Search results for: word morphology
171 Assessment of Amphibian Diversity and Status of Their Habitats through Physico-Chemical Parameters in Sindh, Pakistan
Authors: Kalsoom Shaikh, Ghulam Sarwar Gachal, Saima Memon
Abstract:
Our study aimed to assess diversity and habitats of amphibian fauna in Sindh province as amphibians are among most vulnerable animals and the risk of their extinction is increasing in many parts of world mainly due to habitat degradation. Present study consisted of field surveys and laboratory analytical work; field surveys were carried out to confirm amphibian diversity and collection of water samples from their habitats, whereas laboratory work was conducted for identification of species and analysis of water quality of habitats through physico-chemical parameters. For identification of amphibian species, morphology was thoroughly examined using taxonomic key, whereas water quality was assessed via physico-chemical parameters including pH, electric conductivity (EC), total dissolved solids (TDS), total hardness (T. Hard), total alkalinity (T. Alk), chloride (Cl), carbon dioxide (CO₂), sulfate (SO₄), phosphate (PO₄), nitrite (NO₂) and nitrate (NO₃) using material and methods of analytical grade. pH value was analyzed using pH meter, whereas levels of EC and TDS were recorded using conductivity meter and TDS meter, respectively. Other parameters with exception of non-metallic parameters (SO₄, PO₄, NO₂, and NO₃) were analyzed through distinct titration methods. Concentration of non-metallic parameters was evaluated using ultra-violet spectrophotometer. This study revealed existence of four amphibian species including Hoplobatrachus tigerinus, Euphlyctis cyanophlyctis, Allopa hazarensis belonging to Family Ranidae and Bufo stomaticus (Family Bufonidae) randomly distributed in district Ghotki, Jamshoro, Kashmor, Larkana, Matiari and Shikarpur in Sindh. Assessment of aquatic habitats in different areas found value of parameters as followed: Habitats in district Ghoki (pH: 7.8 ± 0.3, EC: 2165.3 ± 712.6, TDS: 1507.0 ± 413.1, T-Hard: 416.4 ± 67.5, T. Alk: 393.4 ± 78.4, Cl: 362.4 ± 70.1, CO₂: 21.1 ± 3.5, SO₄: 429.3 ± 100.1, PO₄: 487.5 ± 122.5, NO₂: 13.7 ± 1.0, NO₃: 14.7 ± 2.5), district Jamshoro habitats (pH: 8.1 ± 0.4, EC: 2403.8 ± 55.4, TDS: 1697.2 ± 77.0, T. Hard: 548.7 ± 43.2, T. Alk: 294.4 ± 29.0, Cl: 454.7 ± 50.8 CO₂: 16.9 ± 2.4, SO₄: 713.0 ± 49.3, PO₄: 826.2 ± 53.0, NO₂: 15.2 ± 3.4, NO₃: 21.6 ± 3.7), habitats in Kashmor district (pH: 8.0 ± 0.5, EC: 2450.3 ± 610.9, TDS: 1745.3 ± 440.9, T. Hard: 624.6 ± 305.8, T. Alk: 445.7 ± 120.5, Cl: 448.9 ± 128.8, CO₂: 18.9 ± 4.5, SO₄: 619.8 ± 205.8, PO₄: 474.1 ± 94.2, NO₂: 15.2 ± 3.1, NO₃ 14.3 ± 2.6), district Larkana habitats (pH: 8.4 ± 0.4, EC: 2555.8 ± 70.3, TDS: 1784.4 ± 36.9, T. Hard: 623.0 ± 42.5, T. Alk: 329.6 ± 36.7, Cl: 614.3 ± 89.5, CO₂: 17.6 ± 1.2, SO₄: 845.1 ± 67.6, PO₄: 895.0 ± 61.4, NO₂: 13.6 ± 3.8, NO₃: 23.1 ± 2.8), district Matiari habitats (pH: 8.0 ± 0.4 EC: 2492.3 ± 928.1, TDS: 430.0 ± 161.3, T. Hard: 396.7 ± 183.3, T. Alk: 388.1 ± 97.4, Cl: 551.6 ± 73.4, CO₂: 15.8 ± 2.9, SO₄: 576.5 ± 200.0, PO₄: 434.7 ± 100.6, NO₂: 15.8 ± 2.9, NO₃: 15.2 ± 3.0) and habitats in Shikarpur district (pH: 8.1 ± 0.6, EC: 2191.7 ± 765.1, TDS: 1764.9 ± 409.2, T. Hard: 431.9 ± 68.4,T. Alk: 350.3 ± 44.3, Cl: 381.5 ± 29.5, CO₂: 18.0 ± 4.0, SO₄: 518.8 ± 97.9, PO₄: 493.6 ± 64.6, NO₂: 14.0 ± 0.8, NO₃: 16.1 ± 2.8). Values of physico-chemical parameters were found higher than permissible level of Environmental Protectiona Agency (EPA). Monthly variation in concentration of physico-chemical parameters was also prominently recorded at all the study locals. This study discovered poor diversity of amphibian fauna and condition of their habitats was also observed as pitiable. This study established base line information that may be used in execution of an effective management plan and future monitoring of amphibian diversity and their habitats in Sindh.Keywords: amphibians, diversity, habitats, Pakistan, Sindh
Procedia PDF Downloads 164170 A Research on the Improvement of Small and Medium-Sized City in Early-Modern China (1895-1927): Taking Southern Jiangsu as an Example
Authors: Xiaoqiang Fu, Baihao Li
Abstract:
In 1895, the failure of Sino-Japanese prompted the trend of comprehensive and systematic study of western pattern in China. In urban planning and construction, urban reform movement sprang up slowly, which aimed at renovating and reconstructing the traditional cities into modern cities similar to the concessions. During the movement, Chinese traditional city initiated a process of modern urban planning for its modernization. Meanwhile, the traditional planning morphology and system started to disintegrate, on the contrary, western form and technology had become the paradigm. Therefore, the improvement of existing cities had become the prototype of urban planning of early modern China. Currently, researches of the movement mainly concentrate on large cities, concessions, railway hub cities and some special cities resembling those. However, the systematic research about the large number of traditional small and medium-sized cities is still blank, up to now. This paper takes the improvement constructions of small and medium-sized cities in Southern region of Jiangsu Province as the research object. First of all, the criteria of small and medium-sized cities are based on the administrative levels of general office and cities at the county level. Secondly, the suitability of taking the Southern Jiangsu as the research object. The southern area of Jiangsu province called Southern Jiangsu for short, was the most economically developed region in Jiangsu, and also one of the most economically developed and the highest urbanization regions in China. As the most developed agricultural areas in ancient China, Southern Jiangsu formed a large number of traditional small and medium-sized cities. In early modern times, with the help of the Shanghai economic radiation, geographical advantage and powerful economic foundation, Southern Jiangsu became an important birthplace of Chinese national industry. Furthermore, the strong business atmosphere promoted the widespread urban improvement practices, which were incomparable of other regions. Meanwhile, the demonstration of Shanghai, Zhenjiang, Suzhou and other port cities became the improvement pattern of small and medium-sized city in Southern Jiangsu. This paper analyzes the reform movement of the small and medium-sized cities in Southern Jiangsu (1895-1927), including the subjects, objects, laws, technologies and the influence factors of politic and society, etc. At last, this paper reveals the formation mechanism and characteristics of urban improvement movement in early modern China. According to the paper, the improvement of small-medium city was a kind of gestation of the local city planning culture in early modern China,with a fusion of introduction and endophytism.Keywords: early modern China, improvement of small-medium city, southern region of Jiangsu province, urban planning history of China
Procedia PDF Downloads 260169 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery
Procedia PDF Downloads 269168 Biodegradation Ability of Polycyclic Aromatic Hydrocarbon (PAHs) Degrading Bacillus cereus Strain JMG-01 Isolated from PAHs Contaminated Soil
Authors: Momita Das, Sofia Banu, Jibon Kotoky
Abstract:
Environmental contamination of natural resources with persistent organic pollutants is of great world-wide apprehension. Polycyclic aromatic hydrocarbons (PAHs) are among the organic pollutants, released due to various anthropogenic activities. Due to their toxic, carcinogenic and mutagenic properties, PAHs are of environmental and human concern. Presently, bioremediation has evolved as the most promising biotechnology for cleanup of such contaminants because of its economical and less cost effectiveness. In the present study, distribution of 16 USEPA priority PAHs was determined in the soil samples collected from fifteen different sites of Guwahati City, the Gateway of the North East Region of India. The total concentrations of 16 PAHs (Σ16 PAHs) ranged from 42.7-742.3 µg/g. Higher concentration of total PAHs was found more in the Industrial areas compared to all the sites (742.3 µg/g and 628 µg/g). It is noted that among all the PAHs, Naphthalene, Acenaphthylene, Anthracene, Fluoranthene, Chrysene and Benzo(a)Pyrene were the most available and contain the higher concentration of all the PAHs. Since microbial activity has been deemed the most influential and significant cause of PAH removal; further, twenty-three bacteria were isolated from the most contaminated sites using the enrichment process. These strains were acclimatized to utilize naphthalene and anthracene, each at 100 µg/g concentration as sole carbon source. Among them, one Gram-positive strain (JMG-01) was selected, and biodegradation ability and initial catabolic genes of PAHs degradation were investigated. Based on 16S rDNA analysis, the isolate was identified as Bacillus cereus strain JMG-01. Topographic images obtained using Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) at scheduled time intervals of 7, 14 and 21 days, determined the variation in cell morphology during the period of degradation. AFM and SEM micrograph of biomass showed high filamentous growth leading to aggregation of cells in the form of biofilm with reference to the incubation period. The percentage degradation analysis using gas chromatography and mass analyses (GC-MS) suggested that more than 95% of the PAHs degraded when the concentration was at 500 µg/g. Naphthalene, naphthalene-2-methy, benzaldehyde-4-propyl, 1, 2, benzene di-carboxylic acid and benzene acetic acid were the major metabolites produced after degradation. Moreover, PCR experiments with specific primers for catabolic genes, ndo B and Cat A suggested that JMG-01 possess genes for PAHs degradation. Thus, the study concludes that Bacillus cereus strain JMG-01 has efficient biodegrading ability and can trigger the clean-up of PAHs contaminated soil.Keywords: AFM, Bacillus cereus strain JMG-01, degradation, polycyclic aromatic hydrocarbon, SEM
Procedia PDF Downloads 277167 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals
Authors: A. Hamza, H. Kathyayini, N. Nagaraju
Abstract:
Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone
Procedia PDF Downloads 307166 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode
Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno
Abstract:
Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity
Procedia PDF Downloads 194165 Evaluation of Antimicrobial and Anti-Inflammatory Activity of Doani Sidr Honey and Madecassoside against Propionibacterium Acnes
Authors: Hana Al-Baghaoi, Kumar Shiva Gubbiyappa, Mayuren Candasamy, Kiruthiga Perumal Vijayaraman
Abstract:
Acne is a chronic inflammatory disease of the sebaceous glands characterized by areas of skin with seborrhea, comedones, papules, pustules, nodules, and possibly scarring. Propionibacterium acnes (P. acnes), plays a key role in the pathogenesis of acne. Their colonization and proliferation trigger the host’s inflammatory response leading to the production of pro-inflammatory cytokines such as interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The usage of honey and natural compounds to treat skin ailments has strong support in the current trend of drug discovery. The present study was carried out evaluate antimicrobial and anti-inflammatory potential of Doani Sidr honey and its fractions against P. acnes and to screen madecassoside alone and in combination with fractions of honey. The broth dilution method was used to assess the antibacterial activity. Also, ultra structural changes in cell morphology were studied before and after exposure to Sidr honey using transmission electron microscopy (TEM). The three non-toxic concentrations of the samples were investigated for suppression of cytokines IL 8 and TNF α by testing the cell supernatants in the co-culture of the human peripheral blood mononuclear cells (hPBMCs) heat killed P. acnes using enzyme immunoassay kits (ELISA). Results obtained was evaluated by statistical analysis using Graph Pad Prism 5 software. The Doani Sidr honey and polysaccharide fractions were able to inhibit the growth of P. acnes with a noteworthy minimum inhibitory concentration (MIC) value of 18% (w/v) and 29% (w/v), respectively. The proximity of MIC and MBC values indicates that Doani Sidr honey had bactericidal effect against P. acnes which is confirmed by TEM analysis. TEM images of P. acnes after treatment with Doani Sidr honey showed completely physical membrane damage and lysis of cells; whereas non honey treated cells (control) did not show any damage. In addition, Doani Sidr honey and its fractions significantly inhibited (> 90%) of secretion of pro-inflammatory cytokines like TNF α and IL 8 by hPBMCs pretreated with heat-killed P. acnes. However, no significant inhibition was detected for madecassoside at its highest concentration tested. Our results suggested that Doani Sidr honey possesses both antimicrobial and anti-inflammatory effects against P. acnes and can possibly be used as therapeutic agents for acne. Furthermore, polysaccharide fraction derived from Doani Sidr honey showed potent inhibitory effect toward P. acnes. Hence, we hypothesize that fraction prepared from Sidr honey might be contributing to the antimicrobial and anti-inflammatory activity. Therefore, this polysaccharide fraction of Doani Sidr honey needs to be further explored and characterized for various phytochemicals which are contributing to antimicrobial and anti-inflammatory properties.Keywords: Doani sidr honey, Propionibacterium acnes, IL-8, TNF alpha
Procedia PDF Downloads 401164 Morphological Transformation of Traditional Cities: The Case Study of the Historic Center of the City of Najaf
Authors: Sabeeh Lafta Farhan, Ihsan Abbass Jasim, Sohaib Kareem Al-Mamoori
Abstract:
This study addresses the subject of transformation of urban structures and how does this transformation affect the character of traditional cities, which represents the research issue. Hence, the research has aimed at studying and learning about the urban structure characteristics and morphological transformation features in the traditional cities centers, and to look for means and methods to preserve the character of those cities. Cities are not merely locations inhabited by a large number of people, they are political and legal entities, in addition to economic activities that distinguish these cities, thus, they are a complex set of institutions, and the transformation in urban environment cannot be recognized without understanding these relationships. The research presumes an existing impact of urbanization on the properties of traditional structure of the Holy City of Najaf. The research has defined urbanization as restructuring and re-planning of urban areas that have lost their functions and bringing them into social and cultural life in the city, to be able to serve economy in order to better respond to the needs of users. Sacred Cities provide the organic connection between acts of worship and dealings and reveal the mechanisms and reasons behind the regulatory nature of the sacred shrine and their role in achieving organizational assimilation of urban morphology. The research has reached a theoretical framework of the particulars of urbanization. This framework has been applied to the historic center of the old city of Najaf, where the most important findings of the research were that the visual and structural dominant presence of holy shrine of Imam Ali (peace be upon him) remains to emphasize the visual particularity, and the main role of the city, which hosts one of the most important Muslim shrines in the world, in addition to the visible golden dome rising above the skyline, and the Imam Ali Mosque the hub and the center for religious activities. Thus, in view of being a place of main importance and a symbol of religious and Islamic culture, it is very important to have the shrine of Imam Ali (AS) prevailing on all zones of re-development in the old city. Consequently, the research underlined that the distinctive and unique character of the city of Najaf did not proceed from nothing, but was achieved through the unrivaled characteristics and features possessed by the city of Najaf alone, which allowed it and enabled it to occupy this status among the Arab and Muslim cities. That is why the activities arising from the development have to enhance the historical role of the city in order to have this development as clear support, strength and further addition to the city assets and its cultural heritage, and not seeing the developmental activities crushing the city urban traditional fabric, cultural heritage and its historical specificity.Keywords: Iraq, the city of Najaf, heritage, traditional cities, morphological transformation
Procedia PDF Downloads 314163 Attitudes, Knowledge and Perceptions towards Cervical Cancer Messages among Female University Students
Authors: Anne Nattembo
Abstract:
Cervical cancer remains a major public health problem in developing countries, especially in Africa. Effective cervical cancer prevention communication requires identification of behaviors, attitudes and increasing awareness of a given population; thus this study focused on investigating awareness, attitudes, and behavior among female university students towards cervical cancer messages. The study objectives sought to investigate the communication behavior of young adults towards cervical cancer, to understand female students recognition of cervical cancer as a problem, to identify the frames related to cervical cancer and their impact towards audience communication and participation behaviors, to identify the factors that influence behavioral intentions and level of involvement towards cervical cancer services and to make recommendations on how to improve cervical cancer communication towards female university students. The researcher obtained data using semi-structured interviews and focus group discussions targeting 90 respondents. The semi-structured in-depth interviews were carried out through one-on-one discussions basis using a set of prepared questions among 53 respondents. All interviews were audio-tape recorded. Each interview was directly typed into Microsoft Word. 4 focus group discussions were conducted with a total of 37 respondents; 2 female only groups with 10 respondents in one and 9 respondents in another, 1 mixed with 12 participants 5 of whom were male, and 1 male only group with 6 participants. The key findings show that the participants preferred to receive and access cervical cancer information from doctors although they were mainly receiving information from the radio. In regards to the type of public the respondents represent, majority of the respondents were non-publics in the sense that they did not have knowledge about cervical cancer, had low levels of involvement and had high constraint recognition their cervical cancer knowledge levels. The researcher identified the most salient audience frames among female university students towards cervical cancer and these included; death, loss, and fear. These frames did not necessarily make cervical cancer an issue of concern among the female university students but rather an issue they distanced themselves from as they did not perceive it as a risk. The study also identified the constraints respondents face in responding to cervical cancer campaign calls-to-action which included; stigma, lack of knowledge and access to services as well as lack of recommendation from doctors. In regards to sex differences, females had more knowledge about cervical cancer than the males. In conclusion the study highlights the importance of interpersonal communication in risk or health communication with a focus on health providers proactively sharing cervical cancer prevention information with their patients. Health provider’s involvement in cervical cancer is very important in influencing behavior and compliance of cervical cancer calls-to-action. The study also provides recommendations for designing effective cervical cancer campaigns that will positively impact on the audience such as packaging cervical cancer messages that also target the males as a way of increasing their involvement and more campaigns to increase awareness of cervical cancer as well as designing positive framed messages to counter the negative audience frames towards cervical cancer.Keywords: cervical cancer communication, health communication, university students, risk communication
Procedia PDF Downloads 234162 Material Chemistry Level Deformation and Failure in Cementitious Materials
Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo
Abstract:
Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.Keywords: cementitious materials, deformation, failure, material chemistry modeling
Procedia PDF Downloads 287161 Fake News Domination and Threats on Democratic Systems
Authors: Laura Irimies, Cosmin Irimies
Abstract:
The public space all over the world is currently confronted with the aggressive assault of fake news that have lately impacted public agenda setting, collective decisions and social attitudes. Top leaders constantly call out most mainstream news as “fake news” and the public opinion get more confused. "Fake news" are generally defined as false, often sensational, information disseminated under the guise of news reporting and has been declared the word of the year 2017 by Collins Dictionary and it also has been one of the most debated socio-political topics of recent years. Websites which, deliberately or not, publish misleading information are often shared on social media where they essentially increase their reach and influence. According to international reports, the exposure to fake news is an undeniable reality all over the world as the exposure to completely invented information goes up to the 31 percent in the US, and it is even bigger in Eastern Europe countries, such as Hungary (42%) and Romania (38%) or in Mediterranean countries, such as Greece (44%) or Turkey (49%), and lower in Northern and Western Europe countries – Germany (9%), Denmark (9%) or Holland (10%). While the study of fake news (mechanism and effects) is still in its infancy, it has become truly relevant as the phenomenon seems to have a growing impact on democratic systems. Studies conducted by the European Commission show that 83% of respondents out of a total of 26,576 interviewees consider the existence of news that misrepresent reality as a threat for democracy. Studies recently conducted at Arizona State University show that people with higher education can more easily spot fake headlines, but over 30 percent of them can still be trapped by fake information. If we were to refer only to some of the most recent situations in Romania, fake news issues and hidden agenda suspicions related to the massive and extremely violent public demonstrations held on August 10th, 2018 with a strong participation of the Romanian diaspora have been massively reflected by the international media and generated serious debates within the European Commission. Considering the above framework, the study raises four main research questions: 1. Is fake news a problem or just a natural consequence of mainstream media decline and the abundance of sources of information? 2. What are the implications for democracy? 3. Can fake news be controlled without restricting fundamental human rights? 4. How could the public be properly educated to detect fake news? The research uses mostly qualitative but also quantitative methods, content analysis of studies, websites and media content, official reports and interviews. The study will prove the real threat fake news represent and also the need for proper media literacy education and will draw basic guidelines for developing a new and essential skill: that of detecting fake in news in a society overwhelmed by sources of information that constantly roll massive amounts of information increasing the risk of misinformation and leading to inadequate public decisions that could affect democratic stability.Keywords: agenda setting democracy, fake news, journalism, media literacy
Procedia PDF Downloads 131160 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 234159 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels
Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov
Abstract:
Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield
Procedia PDF Downloads 272158 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media
Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani
Abstract:
The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction
Procedia PDF Downloads 148157 Developing Writing Skills of Learners with Persistent Literacy Difficulties through the Explicit Teaching of Grammar in Context: Action Research in a Welsh Secondary School
Authors: Jean Ware, Susan W. Jones
Abstract:
Background: The benefits of grammar instruction in the teaching of writing is contested in most English speaking countries. A majority of Anglophone countries abandoned the teaching of grammar in the 1950s based on the conclusions that it had no positive impact on learners’ development of reading, writing, and language. Although the decontextualised teaching of grammar is not helpful in improving writing, a curriculum with a focus on grammar in an embedded and meaningful way can help learners develop their understanding of the mechanisms of language. Although British learners are generally not taught grammar rules explicitly, learners in schools in France, the Netherlands, and Germany are taught explicitly about the structure of their own language. Exposing learners to grammatical analysis can help them develop their understanding of language. Indeed, if learners are taught that each part of speech has an identified role in the sentence. This means that rather than have to memorise lists of words or spelling patterns, they can focus on determining each word or phrase’s task in the sentence. These processes of categorisation and deduction are higher order thinking skills. When considering definitions of dyslexia available in Great Britain, the explicit teaching of grammar in context could help learners with persistent literacy difficulties. Indeed, learners with dyslexia often develop strengths in problem solving; the teaching of grammar could, therefore, help them develop their understanding of language by using analytical and logical thinking. Aims: This study aims at gaining a further understanding of how the explicit teaching of grammar in context can benefit learners with persistent literacy difficulties. The project is designed to identify ways of adapting existing grammar focussed teaching materials so that learners with specific learning difficulties such as dyslexia can use them to further develop their writing skills. It intends to improve educational practice through action, analysis and reflection. Research Design/Methods: The project, therefore, uses an action research design and multiple sources of evidence. The data collection tools used were standardised test data, teacher assessment data, semi-structured interviews, learners’ before and after attempts at a writing task at the beginning and end of the cycle, documentary data and lesson observation carried out by a specialist teacher. Existing teaching materials were adapted for use with five Year 9 learners who had experienced persistent literacy difficulties from primary school onwards. The initial adaptations included reducing the amount of content to be taught in each lesson, and pre teaching some of the metalanguage needed. Findings: Learners’ before and after attempts at the writing task were scored by a colleague who did not know the order of the attempts. All five learners’ scores were higher on the second writing task. Learners reported that they had enjoyed the teaching approach. They also made suggestions to be included in the second cycle, as did the colleague who carried out observations. Conclusions: Although this is a very small exploratory study, these results suggest that adapting grammar focused teaching materials shows promise for helping learners with persistent literacy difficulties develop their writing skills.Keywords: explicit teaching of grammar in context, literacy acquisition, persistent literacy difficulties, writing skills
Procedia PDF Downloads 157156 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols
Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene
Abstract:
The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon
Procedia PDF Downloads 237155 Supply Chain Improvement of the Halal Goat Industry in the Autonomous Region in Muslim Mindanao
Authors: Josephine R. Migalbin
Abstract:
Halal is an Arabic word meaning "lawful" or "permitted". When it comes to food and consumables, Halal is the dietary standard of Muslims. The Autonomous Region in Muslim Mindanao (ARMM) has a comparative advantage when it comes to Halal Industry because it is the only Muslim region in the Philippines and the natural starting point for the establishment of a halal industry in the country. The region has identified goat production not only for domestic consumption but for export market. Goat production is one of its strengths due to cultural compatibility. There is a high demand for goats during Ramadhan and Eid ul-Adha. The study aimed to provide an overview of the ARMM Halal Goat Industry; to map out the specific supply chain of halal goat, and to analyze the performance of the halal goat supply chain in terms of efficiency, flexibility, and overall responsiveness. It also aimed to identify areas for improvement in the supply chain such as behavioural, institutional, and process to provide recommendations for improvement in the supply chain towards efficient and effective production and marketing of halal goats, subsequently improving the plight of the actors in the supply chain. Generally, the raising of goats is characterized by backyard production (92.02%). There are four interrelated factors affecting significantly the production of goats which are breeding prolificacy, prevalence of diseases, feed abundance and pre-weaning mortality rate. The institutional buyers are mostly traders, restaurants/eateries, supermarkets, and meat shops, among others. The municipalities of Midsayap and Pikit in another region and Parang are the major goat sources and the municipalities in ARMM among others. In addition to the major supply centers, Siquijor, an island province in the Visayas is becoming a key source of goats. Goats are usually gathered by traders/middlemen and brought to the public markets. Meat vendors purchase them directly from raisers, slaughtered and sold fresh in wet markets. It was observed that there is increased demand at 2%/year and that supply is not enough to meet the demand. Farm gate price is 2.04 USD to 2.11 USD/kg liveweight. Industry information is shared by three key participants - raisers, traders and buyers. All respondents reported that information is through personal built-upon past experiences and that there is no full disclosure of information among the key participants in the chain. The information flow in the industry is fragmented in nature such that no total industry picture exists. In the last five years, numerous local and foreign agencies had undertaken several initiatives for the development of the halal goat industry in ARMM. The major issues include productivity which is the greatest challenge, difficulties in accessing technical support channels and lack of market linkage and consolidation. To address the various issues and concerns of the various industry players, there is a need to intensify appropriate technology transfer through extension activities, improve marketing channels by grouping producers, strengthen veterinary services and provide capital windows to improve facilities and reduce logistics and transaction costs in the entire supply chain.Keywords: autonomous region in Muslim Mindanao, halal, halal goat industry, supply chain improvement
Procedia PDF Downloads 335154 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt
Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli
Abstract:
Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas
Procedia PDF Downloads 40153 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen
Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev
Abstract:
The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms
Procedia PDF Downloads 91152 Communicating Nuclear Energy in Southeast Asia: A Cross-Country Comparison of Communication Channels and Source Credibility
Authors: Shirley S. Ho, Alisius X. L. D. Leong, Jiemin Looi, Agnes S. F. Chuah
Abstract:
Nuclear energy is a contentious technology that has attracted much public debate over the years. The prominence of nuclear energy in Southeast Asia (SEA) has burgeoned due to the surge of interest and plans for nuclear development in the region. Understanding public perceptions of nuclear energy in SEA is pertinent given the limited number of studies conducted. In particular, five SEA nations – Singapore, Malaysia, Indonesia, Thailand, and Vietnam are of immediate interest as that they are amongst the most economically developed or developing nations in the SEA region. High energy demands from economic development in these nations have led to considerations of adopting nuclear energy as an alternative source of energy. This study aims to explore whether differences in the nuclear developmental stage in each country affects public perceptions of nuclear energy. In addition, this study seeks to find out about the type and importance of communication credibility as a judgement heuristic in facilitating message acceptance across these five countries. Credibility of a communication channel is a crucial component influencing public perception, acceptance, and attitudes towards nuclear energy. Aside from simply identifying the frequently used communication channels, it is of greater significance to understand