Search results for: polymer hybrid nanocomposites
1318 Performance Analysis of Vertical Cavity Surface Emitting Laser and Distributed Feedback Laser for Community Access Television
Authors: Ashima Rai
Abstract:
CATV transmission systems have altered from old cable based one-way analog video transmission to two ways hybrid fiber transmission. The use of optical fiber reduces the RF amplifiers in the transmission, high transmission power or lower fiber transmission losses are required to increase system capability. This paper evaluates and compares Distributed Feedback (DFB) laser and Vertical Cavity Surface Emitting Laser (VCSEL) for CATV transmission. The simulation results exhibit the better performer among both lasers taking into consideration the parameters chosen for evaluation.Keywords: Distributed Feedback (DFB), Vertical Cavity Surface Emitting Laser (VCSEL), Community Access Television (CATV), Composite Second Order (CSO), Composite Triple Beat (CTB), RF
Procedia PDF Downloads 3581317 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam
Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar
Abstract:
Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.Keywords: FPZ, fracture, FRP, shear
Procedia PDF Downloads 5341316 Leadership in Future Operational Environment
Authors: M. Şimşek
Abstract:
Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained.Keywords: future operational environment, leadership, leadership components
Procedia PDF Downloads 4341315 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications
Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh
Abstract:
Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential
Procedia PDF Downloads 1401314 Reciprocal Interferences in Bilingual English-Igbo Speaking Society: The Implications in Language Pedagogy
Authors: Ugwu Elias Ikechukwu
Abstract:
Discussions on bilingualism have always dwelt on how the mother tongue interferes with the target language. This interference is considered a serious problem in second language learning. Usually, the interference has been phonological. But the objective of this research is to explore how the target language interferes with the mother tongue. In the case of the Igbo language, it interferes with English mostly at the phonological level while English interferes with Igbo at the realm of vocabulary. The result is a new language \"Engligbo\" which is a hybrid of English and Igbo. The Igbo language spoken by about 25 million people is one of the three most prominent languages in Nigeria. This paper discusses the phenomenal Engligbo, and other implications for Igbo learners of English. The method of analysis is descriptive. A number of recommendations were made that would help teachers handle problems arising from such mutual interferences.Keywords: reciprocal interferences, bilingualism, implications, language pedagogy
Procedia PDF Downloads 3991313 The Application of Polymers in Enhanced Oil Recovery: Recent Trends
Authors: Reza M. Rudd, Ali Saeedi, Colin Wood
Abstract:
In this article, the latest advancements made in the applications of polymers in the enhanced hydrocarbon recovery technologies are investigated. For this purpose, different classes of polymers are reviewed and the latest progresses made in making them suitable for application under harsh reservoir conditions are discussed. The main reservoir conditions whose effects are taken into account include the temperature, rock mineralogy and brine salinity and composition. For profile modification and blocking the thief zones, polymers are used in the form of nanocomposite hydrogels. Polymers are also used as thickeners during CO2 flooding. Also, they are used in enhanced gas recovery, to inhibit the mixing of injection gas with the in-situ natural gas. This review covers the main types of polymers, their functions and the challenges in their applications, some of which are mentioned above. Included in this review are also the latest progresses made in the development of new polymeric surfactants used for surfactant flooding.Keywords: EOR, EGR, polymer flooding, profile modification, mobility control, nanocomposite hydrogels, CO2 flooding, polymeric surfactants
Procedia PDF Downloads 5671312 The Effect of Ethylene Propylene Diene Monomer on the Rheological Properties of Bitumen
Authors: Emre Eren, Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, Çigdem Canbay Turkyilmaz, Emrah Turkyilmaz
Abstract:
This study aimed to investigate the mechanical and high-temperature rheological properties of Ethylene Propylene Diene Monomer (EPDM) modified bitumen. To achieve this, the neat binder was modified with EPDM additive in different percentages: 2% to 5%. The neat and modified binder were subjected to conventional and rheological tests, including penetration and softening point tests, as well as evaluations of their rutting performance and high-temperature viscosity characteristics. Additionally, the mixing and compaction temperatures for hot mix asphalt production were identified using a rotational viscometer. The findings indicated that EPDM is a highly effective bitumen modifier, with the high temperature performance class of the neat binder improving by 3 grades according to the Superpave asphalt grading system.Keywords: polymer, bitumen, rheology, EPDM, dynamic mechanical analysis
