Search results for: translation speed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3476

Search results for: translation speed

1436 Examining Influence of The Ultrasonic Power and Frequency on Microbubbles Dynamics Using Real-Time Visualization of Synchrotron X-Ray Imaging: Application to Membrane Fouling Control

Authors: Masoume Ehsani, Ning Zhu, Huu Doan, Ali Lohi, Amira Abdelrasoul

Abstract:

Membrane fouling poses severe challenges in membrane-based wastewater treatment applications. Ultrasound (US) has been considered an effective fouling remediation technique in filtration processes. Bubble cavitation in the liquid medium results from the alternating rarefaction and compression cycles during the US irradiation at sufficiently high acoustic pressure. Cavitation microbubbles generated under US irradiation can cause eddy current and turbulent flow within the medium by either oscillating or discharging energy to the system through microbubble explosion. Turbulent flow regime and shear forces created close to the membrane surface cause disturbing the cake layer and dislodging the foulants, which in turn improve the cleaning efficiency and filtration performance. Therefore, the number, size, velocity, and oscillation pattern of the microbubbles created in the liquid medium play a crucial role in foulant detachment and permeate flux recovery. The goal of the current study is to gain in depth understanding of the influence of the US power intensity and frequency on the microbubble dynamics and its characteristics generated under US irradiation. In comparison with other imaging techniques, the synchrotron in-line Phase Contrast Imaging technique at the Canadian Light Source (CLS) allows in-situ observation and real-time visualization of microbubble dynamics. At CLS biomedical imaging and therapy (BMIT) polychromatic beamline, the effective parameters were optimized to enhance the contrast gas/liquid interface for the accuracy of the qualitative and quantitative analysis of bubble cavitation within the system. With the high flux of photons and the high-speed camera, a typical high projection speed was achieved; and each projection of microbubbles in water was captured in 0.5 ms. ImageJ software was used for post-processing the raw images for the detailed quantitative analyses of microbubbles. The imaging has been performed under the US power intensity levels of 50 W, 60 W, and 100 W, in addition to the US frequency levels of 20 kHz, 28 kHz, and 40 kHz. For the duration of 2 seconds of imaging, the effect of the US power and frequency on the average number, size, and fraction of the area occupied by bubbles were analyzed. Microbubbles’ dynamics in terms of their velocity in water was also investigated. For the US power increase of 50 W to 100 W, the average bubble number and the average bubble diameter were increased from 746 to 880 and from 36.7 µm to 48.4 µm, respectively. In terms of the influence of US frequency, a fewer number of bubbles were created at 20 kHz (average of 176 bubbles rather than 808 bubbles at 40 kHz), while the average bubble size was significantly larger than that of 40 kHz (almost seven times). The majority of bubbles were captured close to the membrane surface in the filtration unit. According to the study observations, membrane cleaning efficiency is expected to be improved at higher US power and lower US frequency due to the higher energy release to the system by increasing the number of bubbles or growing their size during oscillation (optimum condition is expected to be at 20 kHz and 100 W).

Keywords: bubble dynamics, cavitational bubbles, membrane fouling, ultrasonic cleaning

Procedia PDF Downloads 149
1435 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: ANSYS, differential, spider gear, structural steel

Procedia PDF Downloads 186
1434 Performance Analysis of BLDC Motors for Flywheel Energy Storage Applications with Nonmagnetic vs. Magnetic Core Stator using Finite Element Time Stepping Method

Authors: Alok Kumar Pasa, Krs Raghavan

Abstract:

This paper presents a comparative analysis of Brushless DC (BLDC) motors for flywheel applications with a focus on the choice of stator core materials. The study employs a Finite Element Method (FEM) in time domain to investigate the performance characteristics of BLDC motors equipped with nonmagnetic and magnetic type stator core materials. Preliminary results reveal significant differences in motor efficiency, torque production, and electromagnetic properties between the two configurations. This research sheds light on the advantages of utilizing nonmagnetic materials in BLDC motors for flywheel applications, offering potential advantages in terms of efficiency, weight reduction and cost-effectiveness.

