Search results for: soil classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5066

Search results for: soil classification

3056 Assessment of Human Factors Analysis and Classification System in Construction Accident Prevention

Authors: Zakari Mustapha, Clinton Aigbavboa, Wellington Didi Thwala

Abstract:

Majority of the incidents and accidents in complex high-risk systems that exist in the construction industry and other sectors have been attributed to unsafe acts of workers. The purpose of this paper was to asses Human Factors Analysis and Classification System (HFACS) in construction accident prevention. The study was conducted through the use of secondary data from journals, books and internet to achieve the objective of the study. The review of literature looked into details of different views from different scholars about HFACS framework in accidents investigations. It further highlighted on various sections or disciplines of accident occurrences in human performance within the construction. The findings from literature review showed that unsafe acts of a worker and unsafe working conditions are the two major causes of accident in the construction industry.Most significant factor in the cause of site accident in the construction industry is unsafe acts of a worker. The findings also show how the application of HFACS framework in the investigation of accident will lead to the identification of common trends. Further findings show that provision for the prevention of accident will be made based on past accident records to identify and prioritize where intervention is needed within the construction industry.

Keywords: accident, construction, HFACS, unsafe acts

Procedia PDF Downloads 321
3055 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 203
3054 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: anila stove, bio-char, soil conditioning materials, temperature distribution

Procedia PDF Downloads 231
3053 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 239
3052 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till

Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum

Abstract:

Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.

Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia

Procedia PDF Downloads 148
3051 A Technique for Image Segmentation Using K-Means Clustering Classification

Authors: Sadia Basar, Naila Habib, Awais Adnan

Abstract:

The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.

Keywords: clustering, image segmentation, K-means function, local and global minimum, region

Procedia PDF Downloads 376
3050 Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia

Authors: Fahad Alahmadi, Norhan Abd Rahman, Mohammad Abdulrazzak, Zulikifli Yusop

Abstract:

Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data.

Keywords: urban runoff modelling, arid regions, ungauged catchments, volcanic rocks, Madinah, Saudi Arabia

Procedia PDF Downloads 405
3049 Study of Three-Dimensional Computed Tomography of Frontoethmoidal Cells Using International Frontal Sinus Anatomy Classification

Authors: Prabesh Karki, Shyam Thapa Chettri, Bajarang Prasad Sah, Manoj Bhattarai, Sudeep Mishra

Abstract:

Introduction: Frontal sinus is frequently described as the most difficult sinus to access surgically due to its proximity to the cribriform plate, orbit, and anterior ethmoid artery. Frontal sinus surgery requires a detailed understanding of the cellular structure and FSDP unique to each patient, making high-resolution CT scans an indispensable tool to assess the difficulty of planned sinus surgery. International Frontal Sinus Anatomy Classification (IFAC) was developed to provide a more precise nomenclature for cells in the frontal recess, classifying cells based on their anatomic origin. Objectives: To assess the proportion of frontal cell variants defined by IFAC, variation with respect to age and gender. Methods: 54 cases were enrolled after a detailed clinical history, thorough general and physical examinations, and CT a report ordered in a film. Assessment and tabulation of the presence of frontal cells according to the IFAC analyzed. The prevalence of each cell type was calculated, and data were entered in MS Excel and analyzed using Statistical Package for the Social Sciences (SPSS). Descriptive statistics and frequencies were defined for categorical and numerical variables. Frequency, percentage, the mean and standard deviation were calculated. Result: Among 54 patients, 30 (55.6%) were male and 24 (44.4%) were female. The patient enrolled ranged from 18 to 78 years. Majority33.3% (n=18) were in age group of >50 years.According to IFAC, Agger nasi cells (92.6%) were most common, whereas supraorbital ethmoidal cells were least common 16 (29.6%). Prevalence of other frontoethmoidal cells was SAC- 57.4%, SAFC- 38.9%, SBC- 74.1%, SBFC- 33.3%, FSC- 38.9% of 54 cases. Conclusion: IFAC is an international consensus document that describes an anatomically precise nomenclature for classifying frontoethmoidal cells' anatomy. This study has defined the prevalence, symmetry and reliability of frontoethmoidal cells as established by the IFAC system as in other parts of the world.

Keywords: frontal sinus, frontoethmoidal cells, international frontal sinus anatomy classification

Procedia PDF Downloads 100
3048 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 80
3047 Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha

Abstract:

This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control.

Keywords: bioremediation, co-composting, oil refinery sludge, PAHs, bacteria spp, animal manures, molecular techniques

Procedia PDF Downloads 475
3046 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 111
3045 An Extensive Review of Drought Indices

Authors: Shamsulhaq Amin

Abstract:

Drought can arise from several hydrometeorological phenomena that result in insufficient precipitation, soil moisture, and surface and groundwater flow, leading to conditions that are considerably drier than the usual water content or availability. Drought is often assessed using indices that are associated with meteorological, agricultural, and hydrological phenomena. In order to effectively handle drought disasters, it is essential to accurately determine the kind, intensity, and extent of the drought using drought characterization. This information is critical for managing the drought before, during, and after the rehabilitation process. Over a hundred drought assessments have been created in literature to evaluate drought disasters, encompassing a range of factors and variables. Some models utilise solely hydrometeorological drivers, while others employ remote sensing technology, and some incorporate a combination of both. Comprehending the entire notion of drought and taking into account drought indices along with their calculation processes are crucial for researchers in this discipline. Examining several drought metrics in different studies requires additional time and concentration. Hence, it is crucial to conduct a thorough examination of approaches used in drought indices in order to identify the most straightforward approach to avoid any discrepancies in numerous scientific studies. In case of practical application in real-world, categorizing indices relative to their usage in meteorological, agricultural, and hydrological phenomena might help researchers maximize their efficiency. Users have the ability to explore different indexes at the same time, allowing them to compare the convenience of use and evaluate the benefits and drawbacks of each. Moreover, certain indices exhibit interdependence, which enhances comprehension of their connections and assists in making informed decisions about their suitability in various scenarios. This study provides a comprehensive assessment of various drought indices, analysing their types and computation methodologies in a detailed and systematic manner.

Keywords: drought classification, drought severity, drought indices, agriculture, hydrological

Procedia PDF Downloads 41
3044 The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia

Authors: Jessica Vasil'chuk, Elena Ivanova, Pavel Krechetov, Vladimir Litvinsky, Nadine Budantseva, Julia Chizhova, Yurij Vasil'chuk

Abstract:

Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083).

Keywords: carbon, oxygen, pedogenic carbonates, South Siberia, stable isotopes

Procedia PDF Downloads 297
3043 Studies on Climatic and Soil Site Suitability of Major Grapes-Growing Soils of Eastern and Southern Dry Zones of Karnataka

Authors: Harsha B. R., Anil Kumar K. S.

Abstract:

Climate and soils are the two most dynamic entities among the factors affecting growth and grapes productivity. Studying of prevailing climate over the years in a region provides sufficient information related to management practices to be carried out in vineyards. Evaluating the suitability of vineyard soils under different climatic conditions serves as the yardstick to analyse the performance of grapevines. This study was formulated to study the climate and evaluate the site-suitability of soils in vineyards of southern Karnataka, which has registered its superiority in the quality production of wine. Ten soil profiles were excavated for suitability evaluation of soils, and six taluks were studied for climatic analysis. In almost all the regions studied, recharge starts at the end of the May or June months, peaking in either September or October months. Soil Starts drying from mid of December months in the taluks studied. Bangalore North (Rajanukunte) soils were highly suited for grapes cultivation with no or slight limitations. Bangalore North (GKVK Farm) was moderately suited with slight to moderate limitations of slope and available nitrogen content. Moderate suitability was observed in the rest of the profiles studied in Eastern dry zone soils with the slight to moderate limitations of either organic carbon or available nitrogen or both in the Eastern dry zone. Magadi (Southern dry zone) soils were moderately suitable with slight to moderate limitations of graveliness, available nitrogen, organic carbon, and exchangeable sodium percentage. Sustainable performance of vineyards in terms of yield can be achieved in these taluks by managing the constraints existing in soils.

Keywords: climatic analysis, dry zone, water recharge, growing period, suitability, sustainability

Procedia PDF Downloads 124
3042 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 27
3041 Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu

Authors: R. Rajeswari

Abstract:

An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively.

Keywords: agro climatic zones, benchmark soil, land use, soil organic carbon

Procedia PDF Downloads 95
3040 Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil

Authors: A. Shafaghat, H. Khabbaz, S. Moravej, Ah. Shafaghat

Abstract:

The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances.