Procedia PDF Downloads 1231311 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies
Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour
Abstract:
The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop
Procedia PDF Downloads 1401310 Exploring Electroactive Polymers for Dynamic Data Physicalization
Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel
Abstract:
Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization
Procedia PDF Downloads 991309 Electric Propulsion System Development for High Floor Trolley Bus
Authors: Asep Andi Suryandi, Katri Yulianto, Dewi Rianti Mandasari
Abstract:
The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus.Keywords: trolley bus, electric propulsion system, design, manufacture, electric vehicle
Procedia PDF Downloads 3561308 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller
Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi
Abstract:
The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel
Procedia PDF Downloads 2131307 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis
Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos
Abstract:
Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent
Procedia PDF Downloads 2781306 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers
Authors: Sujosh Nandi, Proshanta Guha
Abstract:
Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.Keywords: cross linking agent, guar gum, organic acids, potato starch
Procedia PDF Downloads 1141305 Effect of Using Baffles Inside Spiral Micromixer
Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons
Abstract:
Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.Keywords: CFD, micromixer, microfluidics, spiral, reynolds number
Procedia PDF Downloads 911304 Mechanical Characterization of Mango Peel Flour and Biopolypropylene Composites Compatibilized with PP-g-IA
Authors: J. Gomez-Caturla, L. Quiles-Carrillo, J. Ivorra-Martinez, D. Garcia-Garcia, R. Balart
Abstract:
The present work reports on the development of wood plastic composites based on biopolypropylene (BioPP) and mango peel flour (MPF) by extrusion and injection moulding processes. PP-g-IA and DCP have been used as a compatibilizer and as free radical initiators for reactive extrusion, respectively. Mechanical and morphological properties have been characterized in order to study the compatibility of the blends. The obtained results showed that DCP and PP-g-IA improved the stiffness of BioPP in terms of elastic modulus. Moreover, they positively increased the tensile strength and elongation at the break of the blends in comparison with the sample that only had BioPP and MPF in its composition, improving the affinity between both compounds. DCP and PP-g-IA even seem to have certain synergy, which was corroborated through FESEM analysis. Images showed that the MPF particles had greater adhesion to the polymer matrix when PP-g-IA and DCP were added. This effect was more intense when both elements were added, observing an almost inexistent gap between MPF particles and the BioPP matrix.Keywords: biopolyproylene, compatibilization, mango peel flour, wood plastic composite
Procedia PDF Downloads 1011303 Papain Immobilized Polyurethane Film as an Antimicrobial Food Package
Authors: M. Cynthya, V. Prabhawathi, D. Mukesh
Abstract:
Food contamination occurs during post process handling. This leads to spoilage and growth of pathogenic microorganisms in the food, thereby reducing its shelf life or spreading of food borne diseases. Several methods are tried and one of which is use of antimicrobial packaging. Here, papain, a protease enzyme, is covalently immobilized with the help of glutarldehyde on polyurethane and used as a food wrap to protect food from microbial contamination. Covalent immobilization of papain was achieved at a pH of 7.4; temperature of 4°C; glutaraldehyde concentration of 0.5%; incubation time of 24 h; and 50 mg of papain. The formation of -C=N- observed in the Fourier transform infrared spectrum confirmed the immobilization of the enzyme on the polymer. Immobilized enzyme retained higher activity than the native free enzyme. The efficacy of this was studied by wrapping it over S. aureus contaminated cottage cheese (paneer) and cheese and stored at a temperature of 4°C for 7 days. The modified film reduced the bacterial contamination by eight folds when compared to the bare film. FTIR also indicates reduction in lipids, sugars and proteins in the biofilm.Keywords: cheese, papain, polyurethane, Staphylococcus aureus
Procedia PDF Downloads 4751302 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis
Procedia PDF Downloads 2481301 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing
Authors: Yohann R. J. Thomas, Sébastien Solan
Abstract:
Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes
Procedia PDF Downloads 2511300 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application
Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro
Abstract:
In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype
Procedia PDF Downloads 1591299 Nanocellulose Incorporated Polyvinyl Alcohol Hydrogel
Authors: Rosli Mohd Yunus, Zianor Azrina Zianon Abdin, Mohammad Dalour Hossen Beg, Ridzuan Ramli
Abstract:
Recently, nanocrystalline cellulose (NCC) has gained considerable interest as a promising biomaterial due to their outstanding properties such as high surface area, high mechanical properties, hydrophilicity, biocompatibility and biodegradability. The NCC also has good stability in water which is compatible for mixing of water based polymer solution or emulsions with NCC. Oil palm empty fruit bunch (EFB) contained different amount of lignocellulosic materials such as lignin, hemicellulose and cellulose. Cellulose is the most significant materials that can be extracted from EFB as nanocrystalline cellulose (NCC). In this work the nanocrystalline cellulose were produced through acid hydrolysis together with ultrasound technique. The morphology of NCC was characterized by TEM, thermal behavior has been studied with DSC, TGA analysis. Structural properties were illustrated X-Ray diffraction as well as FTIR. The hydrogel was produced using polyvinyl alcohol (PVA) with different concentration of NCC. The hydrogel composite was characterized by swelling ratio, crosslinking density, mechanical properties and morphology.Keywords: nanocellulose, oil palm, hydrogel, water treatment
Procedia PDF Downloads 2691298 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria
Authors: M. S. Meon, M. N. Rao, K-U. Schröder
Abstract:
Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model
Procedia PDF Downloads 5021297 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams
Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fare
Abstract:
In the present work, the structural responses of 12 ultrahigh-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.Keywords: ultrahigh-performance concrete, moment capacity, RC beams, hybrid fiber, ductility
Procedia PDF Downloads 691296 From Design, Experience and Play Framework to Common Design Thinking Tools: Using Serious Modern Board Games
Authors: Micael Sousa
Abstract:
Board games (BGs) are thriving as new designs emerge from the hobby community to greater audiences all around the world. Although digital games are gathering most of the attention in game studies and serious games research fields, the post-digital movement helps to explain why in the world dominated by digital technologies, the analog experiences are still unique and irreplaceable to users, allowing innovation in new hybrid environments. The BG’s new designs are part of these post-digital and hybrid movements because they result from the use of powerful digital tools that enable the production and knowledge sharing about the BGs and their face-to-face unique social experiences. These new BGs, defined as modern by many authors, are providing innovative designs and unique game mechanics that are still not yet fully explored by the main serious games (SG) approaches. Even the most established frameworks settled to address SG, as fun games implemented to achieve predefined goals need more development, especially when considering modern BGs. Despite the many anecdotic perceptions, researchers are only now starting to rediscover BGs and demonstrating their potentials. They are proving that BGs are easy to adapt and to grasp by non-expert players in experimental approaches, with the possibility of easy-going adaptation to players’ profiles and serious objectives even during gameplay. Although there are many design thinking (DT) models and practices, their relations with SG frameworks are also underdeveloped, mostly because this is a new research field, lacking theoretical development and the systematization of the experimental practices. Using BG as case studies promise to help develop these frameworks. Departing from the Design, Experience, and Play (DPE) framework and considering the Common Design Think Tools (CDST), this paper proposes a new experimental framework for the adaptation and development of modern BG design for DT: the Design, Experience, and Play for Think (DPET) experimental framework. This is done through the systematization of the DPE and CDST approaches applied in two case studies, where two different sequences of adapted BG were employed to establish a DT collaborative process. These two sessions occurred with different participants and in different contexts, also using different sequences of games for the same DT approach. The first session took place at the Faculty of Economics at the University of Coimbra in a training session of serious games for project development. The second session took place in the Casa do Impacto through The Great Village Design Jam light. Both sessions had the same duration and were designed to progressively achieve DT goals, using BGs as SGs in a collaborative process. The results from the sessions show that a sequence of BGs, when properly adapted to address the DPET framework, can generate a viable and innovative process of collaborative DT that is productive, fun, and engaging. The DPET proposed framework intents to help establish how new SG solutions could be defined for new goals through flexible DT. Applications in other areas of research and development can also benefit from these findings.Keywords: board games, design thinking, methodology, serious games
