Search results for: school dropout prediction
3435 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data
Authors: Natalia Feruleva
Abstract:
The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data
Procedia PDF Downloads 1193434 Comparison of the Effect of Semi-Rigid Ankle Bracing Performance among Ankle Injured Versus Non-Injured Adolescent Female Hockey Players
Authors: T. J. Ellapen, N. Acampora, S. Dawson, J. Arling, C. Van Niekerk, H. J. Van Heerden
Abstract:
Objectives: To determine the comparative proprioceptive performance of injured versus non-injured adolescent female hockey players when wearing an ankle brace. Methods: Data were collected from 100 high school players who belonged to the Highway Secondary School KZN Hockey league via voluntary parental informed consent and player assent. Players completed an injury questionnaire probing the prevalence and nature of hockey injuries (March-August 2013). Subsequently players completed a Biodex proprioceptive test with and without an ankle brace. Probability was set at p≤ 0.05. Results: Twenty-two players sustained ankle injuries within the six months (p<0.001). Injured players performed similarly without bracing Right Anterior Posterior Index (RAPI): 2.8±0.9; Right Medial Lateral Index (RMLI): 1.9±0.7; Left Anterior Posterior Index (LAPI) LAPI: 2.7; Left Medial Lateral Index (LMLI): 1.7±0.6) as compared to bracing (RAPI: 2.7±1.4; RMLI: 1.8±0.6; LAPI: 2.6±1.0; LMLI: 1.5±0.6) (p>0.05). However, bracing (RAPI: 2.2±0.8; RMLI: 1.5±0.5; LAPI: 2.4±0.9; MLI: 1.5±0.5) improved the ankle stability of the non-injured group as compared to their unbraced performance (RAPI: 2.5±1.0; RMLI: 1.8±0.8; LAPI: 2.8±1.1; LMLI: 1.8±0.6) (p<0.05). Conclusion: Ankle bracing did not enhance the stability of injured ankles. However ankle bracing has an ergogenic effect enhancing the stability of healthy ankles.Keywords: hockey, proprioception, ankle, bracing
Procedia PDF Downloads 3493433 Learners’ Characteristics as Correlates of Effective English Language Teaching in English as a Second Language Classroom
Authors: Jimoh Olumide Yusuf
Abstract:
Various factors have continued to bedevil the effective teaching and learning of English Language in Nigeria and prominent among these factors are learners’ characteristics. Unfortunately, these particular factors seem to have recorded paucity of research efforts by scholars and the problem of lack of proficiency in the target language continues to linger. This study therefore investigates the relationship between specific learners’ characteristics and effective teaching of English as a Second Language (ESL) in senior secondary schools in Nigeria. To this end, Self-Determination, and Integrative Motivation Theories were applied to investigate motivation, language learning, learners’ characteristics and its relationship to language proficiency. A survey of 500 students and 100 English Language teachers across 20 schools was conducted. Descriptive statistics was used to analyze the data and findings revealed that; specific learners’ characteristics such as learners’ age, learning style and motivation significantly determine the performance of students in English Language. Specifically, students with appropriate school age, visual learning style and intrinsic motivation, demonstrated English Language proficiency; as they performed better than students with extrinsic motivation, audio and kinaesthetic learning styles. Moreover, teachers related factors such as teaching experience; teaching strategies and teachers’ extrinsic motivation also emerged as essential correlates of effective language teaching. The findings conclude that learning characteristics are significant factors that should be considered by the teachers and education planners for adequate, sequential and effective implementation of the ESL curriculum in Nigeria.Keywords: senior secondary school, English as a second language, intrinsic motivation, Kinaesthetic learning style
Procedia PDF Downloads 193432 Thermal Comfort Study of School Buildings in South Minahasa Regency Case Study: SMA Negeri 1 Amurang, Indonesia
Authors: Virgino Stephano Moniaga
Abstract:
Thermal comfort inside a building can affect students in their learning process. The learning process of students can be improved if the condition of the classrooms is comfortable. This study will be conducted in SMA Negeri 1 Amurang which is a senior high school building located in South Minahasa Regency. Based on preliminary survey, generally, students were not satisfied with the existing level of comfort, which subsequently affected the teaching and learning process in the classroom. The purpose of this study is to analyze the comfort level of classrooms occupants and recommend building design solutions that can improve the thermal comfort of classrooms. In this study, three classrooms will be selected for thermal comfort measurements. The thermal comfort measurements will be taken in naturally ventilated classrooms. The measured data comprise of personal data (clothing and students activity), air humidity, air temperature, mean radiant temperature and air flow velocity. Simultaneously, the students will be asked to fill out a questionnaire that asked about the level of comfort that was felt at the time. The results of field measurements and questionnaires will be analyzed based on the PMV and PPD indices. The results of the analysis will decide whether the classrooms are comfortable or not. This study can be continued to obtain a more optimal design solution to improve the thermal comfort of the classrooms. The expected results from this study can improve the quality of teaching and learning process between teachers and students which can further assist the government efforts to improve the quality of national education.Keywords: classrooms, PMV, PPD, thermal comfort
Procedia PDF Downloads 3163431 Social Imagination and History Teaching: Critical Thinking's Possibilities in the Australian Curriculum
Authors: Howard Prosser
Abstract:
This paper examines how critical thinking is framed, especially for primary-school students, in the recently established Australian Curriculum: History. Critical thinking is one of the curriculum’s 'general capabilities.' History provides numerous opportunities for critical thinking’s application in everyday life. The so-called 'history wars' that took place just prior to the curriculum’s introduction in 2014 sought to bring to light the limits of a singular historical narrative and reveal that which had been repressed. Consequently, the Australian history curriculum reflects this shifting mindset. Teachers are presented with opportunities to treat history in the classroom as a repository of social possibility, especially related to democratic potential, beyond hackneyed and jingoistic tales of Australian nationhood. Yet such opportunities are not explicit within the document and are up against pre-existing pedagogic practices. Drawing on political thinker Cornelius Castoriadis’s rendering of the 'social-historical' and 'paidea,' as well as his mobilisation of psychoanalysis, the study outlines how the curriculum’s critical-thinking component opens up possibilities for students and teachers to revise assumptions about how history is understood. This ontological shift is ultimately creative: the teachers’ imaginations connect the students’ imaginations, and vice versa, to the analysis that is at the heart of historical thinking. The implications of this social imagination add to the current discussions about historical consciousness among scholars like Peter Seixas. But, importantly, it has practical application in the primary-school classroom where history becomes creative acts, like play, that is indeterminate and social rather than fixed and individual.Keywords: Australia, Castoriadis, critical thinking, history, imagination
Procedia PDF Downloads 3053430 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature
Authors: Kibrom Hadush
Abstract:
Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature
Procedia PDF Downloads 1413429 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates
Authors: Selvam M., Vadthya Poornachandar, Surender Singh
Abstract:
These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design
Procedia PDF Downloads 1583428 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1063427 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1493426 Effectiveness of Peer Reproductive Health Education Program in Improving Knowledge, Attitude, and Use Health Service of High School Adolescent Girls in Eritrea in 2014
Authors: Ghidey Ghebreyohanes, Eltahir Awad Gasim Khalil, Zemenfes Tsighe, Faiza Ali
Abstract:
Background: reproductive health (RH) is a state of physical, mental and social well-being in all matters relating to the reproductive system at all stages of life. In East Africa including Eritrea, adolescents comprise more than a quarter of the population. The region holds the highest rates of sexually transmitted diseases, HIV, unwanted pregnancy and unsafe abortion with its complications. Young girls carry the highest burden of reproductive health problems due to their risk taking behavior, lack of knowledge, peer pressure, physiologic immaturity and low socioeconomic status. Design: this was a Community-based, randomized, case-controlled and pre-test-post-test intervention study. Setting: Zoba Debub was randomly selected out of the six zobas in Eritrea. The four high schools out of the 26 in Zoba Debub were randomly selected as study target schools. Over three quarter of the people live on farming. The target population was female students attending grade nine with majority of these girls live in the distant villages and walk to school. The study participants were randomly selected (n=165) from each school. Furthermore, the 1 intervention and 3 controls for the study arms were assigned randomly. Objectives: this study aimed to assess the effectiveness of peer reproductive health education in improving knowledge, attitude, and health service use of high school adolescent girls in Eritrea Methods: the protocol was reviewed and approved by the Scientific and Ethics Committees of Faculty of Nursing Sciences, University of Khartoum. Data was collected using pre-designed and pretested questionnaire emphasizing on reproductive health knowledge, attitude and practice. Sample size was calculated using proportion formula (α 0.01; power of 95%). Measures used were scores and proportions. Descriptive and inferential statistics, t-test and chi square at (α .01), 99% confidence interval were used to compare changes of pre and post-intervention scores using SPSS soft ware. Seventeen students were selected for peer educators by the school principals and other teachers based on inclusion criteria that include: good academic performance and acceptable behavior. One peer educator educated one group composed of 8-10 students for two months. One faculty member was selected to supervise peer educators. The principal investigator conducted the training of trainers and provided supervision and discussion to peer educators every two weeks until the end of intervention. Results: following