Search results for: plant formulations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3884

Search results for: plant formulations

1874 Characterization of Soil Microbial Communities from Vineyard under a Spectrum of Drought Pressures in Sensitive Area of Mediterranean Region

Authors: Gianmaria Califano, Júlio Augusto Lucena Maciel, Olfa Zarrouk, Miguel Damasio, Jose Silvestre, Ana Margarida Fortes

Abstract:

Global warming, with rapid and sudden changes in meteorological conditions, is one of the major constraints to ensuring agricultural and crop resilience in the Mediterranean regions. Several strategies are being adopted to reduce the pressure of drought stress on grapevines at regional and local scales: improvements in the irrigation systems, adoption of interline cover crops, and adaptation of pruning techniques. However, still, more can be achieved if also microbial compartments associated with plants are considered in crop management. It is known that the microbial community change according to several factors such as latitude, plant variety, age, rootstock, soil composition and agricultural management system. Considering the increasing pressure of the biotic and abiotic stresses, it is of utmost necessity to also evaluate the effects of drought on the microbiome associated with the grapevine, which is a commercially important crop worldwide. In this study, we characterize the diversity and the structure of the microbial community under three long-term irrigation levels (100% ETc, 50% ETc and rain-fed) in a drought-tolerant grapevine cultivar present worldwide, Syrah. To avoid the limitations of culture-dependent methods, amplicon sequencing with target primers for bacteria and fungi was applied to the same soil samples. The use of the DNeasy PowerSoil (Qiagen) extraction kit required further optimization with the use of lytic enzymes and heating steps to improve DNA yield and quality systematically across biological treatments. Target regions (16S rRNA and ITS genes) of our samples are being sequenced with Illumina technology. With bioinformatic pipelines, it will be possible to obtain a characterization of the bacterial and fungal diversity, structure and composition. Further, the microbial communities will be assessed for their functional activity, which remains an important metric considering the strong inter-kingdom interactions existing between plants and their associated microbiome. The results of this study will lay the basis for biotechnological applications: in combination with the establishment of a bacterial library, it will be possible to explore the possibility of testing synthetic microbial communities to support plant resistance to water scarcity.

Keywords: microbiome, metabarcoding, soil, vinegrape, syrah, global warming, crop sustainability

Procedia PDF Downloads 118
1873 Prevailing Clinical Evidence on Medicinal Hemp (Cannabis Sativa L.)

Authors: Siti Hajar Muhamad Rosli, Xin Yi Lim, Terence Yew Chin Tan, Muhammad nor Farhan Sa’At, Syazwani Sirdar Ali, Ami Fazlin Syed Mohamed

Abstract:

A growing interest on therapeutic benefits of hemp (Cannabis sativa subsp. sativa) is evident in the pharmaceutical market, attributed to its lower levels of psychoactive constituent delta-9-tetrahydronannabidiol (THC). Deemed as a legal and safer alternative to its counterpart marijuana, the use of medicinal hemp is highly debatable as current scientific evidence on the efficacy for clinical use is yet to be established This study was aimed to provide an overview of the current landscape of hemp research, through recent clinical findings specific to the pharmacological properties of the hemp plant and its derived compounds. A systematic search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis-ScR (PRISMA) checklist on electronic databases (MEDLINE, OVID, Cochrane Library Central, and Clinicaltrials.gov) for articles published from 2009 to 2019. With predetermined inclusion criteria, all human trials with hemp intervention were included. A total of 18 human trials were identified, investigating therapeutic effects on the neuronal, gastrointestinal, musculoskeletal and immune system, with sample sizes ranging from one to 194 subjects. Three randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) consumption significantly improved spontaneous bowel movement in functional constipation. The use of commercial cannabidiol (CBD) sourced from hemp suggested benefits in cannabis dependence, epilepsy, and anxiety disorders. However, there was insufficient evidence to suggest analgesic or anxiolytics effects of hemp being equivalent to marijuana. All clinical trials reviewed varied in terms of test item formulation and standardisation, which made it challenging to confirm overall efficacy for a specific disease or condition. Published efficacy data on hemp are still at a preliminary level, with limited high quality clinical evidence for any specific therapeutic indication. With multiple variants of this plant having different phytochemical and bioactive compounds, future empirical research should focus on uniformity in experimental designs to further strengthen the notion of using medicinal hemp.

Keywords: cannabis, complementary medicine, hemp, herbal medicine.

Procedia PDF Downloads 113
1872 Restoration of Steppes in Algeria: Case of the Stipa tenacissima L. Steppe

Authors: H. Kadi-Hanifi, F. Amghar

Abstract:

Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil proprieties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas.

Keywords: Algeria, arid, desertification, pastoral management, soil fertility

Procedia PDF Downloads 187
1871 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber

Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo

Abstract:

Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.

Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties

Procedia PDF Downloads 350
1870 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).

Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot

Procedia PDF Downloads 409
1869 Drivers of Liking: Probiotic Petit Suisse Cheese

Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao

Abstract:

The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.

Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener

