Search results for: features comparison
6677 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance
Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang
Abstract:
A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.Keywords: beta function, compressor map, interpolation error, map optimization tool
Procedia PDF Downloads 2696676 Developed Text-Independent Speaker Verification System
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis
Procedia PDF Downloads 596675 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Zineb Nougrara
Abstract:
In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: satellite image, road network, nodes, image analysis and processing
Procedia PDF Downloads 2746674 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)
Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha
Abstract:
Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol
Procedia PDF Downloads 5816673 Changes in Chromatographically Assessed Fatty Acid Profile during Technology of Dairy Products
Authors: Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Mindaugas Malakauskas, Loreta Serniene
Abstract:
Dairy product manufacturers constantly are looking for new markets for their production. And in most cases, the problem of product compliance with the composition requirements of foreign products is highlighted. This is especially true of the composition of milk fat in dairy products. It is well known that there are many factors such as feeding ratio, season, cow breed, stage of lactation that affect the fatty acid composition in milk. However, there is less evidence on the impact of the technological process on the composition of fatty acids in raw milk and products made from it. In this study the influence of the technological process on fat composition in 82% fat butter, 15% fat curd, 3.6% fat yogurt and 2.5% fat UHT milk was determined. The samples were collected at each stage of production, starting with raw milk and ending with the final product in the Lithuanian milk-processing company. Fatty acids methyl esters were quantified using a GC (Clarus 680, Perkin Elmer) equipped with flame ionization detector (FID) and a capillary column SP-2560, 100 m x 0.25 mm id x 0.20 µm. Fatty acids peaks were identified using Supelco® 37 Component FAME Mix. The concentration of each fatty acid was expressed in percent of the total fatty acid amount. In the case of UHT milk production, it was compared raw milk, cream, milk mixture, and UHT milk but significant differences were not estimated between these stages. Analyzing stages of the yogurt production (raw milk, pasteurized milk, and milk with a starter culture and yogurt), no significant changes were detected between stages as well. A slight difference was observed with C4:0 - a percentage of this fatty acid was less (p=0.053) in the final stage than in milk with the starter culture. During butter production, the composition of fatty acids in raw cream, buttermilk, and butter did not change significantly. Only C14:0 decreased in the butter then compared to buttermilk. The curd fatty acid analysis showed the increase of C6:0, C8:0, C10:0, C11:0, C12:0 C14:0 and C17:0 at the final stage when compared to raw milk, cream, milk mixture, and whey. Meantime the increase of C18:1n9c (in comparison with milk mixture and curd) and C18:2n6c (in comparison with raw milk, milk mixture, and curd) was estimated in cream. The results of this study suggest that the technological process did not affect the composition of fatty acids in UHT milk, yogurt, butter, and curd but had the impact on the concentration of individual fatty acids. In general, all of the fatty acids from the raw milk were converted into the final product, only some of them slightly changed the concentration. Therefore, in order to ensure an appropriate composition of certain fatty acids in the final product, producers must carefully choose the raw milk. Acknowledgment: This research was funded by Lithuanian Ministry of Agriculture (No. MT-17-13).Keywords: dairy products, fat composition, fatty acids, technological process
Procedia PDF Downloads 1736672 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 1586671 Network Mobility Support in Content-Centric Internet
Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee
Abstract:
In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.Keywords: NEMO, CCN, mobility, handover latency
Procedia PDF Downloads 4706670 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle
Authors: Vaclav Sadilek, Miroslav Vorechovsky
Abstract:
The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle
Procedia PDF Downloads 4056669 A Computational Model of the Thermal Grill Illusion: Simulating the Perceived Pain Using Neuronal Activity in Pain-Sensitive Nerve Fibers
Authors: Subhankar Karmakar, Madhan Kumar Vasudevan, Manivannan Muniyandi
Abstract:
Thermal Grill Illusion (TGI) elicits a strong and often painful sensation of burn when interlacing warm and cold stimuli that are individually non-painful, excites thermoreceptors beneath the skin. Among several theories of TGI, the “disinhibition” theory is the most widely accepted in the literature. According to this theory, TGI is the result of the disinhibition or unmasking of the pain-sensitive HPC (Heat-Pinch-Cold) nerve fibers due to the inhibition of cold-sensitive nerve fibers that are responsible for masking HPC nerve fibers. Although researchers focused on understanding TGI throughexperiments and models, none of them investigated the prediction of TGI pain intensity through a computational model. Furthermore, the comparison of psychophysically perceived TGI intensity with neurophysiological models has not yet been studied. The prediction of pain intensity through a computational model of TGI can help inoptimizing thermal displays and understanding pathological conditions related to temperature perception. The current studyfocuses on developing a computational model to predict the intensity of TGI pain and experimentally observe the perceived TGI pain. The computational model is developed based on the disinhibition theory and by utilizing the existing popular models of warm and cold receptors in the skin. The model aims to predict the neuronal activity of the HPC nerve fibers. With a temperature-controlled thermal grill setup, fifteen participants (ten males and five females) were presented with five temperature differences between warm and cold grills (each repeated three times). All the participants rated the perceived TGI pain sensation on a scale of one to ten. For the range of temperature differences, the experimentally observed perceived intensity of TGI is compared with the neuronal activity of pain-sensitive HPC nerve fibers. The simulation results show a monotonically increasing relationship between the temperature differences and the neuronal activity of the HPC nerve fibers. Moreover, a similar monotonically increasing relationship is experimentally observed between temperature differences and the perceived TGI intensity. This shows the potential comparison of TGI pain intensity observed through the experimental study with the neuronal activity predicted through the model. The proposed model intends to bridge the theoretical understanding of the TGI and the experimental results obtained through psychophysics. Further studies in pain perception are needed to develop a more accurate version of the current model.Keywords: thermal grill Illusion, computational modelling, simulation, psychophysics, haptics
Procedia PDF Downloads 1736668 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 2656667 Gas Sensor Based On a One-Dimensional Nano-Grating Au/ Co/ Au/ TiO2 Magneto-Plasmonic Structure
Authors: S. M. Hamidi, M. Afsharnia
Abstract:
Gas sensors based on magneto-plasmonic (MP) structures have attracted much attention due to the high signal to noise ratio in these type of sensors. In these sensors, both the plasmonic and the MO properties of the resulting MP structure become interrelated because the surface Plasmon resonance (SPR) of the metallic medium. This interconnection can be modified the sensor responses and enhanced the signal to noise ratio. So far the sensor features of multilayered structures made of noble and ferromagnetic metals as Au/Co/Au MP multilayer with TiO2 sensor layer have been extensively studied, but their SPR assisted sensor response need to the krestchmann configuration. Here, we present a systematic study on the new MP structure based on one-dimensional nano-grating Au/ Co/ Au/ TiO2 multilayer to utilize as an inexpensive and easy to use gas sensor.Keywords: Magneto-plasmonic structures, Gas sensor, nano-garting
Procedia PDF Downloads 4476666 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1496665 Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation
Authors: Feng Guo
Abstract:
Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders.Keywords: human brain organoids, microfluidics, organ-on-a-chip, neuroinflammation
Procedia PDF Downloads 2036664 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites
Authors: Priyankar P. Deka, Sutanu Samanta
Abstract:
This paper describes the development of new class of epoxy based hybrid composites reinforced with jute and filled with rice husk flour. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylene tetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.Keywords: jute, mechanical characterization, natural fiber, rice husk
Procedia PDF Downloads 2856663 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies
Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan
Abstract:
Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact
Procedia PDF Downloads 5256662 Automated Recognition of Still’s Murmur in Children
Authors: Sukryool Kang, James McConnaughey, Robin Doroshow, Raj Shekhar
Abstract:
Still’s murmur, a vibratory heart murmur, is the most common normal innocent murmur of childhood. Many children with this murmur are unnecessarily referred for cardiology consultation and testing, which exacts a high cost financially and emotionally on the patients and their parents. Pediatricians to date are not successful at distinguishing Still’s murmur from murmurs of true heart disease. In this paper, we present a new algorithmic approach to distinguish Still’s murmur from pathological murmurs in children. We propose two distinct features, spectral width and signal power, which describe the sharpness of the spectrum and the signal intensity of the murmur, respectively. Seventy pediatric heart sound recordings of 41 Still’s and 29 pathological murmurs were used to develop and evaluate our algorithm that achieved a true positive rate of 97% and false positive rate of 0%. This approach would meet clinical standards in recognizing Still’s murmur.Keywords: AR modeling, auscultation, heart murmurs, Still's murmur
Procedia PDF Downloads 3706661 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier
Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat
Abstract:
Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier
Procedia PDF Downloads 3526660 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow
Authors: Alex Fedoseyev
Abstract:
This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow
Procedia PDF Downloads 616659 Analysis of Autoantibodies to the S-100 Protein, NMDA, and Dopamine Receptors in Children with Type 1 Diabetes Mellitus
Authors: Yuri V. Bykov, V. A. Baturin
Abstract:
Aim of the study: The aim of the study was to perform a comparative analysis of the levels of autoantibodies (AAB) to the S-100 protein as well as to the dopamine and NMDA receptors in children with type 1 diabetes mellitus (DM) in therapeutic remission. Materials and methods: Blood serum obtained from 42 children ages 4 to 17 years (20 boys and 22 girls) was analyzed. Twenty-one of these children had a diagnosis of type 1 DM and were in therapeutic remission (study group). The mean duration of disease in children with type 1 DM was 9.6±0.36 years. Children without DM were included in a group of "apparently healthy children" (21 children, comparison group). AAB to the S-100 protein, the dopamine, and NMDA receptors were measured by ELISA. The normal range of IgG AAB was specified as up to 10 µg/mL. In order to compare the central parameters of the groups, the following parametric and non-parametric methods were used: Student's t-test or Mann-Whitney U test. The level of significance for inter-group comparisons was set at p<0.05. Results: The mean levels of AAB to the S-100B protein were significantly higher (p=0.0045) in children with DM (16.84±1.54 µg/mL) when compared with "apparently healthy children" (2.09±0.05 µg/mL). The detected elevated levels of AAB to NMDA receptors may indicate that in children with type 1 DM, there is a change in the activity of the glutamatergic system, which in its turn suggests the presence of excitotoxicity. The mean levels of AAB to dopamine receptors were higher (p=0.0082) in patients comprising the study group than in the children of the comparison group (40.47±2.31 µg/mL and 3.91±0.09 µg/mL). The detected elevated levels of AAB to dopamine receptors suggest an altered activity of the dopaminergic system in children with DM. This can also be viewed as indirect evidence of altered activity of the brain's glutamatergic system. The mean levels of AAB to NMDA receptors were higher in patients with type 1 DM compared with the "apparently healthy children," at 13.16±2.07 µg/mL and 1.304±0.05 µg/mL, respectively (p=0.0021). The elevated mean levels of AAB to the S-100B protein may indicate damage to brain tissue in children with type 1 DM. A difference was also detected between the mean values of the measured AABs, and this difference depended on the duration of the disease: mean AAB values were significantly higher in patients whose disease had lasted more than five years. Conclusions: The elevated mean levels of AAB to the S-100B protein may indicate damage to brain tissue in the setting of excitotoxicity in children with type 1 DM. The discovered elevation of the levels of AAB to NMDA and dopamine receptors may indicate the activation of the glutamatergic and dopaminergic systems. The observed abnormalities indicate the presence of central nervous system damage in children with type 1 DM, with a tendency towards the elevation of the levels of the studied AABs with disease progression.Keywords: autoantibodies, brain damage, children, diabetes mellitus
Procedia PDF Downloads 966658 Magnesium Alloys for Biomedical Applications Processed by Severe Plastic Deformation
Authors: Mariana P. Medeiros, Amanda P. Carvallo, Augusta Isaac, Milos Janecek, Peter Minarik, Mayerling Martinez Celis, Roberto. R. Figueiredo
Abstract:
The effect of high pressure torsion processing on mechanical properties and corrosion behavior of pure magnesium and Mg-Zn, Mg-Zn-Ca, Mg-Li-Y, and Mg-Y-RE alloys is investigated. Micro-tomography and SEM characterization are used to estimate corrosion rate and evaluate non-uniform corrosion features. The results show the severe plastic deformation processing improves the strength of all magnesium alloys, but deformation localization can take place in the Mg-Zn-Ca and Mg-Y-RE alloys. The occurrence of deformation localization is associated with low strain rate sensitivity in these alloys and with severe corrosion localization. Pure magnesium and Mg-Zn and Mg-Li-Y alloys display good corrosion resistance with low corrosion rate and maintained integrity after 28 days of immersion in Hank`s solution.Keywords: magnesium alloys, severe plastic deformation, corrosion, biodegradable alloys
