative content validity were assessed by relevant experts, and after some modifications, the content validity index (CVI) and content validity ratio (CVR) were calculated. Qualitative and quantitative face validity were evaluated by a number of patients, and the impact score for each item was calculated. 225 women with breast cancer were asked to fill out the questionnaire and construct validity was determined by using exploratory factor analysis. The reliability was tested by Cronbach's alpha coefficient. Results: A 36-item questionnaire with five domains of reading, having access, understanding, assessing/judgment, and decision making/behavior was designed. 2 items were omitted in the qualitative content validity process. All items achieved optimum values in CVI, CVR and impact scores. Content and face validity of the questionnaire were confirmed too. According to the exploratory factor analysis, the five-factor solution accounted for 64.98 percent of the observed variance. Conclusion: Due to the obtained satisfactory validity and reliability, this tool can be used to assess health literacy in women with breast cancer. Health policy makers can use these findings for improving health-related behaviors in breast cancer patients.

Keywords: health literacy, breast cancer, questionnaire, psychometric properties

Procedia PDF Downloads 235
4298 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.

Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection

Procedia PDF Downloads 371
4297 Extending ACOSOG Z0011 to Encompass Mastectomy Patients: A Retrospective Review

Authors: Ruqayya Naheed Khan, Awais Amjad Malik, Awais Naeem, Amina Khan, Asad Parvaiz

Abstract:

Introduction: Axillary nodal status in breast cancer patients is a paramount prognosticator, next to primary tumor size and grade. It has been well established that patients with negative sentinel lymph node biopsy can safely avoid axillary lymph node dissection. A positive sentinel lymph node has traditionally required subsequent axillary dissection. According to ACOSOG Z11 trial, patients who underwent axillary dissection with 3 or more positive sentinel nodes or opted for observation in case of negative sentinel lymph node, did not find any difference in Overall Survival (OS) and Disease Free Survival (DFS). The Z11 trial included patients who underwent breast conserving surgery and excluded patients with mastectomies. The purpose of this study is to determine whether Z0011 can be applied to mastectomy patients as well in 1-3 positive sentinel lymph nodes and avoid unnecessary ALND. Methods: A retrospective review was conducted at Shaukat Khanam Memorial Cancer Hospital Pakistan from Jan 2015 to Dec 2017 including patients who were treated for invasive breast cancer and required upfront mastectomy. They were clinically node negative, so sentinel lymph node biopsy was performed. Patients underwent ALND with positive sentinel lymph node. A total of 156 breast cancer patients with mastectomies were reviewed. Results: 95% of the patients were female while 3% were male. Average age was 44 years. There was no difference in race, comorbidities, histology, T stage, N stage, and overall stage, use of adjuvant chemotherapy and radiation therapy. 64 patients underwent ALND for positive lymph node while 92 patients were spared of axillary dissection due to negative sentinel lymph node biopsy. Out of 64 patients, 38 patients (59%) had only 1 lymph node positive which was the sentinel node. 18 patients (28%) had 2 lymph nodes positive including the sentinel node while only 8 patients (13%) had 3 or more positive nodes. Conclusion: Keeping in mind the complications related to ALND, above results clearly show that ALND could have been avoided in 87% of patients in the setting of adjuvant radiation, possibly avoiding the morbidity associated with axillary lymphadenectomy although a prospective randomized trial needs to confirm these results.

Keywords: mastectomy, sentinel lymph node biopsy, axillary lymph node dissection, breast cancer

Procedia PDF Downloads 195
4296 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location

Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa

Abstract:

This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.

Keywords: specific absorption rate (SAR), ultra wideband (UWB), coordinates, cancer detection

Procedia PDF Downloads 403
4295 Breast Cancer Mortality and Comorbidities in Portugal: A Predictive Model Built with Real World Data

Authors: Cecília M. Antão, Paulo Jorge Nogueira

Abstract:

Breast cancer (BC) is the first cause of cancer mortality among Portuguese women. This retrospective observational study aimed at identifying comorbidities associated with BC female patients admitted to Portuguese public hospitals (2010-2018), investigating the effect of comorbidities on BC mortality rate, and building a predictive model using logistic regression. Results showed that the BC mortality in Portugal decreased in this period and reached 4.37% in 2018. Adjusted odds ratio indicated that secondary malignant neoplasms of liver, of bone and bone marrow, congestive heart failure, and diabetes were associated with an increased chance of dying from breast cancer. Although the Lisbon district (the most populated area) accounted for the largest percentage of BC patients, the logistic regression model showed that, besides patient’s age, being resident in Bragança, Castelo Branco, or Porto districts was directly associated with an increase of the mortality rate.

Keywords: breast cancer, comorbidities, logistic regression, adjusted odds ratio

Procedia PDF Downloads 87
4294 Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms

Authors: Yun-Xuan Tang, Pei-Yuan Liu, Kun-Mu Lu, Min-Tsung Tseng, Liang-Kuang Chen, Yuh-Feng Tsai, Ching-Wen Lee, Jay Wu

Abstract:

Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening.