Procedia PDF Downloads 1121295 Intelligent Rescheduling Trains for Air Pollution Management
Authors: Kainat Affrin, P. Reshma, G. Narendra Kumar
Abstract:
Optimization of timetable is the need of the day for the rescheduling and routing of trains in real time. Trains are scheduled in parallel with the road transport vehicles to the same destination. As the number of trains is restricted due to single track, customers usually opt for road transport to use frequently. The air pollution increases as the density of vehicles on road transport is increased. Use of an alternate mode of transport like train helps in reducing air-pollution. This paper mainly aims at attracting the passengers to Train transport by proper rescheduling of trains using hybrid of stop-skip algorithm and iterative convex programming algorithm. Rescheduling of train bi-directionally is achieved on a single track with dynamic dual time and varying stops. Introduction of more trains attract customers to use rail transport frequently, thereby decreasing the pollution. The results are simulated using Network Simulator (NS-2).Keywords: air pollution, AODV, re-scheduling, WSNs
Procedia PDF Downloads 3601294 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques
Authors: T. J. Jamaleddine
Abstract:
Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.Keywords: CFD, degasser vessel, gas-solids flow, gas purging, purge column, species transport
Procedia PDF Downloads 1291293 Tomato Fruit Color Changes during Ripening of Vine
Authors: A.Radzevičius, P. Viškelis, J. Viškelis, R. Karklelienė, D. Juškevičienė
Abstract:
Tomato (Lycopersicon esculentum Mill.) hybrid 'Brooklyn' was investigated at the LRCAF Institute of Horticulture. For investigation, five green tomatoes, which were grown on vine, were selected. Color measurements were made in the greenhouse with the same selected tomato fruits (fruits were not harvested and were growing and ripening on tomato vine through all experiment) in every two days while tomatoes fruits became fully ripen. Study showed that color index L has tendency to decline and established determination coefficient (R2) was 0.9504. Also, hue angle has tendency to decline during tomato fruit ripening on vine and it’s coefficient of determination (R2) reached–0.9739. Opposite tendency was determined with color index a, which has tendency to increase during tomato ripening and that was expressed by polynomial trendline where coefficient of determination (R2) reached–0.9592.Keywords: color, color index, ripening, tomato
Procedia PDF Downloads 4881292 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment
Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy
Abstract:
In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.Keywords: microfluidic, MEMS, biosensor, microresonator
Procedia PDF Downloads 2231291 Multistage Adomian Decomposition Method for Solving Linear and Non-Linear Stiff System of Ordinary Differential Equations
Authors: M. S. H. Chowdhury, Ishak Hashim
Abstract:
In this paper, linear and non-linear stiff systems of ordinary differential equations are solved by the classical Adomian decomposition method (ADM) and the multi-stage Adomian decomposition method (MADM). The MADM is a technique adapted from the standard Adomian decomposition method (ADM) where standard ADM is converted into a hybrid numeric-analytic method called the multistage ADM (MADM). The MADM is tested for several examples. Comparisons with an explicit Runge-Kutta-type method (RK) and the classical ADM demonstrate the limitations of ADM and promising capability of the MADM for solving stiff initial value problems (IVPs).Keywords: stiff system of ODEs, Runge-Kutta Type Method, Adomian decomposition method, Multistage ADM
Procedia PDF Downloads 4361290 Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels
Authors: Gülşen Akın Evingür, Önder Pekcan
Abstract:
The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel.Keywords: composite gels, fluorescence, fractal, scaling
Procedia PDF Downloads 3071289 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28
Authors: Kyoung Lee
Abstract:
Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.Keywords: biofilm, matrix, pellicle, pseudomonas
Procedia PDF Downloads 152