Keywords: finite element time stepping method, high-speed BLDC motor, flywheel energy storage system, coreless BLDC motors

Procedia PDF Downloads 4
1433 Factors Affecting the Effective Management of the Employee Welfare Fund at the Department of Labour Protection and Welfare

Authors: Nareerut Rodwring

Abstract:

The purposes of this research were to study the current problems of the management of welfare fund at the department of labor protection and welfare, to study important factors affecting the management of welfare fund at the department of labor protection and welfare, to study major influences of the management of welfare fund at the department of labor protection and welfare, and finally to propose the proper guidelines for the management of welfare fund at the department of labor protection and welfare. This research study utilized the information from document, laws, rules, and regulations of the government, handbook for welfare, and government policy in the past. Moreover, the qualitative research was conducted by retrieving insight information from key informants, 15 persons for the committee of welfare employees, and 10 persons from a high level of management in the welfare area, academics, and experts. In terms of quantitative method, the study covers all 76 provinces and 10 areas of Bangkok. Independent variables included strategy, structure, shared value, system, whereas the dependent variables included the management factors such as speed, punctuation, and quality of work.

Keywords: strategy, welfare, labor protection, management

Procedia PDF Downloads 179
1432 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 285
1431 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 352
1430 Content Based Face Sketch Images Retrieval in WHT, DCT, and DWT Transform Domain

Authors: W. S. Besbas, M. A. Artemi, R. M. Salman

Abstract:

Content based face sketch retrieval can be used to find images of criminals from their sketches for 'Crime Prevention'. This paper investigates the problem of CBIR of face sketch images in transform domain. Face sketch images that are similar to the query image are retrieved from the face sketch database. Features of the face sketch image are extracted in the spectrum domain of a selected transforms. These transforms are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Walsh Hadamard Transform (WHT). For the performance analyses of features selection methods three face images databases are used. These are 'Sheffield face database', 'Olivetti Research Laboratory (ORL) face database', and 'Indian face database'. The City block distance measure is used to evaluate the performance of the retrieval process. The investigation concludes that, the retrieval rate is database dependent. But in general, the DCT is the best. On the other hand, the WHT is the best with respect to the speed of retrieving images.

Keywords: Content Based Image Retrieval (CBIR), face sketch image retrieval, features selection for CBIR, image retrieval in transform domain

Procedia PDF Downloads 493
1429 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 128
1428 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application

Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro

Abstract:

This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.

Keywords: item response theory, dimensionality, submodel theory, factorial analysis

Procedia PDF Downloads 372
1427 A Conceptual Framework for Knowledge Integration in Agricultural Knowledge Management System Development

Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa

Abstract:

Agriculture is the mainstay of the Ethiopian economy; however, the sector is dominated by smallholder farmers resulting in land fragmentation and suffering from low productivity. Due to these issues, much effort has been put into the transformation of the sector to bring about more sustainable rural economic development. Technological advancements have been applied for the betterment of farmers resulting in the design of tools that are potentially capable of supporting the agricultural sector; however, their use and relevance are still alien to the local rural communities. The notion of the creating, capturing and sharing of knowledge has also been repetitively raised by many international donor agencies to transform the sector, yet the most current approaches to knowledge dissemination focus on knowledge that originates from the western view of scientific rationality while overlooking the role of indigenous knowledge (IK). Therefore, in agricultural knowledge management system (KMS) development, the integration of IKS with scientific knowledge is a critical success factor. The present study aims to contribute in the discourse on how to best integrate scientific and IK in agricultural KMS development. The conceptual framework of the research is anchored in concepts drawn from the theory of situated learning in communities of practice (CoPs): knowledge brokering. Using the KMS development practices of Ethiopian agricultural transformation agency as a case area, this research employed an interpretive analysis using primary and secondary qualitative data acquired through in-depth semi-structured interviews and participatory observations. As a result, concepts are identified for understanding the integration of the two major knowledge systems (i.e., indigenous and scientific knowledge) and participation of relevant stakeholders in particular the local farmers in agricultural KMS development through the roles of extension agent as a knowledge broker including crossing boundaries, in-between position, translation and interpretation, negotiation, and networking. The research shall have a theoretical contribution in addressing the incorporation of a variety of knowledge systems in agriculture and practically to provide insight for policy makers in agriculture regarding the importance of IK integration in agricultural KMS development and support marginalized small-scale farmers.

Keywords: communities of practice, indigenous knowledge, knowledge management system development, knowledge brokering

Procedia PDF Downloads 346
1426 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria

Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo

Abstract:

This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.

Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria

Procedia PDF Downloads 512
1425 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 347
1424 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 98
1423 Mechanistic Modelling to De-risk Process Scale-up

Authors: Edwin Cartledge, Jack Clark, Mazaher Molaei-Chalchooghi

Abstract:

The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material.

Keywords: active pharmaceutical ingredient, baffles, computational fluid dynamics, mixing, modelling

Procedia PDF Downloads 97
1422 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 289
1421 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
1420 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 310
1419 Economical and Environmental Impact of Deforestation on Charcoal Production in Gaza Province

Authors: Paulo Cumbe

Abstract:

This work analyzes the economic and environmental impact of the exploitation of forest resources on populations and their sustainability in the regions where it occurs. There is an intensive and continuous activity of charcoal production, in the Massingir and Mabalane districts, in Gaza, Mozambique, to supply the most used fuel that is used by the population of the capital city, Maputo. Charcoal production is one of the sources of income for several families. However, it causes a negative environmental impact on biodiversity. We have analyzed different studies carried out in these communities that measure the speed, the level, and the impact of deforestation involving different actors, to deepen our understanding of this issue. The results of these studies reveal that the degraded area in five years would need one hundred years to be restored, which is unsustainable from an environmental point of view it is. Populations seek new areas for the same practice to maintain their livelihood, progressing with ecosystem degradation and increasing carbon dioxide emissions into the atmosphere. It is believed that environmental education, creation, and dissemination of new forms of charcoal production that are more profitable and less aggressive to the environment and forest repopulation actions need to be carried out to guarantee the sustainable development of the populations in these regions.

Keywords: deforestation, emissions, sustainability, charcoal

Procedia PDF Downloads 70
1418 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes

Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi

Abstract:

With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.

Keywords: energy harvesting, piezoelectric, flutter, wind tunnel

Procedia PDF Downloads 65
1417 Volatility of Interest Rates in the US After Covid-19: A Multivariate GARCH Analysis

Authors: Rodrigo Baggi Prieto Alvarez, José Dias Curto

Abstract:

This study examines the volatility dynamics of U.S. Treasury rates from 1994 to 2024, with a focus on the shock induced by the Covid-19 pandemic. This market is considered the most important to monitor daily, as the yield curve of future interest rates is often referred to as "the mother of all curves" due to its importance in the pricing of all global risk assets. The period after 2020 was characterized initially by a stimulative monetary policy, synchronized across major global economies, with a rapid and significant reduction of interest rates by central banks and expansionary fiscal policy and increased government debt. In a subsequent phase, from 2021 to 2022, the end of lockdowns, the boost in income through public subsidies, and increased demand for goods, combined with logistical bottlenecks, resulted in the most significant inflationary shock in decades. The Federal Reserve (Fed) employed an abrupt tightening, raising short-term interest rates from 0.00% to 5.25% p.a. (the highest since the 2000s) at record speed (March 2022 to July 2023), and even before the monetary tightening, long-term interest rates had already been on an upward trend since 2020. The speed at which the Fed raised short-term interest rates has a significant impact on the level and the volatility of yields across other maturities. Estimating models as APARCH and DCC-GARCH, this paper explores the interplay between conditional variance in the 2-year Treasuries and key macroeconomic variables for the U.S., highlighting asymmetric shocks, feedback effects, and spillovers between Treasury markets and macroeconomic volatility. The results evidenced volatility peaks, particularly during the Covid-19 lockdown, and the statistical tests confirmed ARCH/GARCH effects, corroborating high persistence, i.e. future variance being strongly affected by past variance. The univariate models GJR-GARCH and APARCH allowed to verify the importance of asymmetry, that is, bad news have a greater impact than good news on the conditional volatility of future interest rates. Then, the multivariate DCC-GARCH model confirmed the spillover between the volatility of Treasuries and volatility of macroeconomic variables, indicating the time-varying conditional correlation between the variable’s volatilities. Besides estimating a full specification for DCC-GARCH with all variables simultaneously, a robustness test with pairwise estimations confirmed the temporal dynamics of highly persistence volatility and corroborated the feedback effect between the 2-year Treasuries, the unemployment rate and expected inflation, suggesting that these variables are good predictors of the long-term interest rate, which is aligned with the Fed's dual mandate. The empirical results here are consistent with the literature and bring practical insights for risk management and investment strategies, supporting investors to better model asymmetry and downside risk in portfolios and to manage the interest rate risk by understanding how different maturities respond to economic conditions.