public perception of source and media credibility. Given the lack of studies conducted in SEA, this exploratory study adopts a qualitative approach to elicit a spectrum of opinions and insights regarding the key communication aspects influencing public perceptions of nuclear energy. Specifically, the capitals of each of the abovementioned countries - Kuala Lumpur, Bangkok, and Hanoi - were selected, with the exception of Singapore, an island city-state, and Yogyakarta, the most populous island of Indonesia to better understand public perception towards nuclear energy. Focus group discussions were utilized as the mode of data collection to elicit a wide variety of viewpoints held by the participants, which is well-suited for exploratory research. In total, 156 participants took part in the 13 focus group discussions. The participants were either local citizens or permanent residents aged between 18 and 69 years old. Each of the focus groups consists of 8-10 participants, including both male and female participants. The transcripts from each focus group were analysed using NVivo 10, and the text was organised according to the emerging themes or categories. The general public in all the countries was familiar but had no in-depth knowledge with nuclear energy. Four dimensions of nuclear energy communication were identified based on the focus group discussions: communication channels, perceived credibility of sources, circumstances for discussion, and discussion style. The first dimension, communication channels refers to the medium through which participants receive information about nuclear energy. Four types of media emerged from the discussions. They included online and social media, broadcast media, print media, and word-of- mouth (WOM). Collectively, across all five countries, participants were found to engage in different types of knowledge acquisition and information seeking behavior depending on the communication channels used.Keywords: nuclear energy, public perception, communication, Southeast Asia, source credibility
Procedia PDF Downloads 308151 Sentiment Analysis of Tourist Online Reviews Concerning Lisbon Cultural Patrimony, as a Contribute to the City Attractiveness Evaluation
Authors: Joao Ferreira Do Rosario, Maria De Lurdes Calisto, Ana Teresa Machado, Nuno Gustavo, Rui Gonçalves
Abstract:
The tourism sector is increasingly important to the economic performance of countries and a relevant theme to academic research, increasing the importance of understanding how and why tourists evaluate tourism locations. The city of Lisbon is currently a tourist destination of excellence in the European and world-wide panorama, registering a significant growth of the economic weight of its tourist activities in the Gross Added Value of the region. Although there is research on the feedback of those who visit tourist sites and different methodologies for studying tourist sites have been applied, this research seeks to be innovative in the objective of obtaining insights on the competitiveness in terms of attractiveness of the city of Lisbon as a tourist destination, based the feedback of tourists in the Facebook pages of the most visited museums and monuments of Lisbon, an interpretation that is relevant in the development of strategies of tourist attraction. The intangible dimension of the tourism offer, due to its unique condition of simultaneous production and consumption, makes eWOM particularly relevant. The testimony of consumers is thus a decisive factor in the decision-making and buying process in tourism. Online social networks are one of the most used platforms for tourists to evaluate the attractiveness's points of a tourism destination (e.g. cultural and historical heritage), with this user-generated feedback enabling relevant information about the customer-tourists. This information is related to the tourist experience representing the true voice of the customer. Furthermore, this voice perceived by others as genuine, opposite to marketing messages, may have a powerful word-of-mouth influence on other potential tourists. The relevance of online reviews sharing, however, becomes particularly complex, considering social media users’ different profiles or the possible and different sources of information available, as well as their associated reputation associated with each source. In the light of these trends, our research focuses on the tourists’ feedback on Facebook pages of the most visited museums and monuments of Lisbon that contribute to its attractiveness as a tourism destination. Sentiment Analysis is the methodology selected for this research, using public available information in the online context, which was deemed as an appropriate non-participatory observation method. Data will be collected from two museums (Museu dos Coches and Museu de Arte Antiga) and three monuments ((Mosteiro dos Jerónimos, Torre de Belém and Panteão Nacional) Facebook pages during a period of one year. The research results will help in the evaluation of the considered places by the tourists, their contribution to the city attractiveness and present insights helpful for the management decisions regarding this museums and monuments. The results of this study will also contribute to a better knowledge of the tourism sector, namely the identification of attributes in the evaluation and choice of the city of Lisbon as a tourist destination. Further research will evaluate the Lisbon attraction points for tourists in different categories beyond museums and monuments, will also evaluate the tourist feedback from other sources like TripAdvisor and apply the same methodology in other cities and country regions.Keywords: Lisbon tourism, opinion mining, sentiment analysis, tourism location attractiveness evaluation
Procedia PDF Downloads 240150 Elements of Creativity and Innovation
Authors: Fadwa Al Bawardi
Abstract:
In March 2021, the Saudi Arabian Council of Ministers issued a decision to form a committee called the "Higher Committee for Research, Development and Innovation," a committee linked to the Council of Economic and Development Affairs, chaired by the Chairman of the Council of Economic and Development Affairs, and concerned with the development of the research, development and innovation sector in the Kingdom. In order to talk about the dimensions of this wonderful step, let us first try to answer the following questions. Is there a difference between creativity and innovation..? What are the factors of creativity in the individual. Are they mental genetic factors or are they factors that an individual acquires through learning..? The methodology included surveys that have been conducted on more than 500 individuals, males and females, between the ages of 18 till 60. And the answer is. "Creativity" is the creation of a new idea, while "Innovation" is the development of an already existing idea in a new, successful way. They are two sides of the same coin, as the "creative idea" needs to be developed and transformed into an "innovation" in order to achieve either strategic achievements at the level of countries and institutions to enhance organizational intelligence, or achievements at the level of individuals. For example, the beginning of smart phones was just a creative idea from IBM in 1994, but the actual successful innovation for the manufacture, development and marketing of these phones was through Apple later. Nor does creativity have to be hereditary. There are three basic factors for creativity: The first factor is "the presence of a challenge or an obstacle" that the individual faces and seeks thinking to find solutions to overcome, even if thinking requires a long time. The second factor is the "environment surrounding" of the individual, which includes science, training, experience gained, the ability to use techniques, as well as the ability to assess whether the idea is feasible or otherwise. To achieve this factor, the individual must be aware of own skills, strengths, hobbies, and aspects in which one can be creative, and the individual must also be self-confident and courageous enough to suggest those new ideas. The third factor is "Experience and the Ability to Accept Risk and Lack of Initial Success," and then learn from mistakes and try again tirelessly. There are some tools and techniques that help the individual to reach creative and innovative ideas, such as: Mind Maps tool, through which the available information is drawn by writing a short word for each piece of information and arranging all other relevant information through clear lines, which helps in logical thinking and correct vision. There is also a tool called "Flow Charts", which are graphics that show the sequence of data and expected results according to an ordered scenario of events and workflow steps, giving clarity to the ideas, their sequence, and what is expected of them. There are also other great tools such as the Six Hats tool, a useful tool to be applied by a group of people for effective planning and detailed logical thinking, and the Snowball tool. And all of them are tools that greatly help in organizing and arranging mental thoughts, and making the right decisions. It is also easy to learn, apply and use all those tools and techniques to reach creative and innovative solutions. The detailed figures and results of the conducted surveys are available upon request, with charts showing the %s based on gender, age groups, and job categories.Keywords: innovation, creativity, factors, tools
Procedia PDF Downloads 55149 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction
Authors: Xiaoling Ren, Guidong Yang
Abstract:
As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility
Procedia PDF Downloads 160148 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films
Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya
Abstract:
Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film
Procedia PDF Downloads 367147 Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts
Authors: Mohammed Fayez Al Rez
Abstract:
Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases.Keywords: electrospinning, poly(ε-caprolactone) (PCL), tissue-engineered vascular graft, tubular bilayered scaffolds, vascular cells
Procedia PDF Downloads 295146 Language Skills in the Emergent Literacy of Spanish-Speaking Children with Autism Spectrum Disorders
Authors: Adriana Salgado, Sandra Castaneda, Ivan Perez
Abstract:
Learning to read and write is a complex process involving several cognitive skills, contextual, and cultural environments. The basis of this development is linguistic skills, such as the ability to name and understand vocabulary, retell a story, phonological awareness, letter knowledge, among others. In children with autism spectrum disorder (ASD), one of the main concerns is related to language disorders. Nevertheless, most of the children with ASD are able to decode written information but have difficulties in reading comprehension. The research of these processes in the Spanish-speaking population is limited. However, the increasing prevalence of this diagnosis (1 in 115 children) in Mexico has implications at different levels. Educational research is an important area of interest in ASD children, such as emergent literacy. Reading and writing expand the possibilities of academic, cultural, and social information access. Taking this information into account, the objective of this research was to identify the relationship between language skills, alphabet knowledge, phonological awareness, and early reading and writing in ASD Spanish-speaking children. The method used for this research was based on tasks that were selected, adapted and in some cases designed to measure initial reading and writing, as well as language skills (naming, receptive vocabulary, and narrative skills), phonological awareness (similar phonological word pairs, beginning sound awareness and spelling) and letter knowledge, in a sample of 45 children (38 boys and 7 girls) with prior diagnosis of ASD. Descriptive analyses, as well as bivariate correlations, cluster analysis, and canonical correspondence, were obtained for the data results. Results showed that variability was large; however, it was possible to characterize the sample in low, medium, and high score groups regarding children performance. The low score group (46.7% of the sample), had a null or deficient performance in language skills and phonological awareness, some could identify up to five letters of the alphabet, showed no early reading skills but they could scribble. The middle score group was characterized by a highly variable performance in different tasks, with better language skills in receptive and naming vocabulary, some narrative, letter knowledge, and phonological awareness (beginning sound awareness) skills. The high score group, (24.4% of the sample) had the best performance in language skills in relation to the sample data, as well as in the rest of the measured skills. Finally, scores were canonically correlated between naming, receptive vocabulary, narrative, phonological awareness, letter knowledge and initial learning of reading and writing skills for the high score group and letter knowledge, naming and receptive vocabulary for the lower score group, which is consistent with previous research in typical and ASD children. In conclusion, the obtained data is consistent with previous studies. Despite large variability, it was possible to identify performance profiles and relations based on linguistic, phonological awareness, and letter knowledge skills. These skills were predictor variables of the initial development of reading and writing. The above has implications for a future program and strategies development that may benefit the acquisition of reading and writing in ASD children.Keywords: autism, autism spectrum disorders, early literacy, emergent literacy