Keywords: mammography, glandularity, gray value, BI-RADS

Procedia PDF Downloads 491
4293 Alzheimer’s Disease Measured in Work Organizations

Authors: Katherine Denise Queri

Abstract:

The effects of sick workers have an impact in administration of labor. This study aims to provide knowledge on the disease that is Alzheimer’s while presenting an answer to the research question of when and how is the disease considered as a disaster inside the workplace. The study has the following as its research objectives: 1. Define Alzheimer’s disease, 2. Evaluate the effects and consequences of an employee suffering from Alzheimer’s disease, 3. Determine the concept of organizational effectiveness in the area of Human Resources, and 4. Identify common figures associated with Alzheimer’s disease. The researcher gathered important data from books, video presentations, and interviews of workers suffering from Alzheimer’s disease and from the internet. After using all the relevant data collection instruments mentioned, the following data emerged: 1. Alzheimer’s disease has certain consequences inside the workplace, 2. The occurrence of Alzheimer’s Disease in an employee’s life greatly affects the company where the worker is employed, and 3. The concept of workplace efficiency suggests that an employer must prepare for such disasters that Alzheimer’s disease may bring to the company where one is employed. Alzheimer’s disease can present disaster in any workplace.

Keywords: administration, Alzheimer's disease, conflict, disaster, employment

Procedia PDF Downloads 445
4292 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 81
4291 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
4290 Concentration of Zinc Micronutrients in Breast Milk Based on Determinant of Mother and Baby in Kassi-Kassi Health Center

Authors: Andi Tenri Ayu Rahman, Citrakesumasari, Devintha Virani

Abstract:

Breast milk is the complex biological fluid mix of macronutrient and micronutrient that are considered as perfect food for babies. Zinc has a role in various biological functions and physical growth. This research aims to know the average zinc (Zn) micronutrients content of breast milk by determinants of infant (birth weight) and mother (nutritional status and food intake) and description of the pattern of mothers breastfeeding. The type of research used is observational analytic with cross-sectional study design. The population was 41 mothers in Kassi-Kassi health center within one month. Sample research is mothers who gave birth at term and breastfed her baby. Sampling was done with random sampling technique involving 37 people. Samples of breast milk were analyzed in the laboratory by using the method of Atomic Absorption Spectrofotometry (AAS). This research find that from the samples (n=37) the average contents of zinc in the breast milk is 0,88±0,54 mg/L with the highest value on the group of low birth weight babies (1,13 ± 0,67mg/L), mothers who had normal nutritional status (0,981 ± 0,514 mg/L) and intake low zinc (0,94 ± 0,54 mg/L). Regarding breastfeeding pattern, 67,6% of the samples had had breastfeeding experience and 81,1% of breastfed more than eight times a day. In summary, the highest average value of the zinc content of breast milk was in the group of low birth weight babies, mother with normal nutritional status, and mothers having relatively low intake pattern.

Keywords: zinc, breastmilk, mother, baby

Procedia PDF Downloads 191
4289 Reliability of Social Support Measurement Modification of the BC-SSAS among Women with Breast Cancer Who Undergone Chemotherapy in Selected Hospital, Central Java, Indonesia

Authors: R. R. Dewi Rahmawaty Aktyani Putri, Earmporn Thongkrajai, Dedy Purwito

Abstract:

There were many instruments have been developed to assess social support which has the different dimension in breast cancer patients. The Issue of measurement is a challenge to determining the component of dimensional concept, defining the unit of measurement, and establishing the validity and reliability of the measurement. However, the instruments where need to know how much support which obtained and perceived among women with breast cancer who undergone chemotherapy which it can help nurses to prevent of non-adherence in chemotherapy. This study aimed to measure the reliability of BC-SSAS instrument among 30 Indonesian women with breast cancer aged 18 years and above who undergone chemotherapy for six cycles in the oncological unit of Outpatient Department (OPD), Margono Soekardjo Hospital, Central Java, Indonesia. Data were collected during October to December 2015 by using modified the Breast Cancer Social Support Assessment (BC-SSAS). The Cronbach’s alpha analysis was carried out to measure internal consistency for reliability test of BC-SSAS instrument. This study used five experts for content validity index. The results showed that for content validity, I-CVI was 0.98 and S-CVI was 0.98; Cronbach’s alpha value was 0.971 and the Cronbach’s alpha coefficients for the subscales were high, with 0.903 for emotional support, 0.865 for informational support, 0.901 for tangible support, 0.897 for appraisal support and 0.884 for positive interaction support. The results confirmed that the BC-SSAS instrument has high reliability. BC-SSAS instruments were reliable and can be used in health care services to measure the social support received and perceived among women with breast cancer who undergone chemotherapy so that preventive interventions can be developed and the quality of health services can be improved.

Keywords: BC-SSAS, women with breast cancer, chemotherapy, Indonesia

Procedia PDF Downloads 362
4288 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice

Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani

Abstract:

In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.

Keywords: ¹⁷⁷Lu, breast cancer, compartmental modeling, dosimetry

Procedia PDF Downloads 151