informed consent, 627 students [164 in intervention and 463 in the control group] with a ratio of 1 to 3, were enrolled in the study. The mean age for the total study population was 15.4±1.0 years. The intervention group mean age was 15.3±1.0 year; while the control group had a mean age of 15.4±1.0. The mean ages for the study arms were similar (p= 0.4). The majority (96 %) of the study participants are from Tigrigna ethnic group. Reproductive knowledge scores which was calculated out of a total 61 grade points: intervention group (pretest 6.7 %, post-test 33.6 %; p= 0.0001); control group (pretest 7.3 %, posttest 7.3 %, p= 0.92). Proportion difference in attitude calculated out of 100%: intervention group (pretest 42.3 % post test 54.7% p= 0.001); controls group (pretest 45%, post test 44.8 p= 0.7). Proportion difference in Practice calculated out of 100 %: intervention group (pretest 15.4%, post test 80.4 % p= 0.0001); control group (pretest 16.8%, posttest 16.9 % p= 0.8). Mothers were quoted as major (> 90 %) source of reproductive health information. All focus group discussants and most of survey participants agreed on the urgent need of reproductive health information and services for adolescent girls. Conclusion: reproductive health knowledge and use of facilities is poor among adolescent girls in sub-urban Eretria. School-based peer reproductive health education is effective and is the best strategy to improve reproductive health knowledge and attitudes.Keywords: reproductive health, adolescent girls, eretria, health education
Procedia PDF Downloads 3623425 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7273424 An Analysis of Preliminary Intervention for Developing to Promote Resiliency of Children Whose Parents Suffer Mental Illness
Authors: Sookbin Im, Myounglyun Heo
Abstract:
This study aims at analyzing composition and effects of the preliminary intervention to promote resiliency of children whose parents suffer mental illness, and considerations according to the program, and developing the resiliency promotion program for children of psychiatric patients. For participants of preliminary intervention, they were recruited through a community mental health and social welfare center in a city, and there were 10 children (eight girls and two boys) who are from second to five graders in elementary school, and whose parents suffer schizophrenia, depression, or alcoholism, etc. The program was conducted in the seminar room of the community mental illness and social welfare center from October to December 2015 and from July to September 2016. The elements of resiliency were figured out by reviewing the literature. And therapeutic activities to promote resiliency was composed, and total twice, 8 sessions(two hours, once a week) were applied. Each session consisted of playgroup activities, art activities, and role-playing with feedback for achieving goals to promote self-awareness, self-efficacy, positive outlook, ability to solve problems, empathy for others, peer group acceptance, having goals and aspirations, and assertiveness. In addition, auxiliary managers as many as children played a role as mentor and role model, and children's behaviors were collected by participatory observation. As a result of the study, four children quit the program because the schedules of their own school programs were overlapped with it. Therefore, six children completed the program. Children who completed it became active, positive, decreased compulsive actions, and increased self-expressions. The participants reacted the 8-session program is too short and regretted about it. However, recruiting the participants were difficult, and too distracting children caused negative influences in the group activities. Based on the results, the program was developed as follows: The program would consist of total 11 sessions, and the first eight sessions would be made of plays, art activities, role-plays, and presentations for promoting self-understanding, improving positiveness, providing meaning for experiences, emotional control, and interpersonal relations. In order to balance various contents, methods such as structuring environments, storytelling, emotional coaching, and group feedback would be applied, and the ninth to eleventh sessions would be booster sessions consisting of optional activities for children. This program is for children who attend school with active linguistic communications and interactions with peers. Especially, considering that effective development starts at around 10 years old, it would be for children who are third and fourth graders in elementary school. These result showed that this program was useful for improving the key elements of resiliency such as positive thinking or impulse control. It is suggested the necessary of resiliency promoting program model and practical guidance with comprehensive measuring methods(narratives, drawing, self-reported questionnaire, behavioral observation). Also, it is necessary to make a training program for the coaches or leaders to operate this program to spread out for child health.Keywords: children, mental, parents, resilience
Procedia PDF Downloads 1303423 Teachers’ Intention to Leave: Educational Policies as External Stress Factor
Authors: A. Myrzabekova, D. Nurmukhamed, K. Nurumov, A. Zhulbarissova
Abstract:
It is widely believed that stress can affect teachers’ intention to change the workplace. While existing research primarily focuses on the intrinsic sources of stress stemming from the school climate, the current attempt analyzes educational policies as one of the determinants of teacher’s intention to leave schools. In this respect, Kazakhstan presents a unique case since the country endorsed several educational policies which directly impacted teaching and administrative practices within schools. Using Teaching and Learning International Survey 2018 (TALIS) data with the country specific questionnaire, we construct a statistical measure of stress caused by the implementation of educational policies and test its impact on teacher’s intention to leave through the logistic regression. In addition, we control for sociodemographic, professional, and students related covariates while considering the intrinsic dimension of stress stemming from the school climate. Overall, our results suggest that stress caused by the educational policies has a statistically significant positive effect on teachers’ intentions to transfer between schools. Both policy makers and educational scholars could find these results beneficial. For the former careful planning and addressing the negative effects of the educational policies is critical for the sustainability of the educational process. For the latter, accounting for exogenous sources of stress can lead to a more complete understanding of why teachers decide to change their schools.Keywords: educational policies, Kazakhstani teachers, logistic regression factor analysis, sustainability education TALIS, teacher turnover intention, work stress
Procedia PDF Downloads 1093422 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 923421 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 3143420 Prevalence of Anxiety and Depression: A Descriptive Cross-Sectional Study among Individuals with Substance-Related Disorders in Argentina
Authors: Badino Manuel, Farias María Alejandra
Abstract:
Anxiety and depression are considered the main mental health issues found in people with substance-related disorders. Furthermore, substance-related disorders, anxiety-related and depressive disorders are among the leading causes of disability and are associated with increased mortality. The co-occurrence of substance-related disorders and these mental health conditions affect the accuracy in diagnosis, treatment plan, and recovery process. The aim is to describe the prevalence of anxiety and depression in patients with substance-related disorders in a mental health service in Córdoba, Argentina. A descriptive cross-sectional study was conducted among patients with substance-related disorders (N=305). Anxiety and depression were assessed using the Patient Health Questionnaire-4 (PHQ-4) during the period from December 2021 to March 2022. For a total of 305 participants, 71,8% were male, 25,6% female and 2,6% non-binary. As regards marital status, 51,5% were single, 21,6% as a couple, 5,9% married, 15,4% separated and 5,6% divorced. In relation to education status, 26,2% finished university, 56,1% high school, 16,4% only primary school and 1,3% no formal schooling. Regarding age, 10,8% were young, 84,3% were adults, and 4,9% were elderly. In-person treatment represented 64,6% of service users, and 35,4% were conducted through teleconsultation. 15,7% of service users scored 3 or higher for anxiety, and 32,1% scored 3 or higher for depression in the PHQ-4. 13,1% obtained a score of 3 or higher for both anxiety and depression. It is recommended to identify anxiety and depression among patients with substance-related disorders to improve the quality of diagnosis, treatment, and recovery. It is suggested to apply PHQ-4, PHQ-9 within the protocol of care for these patients.Keywords: addiction, anxiety, depression, mental health
Procedia PDF Downloads 1023419 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System
Authors: Larry Audet
Abstract:
Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.Keywords: creativity, leadership, KEYS survey, teaching, work climate
Procedia PDF Downloads 1663418 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 1553417 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 4043416 Analyzing the Factors That Influence Students' Professional Identity Using Hierarchical Regression Analysis to Ease Higher Education Transition
Authors: Alba Barbara-i-Molinero, Rosalia Cascon Pereira, Ana Beatriz Hernandez Lara
Abstract:
Our general motivation in undertaking this study is to propose alternative measures to lighten students experienced tensions during the transitions from high school to higher education based on the concept of professional identity strength. In order to do so, we measured the influence that three different factors external motivational conditionals, educational experience conditionals and personal motivation conditionals exerted over students’ professional identity strength and proposed the measures considering the obtained results. By using hierarchical regression analysis we addressed this issue, across disciplines and bachelor degrees, allowing us to gain also deeper insight into first-year university students PID. Our findings suggest that students’ from the different disciplines are influenced by personal motivational conditionals; while students from sciences are also influenced by external motivational conditionals. Based on the obtained results we propose three different alternative educational and recruitment strategies which aim to increase students’ professional identity strength and reduce the tensions generated during high school-university transitions. From this study theoretical contributions regarding the differences in the influence of these factors on students from different bachelor degrees arise; and practical implications for universities, derived from the proposed strategies.Keywords: professional identity, transitions, higher education, strategies