Procedia PDF Downloads 145145 Modification of Unsaturated Fatty Acids Derived from Tall Oil Using Micro/Mesoporous Materials Based on H-ZSM-22 Zeolite
Authors: Xinyu Wei, Mingming Peng, Kenji Kamiya, Eika Qian
Abstract:
Iso-stearic acid as a saturated fatty acid with a branched chain shows a low pour point, high oxidative stability and great biodegradability. The industrial production of iso-stearic acid involves first isomerizing unsaturated fatty acids into branched-chain unsaturated fatty acids (BUFAs), followed by hydrogenating the branched-chain unsaturated fatty acids to obtain iso-stearic acid. However, the production yield of iso-stearic acid is reportedly less than 30%. In recent decades, extensive research has been conducted on branched fatty acids. Most research has replaced acidic clays with zeolites due to their high selectivity, good thermal stability, and renewability. It was reported that isomerization of unsaturated fatty acid occurred mainly inside the zeolite channel. In contrast, the production of by-products like dimer acid mainly occurs at acid sites outside the surface of zeolite. Further, the deactivation of catalysts is attributed to the pore blockage of zeolite. In the present study, micro/mesoporous ZSM-22 zeolites were developed. It is clear that the synthesis of a micro/mesoporous ZSM-22 zeolite is regarded as the ideal strategy owing to its ability to minimize coke formation. Different mesoporosities micro/mesoporous H-ZSM-22 zeolites were prepared through recrystallization of ZSM-22 using sodium hydroxide solution (0.2-1M) with cetyltrimethylammonium bromide template (CTAB). The structure, morphology, porosity, acidity, and isomerization performance of the prepared catalysts were characterized and evaluated. The dissolution and recrystallization process of the H-ZSM-22 microporous zeolite led to the formation of approximately 4 nm-sized mesoporous channels on the outer surface of the microporous zeolite, resulting in a micro/mesoporous material. This process increased the weak Brønsted acid sites at the pore mouth while reducing the total number of acid sites in ZSM-22. Finally, an activity test was conducted using oleic acid as a model compound in a fixed-bed reactor. The activity test results revealed that micro/mesoporous H-ZSM-22 zeolites exhibited a high isomerization activity, reaching >70% selectivity and >50% yield of BUFAs. Furthermore, the yield of oligomers was limited to less than 20%. This demonstrates that the presence of mesopores in ZSM-22 enhances contact between the feedstock and the active sites within the catalyst, thereby increasing catalyst activity. Additionally, a portion of the dissolved and recrystallized silica adhered to the catalyst's surface, covering the surface-active sites, which reduced the formation of oligomers. This study offers distinct insights into the production of iso-stearic acid using a fixed-bed reactor, paving the way for future research in this area.Keywords: Iso-stearic acid, oleic acid, skeletal isomerization, micro/mesoporous, ZSM-22
Procedia PDF Downloads 25144 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses
Authors: Abid Hussain, Binay Kumar
Abstract:
Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization
Procedia PDF Downloads 136143 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood
Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi
Abstract:
Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls
Procedia PDF Downloads 70142 Analysis of Superconducting and Optical Properties in Atomic Layer Deposition and Sputtered Thin Films for Next-Generation Single-Photon Detectors
Authors: Nidhi Choudhary, Silke A. Peeters, Ciaran T. Lennon, Dmytro Besprozvannyy, Harm C. M. Knoops, Robert H. Hadfield
Abstract:
Superconducting Nanowire Single Photon Detectors (SNSPDs) have become leading devices in quantum optics and photonics, known for their exceptional efficiency in detecting single photons from ultraviolet to mid-infrared wavelengths with minimal dark counts, low noise, and reduced timing jitter. Recent advancements in materials science focus attention on refractory metal thin films such as NbN and NbTiN to enhance the optical properties and superconducting performance of SNSPDs, opening the way for next-generation detectors. These films have been deposited by several different techniques, such as atomic layer deposition (ALD), plasma pro-advanced plasma processing (ASP) and magnetron sputtering. The fabrication flexibility of these films enables precise control over morphology, crystallinity, stoichiometry and optical properties, which is crucial for optimising the SNSPD performance. Hence, it is imperative to study the optical and superconducting properties of these materials across a wide range of wavelengths. This study provides a comprehensive analysis of the optical and superconducting properties of some important materials in this category (NbN, NbTiN) by different deposition methods. Using Variable angle ellipsometry spectroscopy (VASE), we measured the refractive index, extinction, and absorption coefficient across a wide wavelength range (200-1700 nm) to enhance light confinement for optical communication devices. The critical temperature and sheet resistance were measured using a four-probe method in a custom-built, cryogen-free cooling system with a Sumitomo RDK-101D cold head and CNA-11C compressor. Our results indicate that ALD-deposited NbN shows a higher refractive index and extinction coefficient in the near-infrared region (~1500 nm) than sputtered NbN of the same thickness. Further, the analysis of the optical properties of plasma pro-ASP deposited NbTiN was performed at different substrate bias voltages and different thicknesses. The analysis of substrate bias voltage indicates that the maximum value of the refractive index and extinction coefficient observed for the substrate biasing of 50-80 V across a substrate bias range of (0 V - 150 V). The optical properties of sputtered NbN films are also investigated in terms of the different substrate temperatures during deposition (100 °C-500 °C). We find the higher the substrate temperature during deposition, the higher the value of the refractive index and extinction coefficient has been observed. In all our superconducting thin films ALD-deposited NbN films possess the highest critical temperature (~12 K) compared to sputtered (~8 K) and plasma pro-ASP (~5 K).Keywords: optical communication, thin films, superconductivity, atomic layer deposition (ALD), niobium nitride (NbN), niobium titanium nitride (NbTiN), SNSPD, superconducting detector, photon-counting.
Procedia PDF Downloads 34