Keywords: volatility, US treasury, APARCH, DCC-GARCH, asymmetric shocks, spillover

Procedia PDF Downloads 3
1416 Validation of the Arabic Version of the Positive and Negative Syndrome Scale (PANSS)

Authors: Arij Yehya, Suhaila Ghuloum, Abdlmoneim Abdulhakam, Azza Al-Mujalli, Mark Opler, Samer Hammoudeh, Yahya Hani, Sundus Mari, Reem Elsherbiny, Ziyad Mahfoud, Hassen Al-Amin

Abstract:

Introduction: The Positive and Negative Syndrome Scale (PANSS) is a valid instrument developed by Kay and colleagues6 to assess symptoms of patients with schizophrenia. It consists of 30 items that factor the symptoms into three subscales: positive, negative and general psychopathology. This scale has been translated and validated in several languages. Objective: This study aims to determine the validity and psychometric properties of the Arabic version of the PANSS. Methods: A standardized translation and cultural adaptation method was adopted. Patients diagnosed with schizophrenia (n=98), according to psychiatrist’s diagnosis based on DSM-IV criteria, were recruited from the Psychiatry Department at Rumailah Hospital, Qatar. A first rater confirmed the diagnosis using the Arabic version of Mini International Neuropsychiatric Interview (MINI 6). A second and independent rater-administered the Arabic version of PANSS. Also, a control group (n=101), with no history of psychiatric disorder was recruited from the family and friends of the patients and from primary health care centers in Qatar. Results: There were more males than females in our sample of patients with schizophrenia (68.9% and 31.6%, respectively). On the other hand, in the control group the number of females outweighed that of males (58.4% and 41.6% respectively). The scale had a good internal consistency with Cronbach’s alpha 0.91. There was a significant difference between the scores on the three subscales of the PANSS. Patients with schizophrenia scored significantly higher (p<.0001) than the control subjects on subscales for positive symptoms 20.01(SD=7.21) and 7.30(SD=1.38), negative symptoms 18.89(SD=8.88) and 7.37(SD=2.38) and general psychopathology 34.41 (SD=11.56) and 16.93 (SD=3.93), respectively. Factor analysis and ROC curve were carried out to further test the psychometrics of the scale. Conclusions: The Arabic version of PANSS is a reliable and valid tool to assess both positive and negative symptoms of patients with schizophrenia in a balanced manner. In addition to providing the Arab population with a standardized tool to monitor symptoms of schizophrenia, this version provides a gateway to compare the prevalence of positive and negative symptoms in the Arab world which can be compared to others done elsewhere.