Keywords: bearing capacity, finite element analysis, loose sand, settlement equations, shallow foundation

Procedia PDF Downloads 256
3039 Understanding the Diversity of Antimicrobial Resistance among Wild Animals, Livestock and Associated Environment in a Rural Ecosystem in Sri Lanka

Authors: B. M. Y. I. Basnayake, G. G. T. Nisansala, P. I. J. B. Wijewickrama, U. S. Weerathunga, K. W. M. Y. D. Gunasekara, N. K. Jayasekera, A. W. Kalupahana, R. S. Kalupahana, A. Silva- Fletcher, K. S. A. Kottawatta

Abstract:

Antimicrobial resistance (AMR) has attracted significant attention worldwide as an emerging threat to public health. Understanding the role of livestock and wildlife with the shared environment in the maintenance and transmission of AMR is of utmost importance due to its interactions with humans for combating the issue in one health approach. This study aims to investigate the extent of AMR distribution among wild animals, livestock, and environment cohabiting in a rural ecosystem in Sri Lanka: Hambegamuwa. One square km area at Hambegamuwa was mapped using GPS as the sampling area. The study was conducted for a period of five months from November 2020. Voided fecal samples were collected from 130 wild animals, 123 livestock: buffalo, cattle, chicken, and turkey, with 36 soil and 30 water samples associated with livestock and wildlife. From the samples, Escherichia coli (E. coli) was isolated, and their AMR profiles were investigated for 12 antimicrobials using the disk diffusion method following the CLSI standard. Seventy percent (91/130) of wild animals, 93% (115/123) of livestock, 89% (32/36) of soil, and 63% (19/30) of water samples were positive for E. coli. Maximum of two E. coli from each sample to a total of 467 were tested for the sensitivity of which 157, 208, 62, and 40 were from wild animals, livestock, soil, and water, respectively. The highest resistance in E. coli from livestock (13.9%) and wild animals (13.3%) was for ampicillin, followed by streptomycin. Apart from that, E. coli from livestock and wild animals revealed resistance mainly against tetracycline, cefotaxime, trimethoprim/ sulfamethoxazole, and nalidixic acid at levels less than 10%. Ten cefotaxime resistant E. coli were reported from wild animals, including four elephants, two land monitors, a pigeon, a spotted dove, and a monkey which was a significant finding. E. coli from soil samples reflected resistance primarily against ampicillin, streptomycin, and tetracycline at levels less than in livestock/wildlife. Two water samples had cefotaxime resistant E. coli as the only resistant isolates out of 30 water samples tested. Of the total E. coli isolates, 6.4% (30/467) was multi-drug resistant (MDR) which included 18, 9, and 3 isolates from livestock, wild animals, and soil, respectively. Among 18 livestock MDRs, the highest (13/ 18) was from poultry. Nine wild animal MDRs were from spotted dove, pigeon, land monitor, and elephant. Based on CLSI standard criteria, 60 E. coli isolates, of which 40, 16, and 4 from livestock, wild animal, and environment, respectively, were screened for Extended Spectrum β-Lactamase (ESBL) producers. Despite being a rural ecosystem, AMR and MDR are prevalent even at low levels. E. coli from livestock, wild animals, and the environment reflected a similar spectrum of AMR where ampicillin, streptomycin, tetracycline, and cefotaxime being the predominant antimicrobials of resistance. Wild animals may have acquired AMR via direct contact with livestock or via the environment, as antimicrobials are rarely used in wild animals. A source attribution study including the effects of the natural environment to study AMR can be proposed as this less contaminated rural ecosystem alarms the presence of AMR.

Keywords: AMR, Escherichia coli, livestock, wildlife

Procedia PDF Downloads 216
3038 Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model

Authors: F. Esfandyari Darabad, Z. Samadi

Abstract:

The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation.

Keywords: curve number, khiyav river basin, runoff estimation, SCS

Procedia PDF Downloads 622
3037 Structural Behaviour of Concrete Energy Piles in Thermal Loadings

Authors: E. H. N. Gashti, M. Malaska, K. Kujala

Abstract:

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.

Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions

Procedia PDF Downloads 214
3036 Prediction of Fluid Induced Deformation using Cavity Expansion Theory

Authors: Jithin S. Kumar, Ramesh Kannan Kandasami

Abstract:

Geomaterials are generally porous in nature due to the presence of discrete particles and interconnected voids. The porosity present in these geomaterials play a critical role in many engineering applications such as CO2 sequestration, well bore strengthening, enhanced oil and hydrocarbon recovery, hydraulic fracturing, and subsurface waste storage. These applications involves solid-fluid interactions, which govern the changes in the porosity which in turn affect the permeability and stiffness of the medium. Injecting fluid into the geomaterials results in permeation which exhibits small or negligible deformation of the soil skeleton followed by cavity expansion/ fingering/ fracturing (different forms of instabilities) due to the large deformation especially when the flow rate is greater than the ability of the medium to permeate the fluid. The complexity of this problem increases as the geomaterial behaves like a solid and fluid under certain conditions. Thus it is important to understand this multiphysics problem where in addition to the permeation, the elastic-plastic deformation of the soil skeleton plays a vital role during fluid injection. The phenomenon of permeation and cavity expansion in porous medium has been studied independently through extensive experimental and analytical/ numerical models. The analytical models generally use Darcy's/ diffusion equations to capture the fluid flow during permeation while elastic-plastic (Mohr-Coulomb and Modified Cam-Clay) models were used to predict the solid deformations. Hitherto, the research generally focused on modelling cavity expansion without considering the effect of injected fluid coming into the medium. Very few studies have considered the effect of injected fluid on the deformation of soil skeleton. However, the porosity changes during the fluid injection and coupled elastic-plastic deformation are not clearly understood. In this study, the phenomenon of permeation and instabilities such as cavity and finger/ fracture formation will be quantified extensively by performing experiments using a novel experimental setup in addition to utilizing image processing techniques. This experimental study will describe the fluid flow and soil deformation characteristics under different boundary conditions. Further, a well refined coupled semi-analytical model will be developed to capture the physics involved in quantifying the deformation behaviour of geomaterial during fluid injection.

Keywords: solid-fluid interaction, permeation, poroelasticity, plasticity, continuum model

Procedia PDF Downloads 74
3035 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 120
3034 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests

Authors: Mohamed Khiatine, Ramdane Bahar

Abstract:

The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.

Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.

Procedia PDF Downloads 107
3033 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model

Procedia PDF Downloads 207
3032 3D Geological Modeling and Engineering Geological Characterization of Shallow Subsurface Soil and Rock of Addis Ababa, Ethiopia

Authors: Biruk Wolde, Atalay Ayele, Yonatan Garkabo, Trufat Hailmariam, Zemenu Germewu

Abstract:

A comprehensive three-dimensional (3D) geological modeling and engineering geological characterization of shallow subsurface soils and rocks are essential for a wide range of geotechnical and seismological engineering applications, particularly in urban environments. The spatial distribution and geological variation of the shallow subsurface of Addis Ababa city have not been studied so far in terms of geological and geotechnical modeling. This study aims at the construction of a 3D geological model, as well as provides awareness into the engineering geological characteristics of shallow subsurface soil and rock of Addis Ababa city. The 3D geological model was constructed by using more than 1500 geotechnical boreholes, well-drilling data, and geological maps. A well-known geostatistical kriging 3D interpolation algorithm was applied to visualize the spatial distribution and geological variation of the shallow subsurface. Due to the complex nature of geological formations, vertical and lateral variation of the geological profiles horizons-solid command has been selected via the Groundwater Modelling System (GMS) graphical user interface software. For the engineering geological characterization of typical soils and rocks, both index and engineering laboratory tests have been used. The geotechnical properties of soil and rocks vary from place to place due to the uneven nature of subsurface formations observed in the study areas. The constructed model ascertains the thickness, extent, and 3D distribution of the important geological units of the city. This study is the first comprehensive research work on 3D geological modeling and subsurface characterization of soils and rocks in Addis Ababa city, and the outcomes will be important for further future research on subsurface conditions in the city. Furthermore, these findings provide a reference for developing a geo-database for the city.

Keywords: 3d geological modeling, addis ababa, engineering geology, geostatistics, horizons-solid

Procedia PDF Downloads 98
3031 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare

Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.

Abstract:

Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.

Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor

Procedia PDF Downloads 129
3030 Bacteriocinogenic Strains of Bacillus thuringiensis Isolated from Soil at Northern of Algeria

Authors: R. Gounina-Allouane, I. Moussaoui, N. Boukahel

Abstract:

Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied.

Keywords: antimicrobial peptides, Bacillus thuringiensis, bacteriocin, partial purification

Procedia PDF Downloads 435
3029 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 144
3028 Triangular Geometric Feature for Offline Signature Verification

Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad

Abstract:

Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.

Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier

Procedia PDF Downloads 378
3027 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column

Procedia PDF Downloads 172