Procedia PDF Downloads 1813415 Importance of Women Education: Mother To Be Education in Order to Brighten Future Generation’s Foredoom
Authors: Ummi Sholihah Pertiwi Abidin, Eva Fadhilah
Abstract:
Social changes are more and more growing and having many different forms as the time passed and thought methods in the society. One of many forms of that social changes is the emancipation of women that is flourishing by the inception of gender equality perception between men and women in all aspects including education. It’s not anymore found the distinction between genders in learning and the education achieving right at this globalized era. But, it is still many perceptions which are against that equality of education achieving right, either come from the women’s selves or many external factors. They assumed that they are going to be a mother in the future, and a wife, someone with responsible for taking care of the household and everything inside, while the husband is the one who has the responsible for looking for the living. So comes from this kind of assumption, the perception against the education equality between genders, which means there is no need for them –women- to achieve the high education because they will still end up as housewives. Except those working or career women that need high education to support their works. These women are not aware that even a mother needs the high and capable education. Because, as the 'mother to be,' they surely need broad knowledge from the education to educate their children in the future. It is such a big fault to say the kind of thing, 'It is no matter that I am not educated, in case I’m just a housewife. The important thing is my children get a great education'. Unfortunately, it is still often found, saying 'A housewife job is not a big deal to do with high education.' This qualitative method paper raises a theme about the importance of education for women, no matter what will they be in the future. Because however, and whatever is the woman’s career outside the house, or even not working outside, she’s still a mother for her children, and 'educational provision' is a great need. And so forth, this educational provision is a big deal to do with future generation’s foredoom, regarding the first source of children’s knowledge and the first school for them is their mother.Keywords: women education, mother to be, educational provision, first school, future generation’s foredoom
Procedia PDF Downloads 2683414 Trauma Scores and Outcome Prediction After Chest Trauma
Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag
Abstract:
Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries
Procedia PDF Downloads 4213413 Individual Differences and Elements of Inclusion: From the Perspective of Children with Special Needs
Authors: Aleksandra Ristic
Abstract:
The world changes and becomes a global village. Globalization of the last decade has caused changes and developments in the economy and technology, which also affected communication resources and brought diversities of cultural differences, values, relationships, religions, sexual identities, economic backgrounds, mindsets, perspectives, talents, and much more. Diversity without inclusion is marginalization and exclusion. Diversity gives a competitive advantage, enriches, and gives choice and power for decision-making and solutions. On a daily basis, in the role of special educators, we facilitate children’s observations of the world by improving diversity and inclusion in the school system. The subject of the research is children with special needs, expressing and noticing the differences and similarities in the world, while this is the key to their development. The subject of the research is also six pictures, which are similar and unique and represent scenes from everyone’s life. In the methodology, we conducted a theoretical review of the importance of difference, values, equality, inclusion, and exclusion and the quantitative research approach to analyze various factors by children with special needs. We used tools such as self /peer–reflection for them to think and to speak up through their own experiences of the words: difference, values, equality, inclusion, and exclusion. After that, children with special needs observed the photos and attributed those terms to them. By interpreting the results, we deepened our understanding of the power of the child's understanding of individual differences and elements of inclusion, which is based on the experiences at home, in the school environment, and in life. The children, as individuals or establishing networking groups, define those terms and, with the solutions, contribute to making the world more included and accepted.Keywords: diversity, equality, exclusion, inclusion, special needs, values
Procedia PDF Downloads 943412 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5783411 The Use of Online Multimedia Platforms to Deliver a Regional Medical Schools Finals Revision Course During the COVID-19 Pandemic
Authors: Matthew Edmunds, Andrew Hunter, Clare Littlewood, Wisha Gul, Gabriel Heppenstall-Harris, Thomas Humphries
Abstract:
Background: Revision courses for medical students undertaking their final examinations are commonplace throughout the UK. Traditionally these take the form of a series of lectures over multiple weeks or a single day of intensive lectures. The COVID-19 pandemic, however, has required medical educators to create new teaching formats to ensure they adhere to social distancing requirements. It has provided an unexpected opportunity to accelerate the development of students proficiency in the use of ‘technology-enabled communication platforms’, as mandated in the 2018 GMC Outcomes of Graduates. Recent advances in technology have made distance learning possible, whilst also providing novel and more engaging learning opportunities for students. Foundation Year 2 doctors at Aintree University Hospital developed an online series of videos to help prepare medical students in the North West and byond for their final medical school examinations. Method: Eight hour-long videos covering the key topics in medicine and surgery were posted on the Peer Learning Liverpool Youtube channel. These videos were created using new technology such as the screen and audio recording platform, Loom. Each video compromised at least 20 single best answer (SBA) questions, in keeping with the format in most medical school finals. Explanations of the answers were provided, and additional important material was covered. Students were able to ask questions by commenting on the videos, with the authors replying as soon as possible. Feedback was collated using an online Google form. Results: An average of 327 people viewed each video, with 113 students filling in the feedback form. 65.5% of respondents were within one month of their final medical school examinations. The average rating for how well prepared the students felt for their finals was 6.21/10 prior to the course and 8.01/10 after the course. A paired t-test demonstrated a mean increase of 1.80 (95% CI 1.66-1.93). Overall, 98.2% said the online format worked well or very well, and 99.1% would recommend the course to a peer. Conclusions: Based on the feedback received, the online revision course was successful both in terms of preparing students for their final examinations, and with regards to how well the online format worked. Free-text qualitative feedback highlighted advantages such as; students could learn at their own pace, revisit key concepts important to them, and practice exam style questions via the case-based format. Limitations identified included inconsistent audiovisual quality, and requests for a live online Q&A session following the conclusion of the course. This course will be relaunched later in the year with increased opportunities for students to access live feedback. The success of this online course has shown the roll that technology can play in medical education. As well as providing novel teaching modes, online learning allows students to access resources that otherwise would not be available locally, and ensure that they do not miss out on teaching that was previously provided face to face, in the current climate of social distancing.Keywords: COVID-19 pandemic, Medical School, Online learning, Revision course
Procedia PDF Downloads 1533410 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran
Authors: Fatemeh Faramarzi, Hosein Mahjoob
Abstract:
Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6
Procedia PDF Downloads 3133409 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 1123408 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2093407 Healing to Be a Man or Living in the Truth: Comparison on the Concept of Healing between Foucault and Chan
Authors: Jing Li Hong
Abstract:
This study compared Michel Foucault’s thoughts and the Chan School’s thoughts on the idea of healing. Healing is not an unfamiliar idea in Buddhist thoughts. The paired concepts of illness and medicine are often used as a metaphor to describe the relationship between people and truth. Foucault investigated the topic of care of self in his later studies and dedicated a large portion of his final semester course at the Collège de France in 1984 to discuss the meaning of Socrates’s offering of a sacrifice to the god of medicine in Phaedo. Foucault indicated a key preposition in ancient philosophy, namely healing. His idea of healing also addressed the relationship between subject and truth. From this relationship, Foucault unraveled his novel study on truth, namely the technologies of the self, with an emphasis on the care of self. Whereas numerous philosophers ask obvious questions such as ‘what is truth’ and ‘how to learn about truth,’ Foucault proposed distinct questions such as ‘what is our relationship to truth’ and ‘how does our relationship with truth turn us into who we are now?’ Thus, healing in both Buddhist and Foucault’s thoughts is related to the relationship between being and truth. This study first reviews Buddhist and Foucault’s ideas of healing to explicate what is illness and what is medicine. Because Buddhist thoughts cover an extensive scope, this study focuses on the thoughts of the Chan School. The second part is a discussion on medicine (treatment), specifically what is used as the medicine for the illness in both thoughts, and how can this medicine treat the illness. This part includes a description and comparison of the use of concepts of negation in these two thought groups. Finally, the subjects that practice the technologies of the self in both groups are compared from the idea of care of self; in other words, the differences between the subjects formed by the different relationships between being and truth are analyzed.Keywords: Chan, heterogeneous, living style, language of paradox, Michel Foucault, negation, parrhesia, the care of self
Procedia PDF Downloads 1813406 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 73