Keywords: Arabic version, assessment, diagnosis, schizophrenia, validation

Procedia PDF Downloads 635
1415 Application of the Concept of Comonotonicity in Option Pricing

Authors: A. Chateauneuf, M. Mostoufi, D. Vyncke

Abstract:

Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems. A drawback of the method is its high computational cost, especially in a high-dimensional setting, such as estimating the Tail Value-at-Risk for large portfolios or pricing basket options and Asian options. For these types of problems, one can construct an upper bound in the convex order by replacing the copula by the comonotonic copula. This comonotonic upper bound can be computed very quickly, but it gives only a rough approximation. In this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation, by using the comonotonic approximation as a control variate. The CoMC is of broad applicability and numerical results show a remarkable speed improvement. We illustrate the method for estimating Tail Value-at-Risk and pricing basket options and Asian options when the logreturns follow a Black-Scholes model or a variance gamma model.

Keywords: control variate Monte Carlo, comonotonicity, option pricing, scientific computing

Procedia PDF Downloads 515
1414 Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology

Authors: Vipan Kumar Sohpal

Abstract:

Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values.

Keywords: crystal violet dye, CVD, castor leaf powder, CLP, response surface methodology, temperature, optimization

Procedia PDF Downloads 132
1413 Testing the Simplification Hypothesis in Constrained Language Use: An Entropy-Based Approach

Authors: Jiaxin Chen

Abstract:

Translations have been labeled as more simplified than non-translations, featuring less diversified and more frequent lexical items and simpler syntactic structures. Such simplified linguistic features have been identified in other bilingualism-influenced language varieties, including non-native and learner language use. Therefore, it has been proposed that translation could be studied within a broader framework of constrained language, and simplification is one of the universal features shared by constrained language varieties due to similar cognitive-physiological and social-interactive constraints. Yet contradicting findings have also been presented. To address this issue, this study intends to adopt Shannon’s entropy-based measures to quantify complexity in language use. Entropy measures the level of uncertainty or unpredictability in message content, and it has been adapted in linguistic studies to quantify linguistic variance, including morphological diversity and lexical richness. In this study, the complexity of lexical and syntactic choices will be captured by word-form entropy and pos-form entropy, and a comparison will be made between constrained and non-constrained language use to test the simplification hypothesis. The entropy-based method is employed because it captures both the frequency of linguistic choices and their evenness of distribution, which are unavailable when using traditional indices. Another advantage of the entropy-based measure is that it is reasonably stable across languages and thus allows for a reliable comparison among studies on different language pairs. In terms of the data for the present study, one established (CLOB) and two self-compiled corpora will be used to represent native written English and two constrained varieties (L2 written English and translated English), respectively. Each corpus consists of around 200,000 tokens. Genre (press) and text length (around 2,000 words per text) are comparable across corpora. More specifically, word-form entropy and pos-form entropy will be calculated as indicators of lexical and syntactical complexity, and ANOVA tests will be conducted to explore if there is any corpora effect. It is hypothesized that both L2 written English and translated English have lower entropy compared to non-constrained written English. The similarities and divergences between the two constrained varieties may provide indications of the constraints shared by and peculiar to each variety.

Keywords: constrained language use, entropy-based measures, lexical simplification, syntactical simplification

Procedia PDF Downloads 94
1412 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 319
1411 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans

Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn

Abstract:

Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.

Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor

Procedia PDF Downloads 221
1410 Performance Evaluation of Grid Connected Photovoltaic System

Authors: Abdulkadir Magaji

Abstract:

This study analyzes and compares the actual measured and simulated performance of a 3.2 kwP grid-connected photovoltaic system. The system is located at the Outdoor Facility of Government Day secondary School Katsina State, which lies approximately between coordinate of 12°15′N 7°30′E. The system consists of 14 Mono crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 340. The data presented in this study were measured in the year 2015, where the system supplied a total of 4628 kWh to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study shows 58.4% is higher than those reported elsewhere as compared in the study.

Keywords: performance, evaluation, grid connection, photovoltaic system

Procedia PDF Downloads 181
1409 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets

Authors: Abhishek Gandhi, Naresh Bhatnagar

Abstract:

In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.

Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams

Procedia PDF Downloads 448
1408 Optimal Scheduling of Trains in Complex National Scale Railway Networks

Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna

Abstract:

Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.

Keywords: mixed integer programming, optimization, railway network, train scheduling

Procedia PDF Downloads 158
1407 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 51