Procedia PDF Downloads 1136657 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters
Authors: Rahil Bahrami, Kaveh Ashenayi
Abstract:
This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion
Procedia PDF Downloads 1016656 Measuring Multi-Class Linear Classifier for Image Classification
Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang
Abstract:
A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis
Procedia PDF Downloads 5416655 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs
Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim
Abstract:
A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.Keywords: exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency
Procedia PDF Downloads 4526654 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 1526653 Empirical Study of Partitions Similarity Measures
Authors: Abdelkrim Alfalah, Lahcen Ouarbya, John Howroyd
Abstract:
This paper investigates and compares the performance of four existing distances and similarity measures between partitions. The partition measures considered are Rand Index (RI), Adjusted Rand Index (ARI), Variation of Information (VI), and Normalised Variation of Information (NVI). This work investigates the ability of these partition measures to capture three predefined intuitions: the variation within randomly generated partitions, the sensitivity to small perturbations, and finally the independence from the dataset scale. It has been shown that the Adjusted Rand Index performed well overall, with regards to these three intuitions.Keywords: clustering, comparing partitions, similarity measure, partition distance, partition metric, similarity between partitions, clustering comparison.
Procedia PDF Downloads 2066652 Repair of Cracked Aluminum Plate by Composite Patch
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, A. Zeggane, H. Kebir
Abstract:
In this work, repaired crack in 6061-T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain, and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its size vary from 20 mm to 60 mm and we compare the first results with second. Thirdly, we repair various cracks with the composite patch (carbon/epoxy) and for (2 layers, 4 layers). Finally, the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair.Keywords: composite patch repair, crack growth, aluminum alloy plate, stress
Procedia PDF Downloads 6016651 The Effect of Outliers on the Economic and Social Survey on Income and Living Conditions
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Francisco J. Blanco-Encomienda, Juan F. Muñoz
Abstract:
The European Union Survey on Income and Living Conditions (EU-SILC) is a popular survey which provides information on income, poverty, social exclusion and living conditions of households and individuals in the European Union. The EUSILC contains variables which may contain outliers. The presence of outliers can have an impact on the measures and indicators used by the EU-SILC. In this paper, we used data sets from various countries to analyze the presence of outliers. In addition, we obtain some indicators after removing these outliers, and a comparison between both situations can be observed. Finally, some conclusions are obtained.Keywords: poverty line, headcount index, risk of poverty, skewness coefficient
Procedia PDF Downloads 4036650 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field
Authors: Mengqi Zhu, Chang Nyung Kim
Abstract:
This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop
Procedia PDF Downloads 2856649 An Iterative Family for Solution of System of Nonlinear Equations
Authors: Sonia Sonia
Abstract:
This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.Keywords: convergence, divided difference operator, nonlinear system, Newton's method
Procedia PDF Downloads 2376648 Stepanovia osogoviensis sp. n. (Hymenoptera: Eulophidae) in Galls of Diplolepis rosae from Bulgaria
Authors: Ivaylo A. Todorov, Peter S. Boyadzhiev
Abstract:
A new distinctive species of Stepanovia Kostjukov (Hymenoptera: Eulophidae: Tetrastichinae) was reared in laboratory from mature galls of Diplolepis rosae (Linnaeus) (Cynipidae). The galls were collected from Rosa sp. bushes growing in Osogovo Mt. in Western Bulgaria. The new species is close to Stepanovia rosae Boyadzhiev & Todorov but differs in POL and OOL characteristics, width of antennae, forewings and ovipositor sheaths characteristics, different U-shaped pale stripe above clypeus and the length of the ventral plaque on male antenna. The taxonomically important morphological features are illustrated and compared with the rest species of the genus using Scanning electron microscopy and light reflection by compound microscopy. Images of male genitalia are also prepared.Keywords: Eulophidae, Diplolepis rosae, galls, Stepanovia osogoviensis, Bulgaria
Procedia PDF Downloads 247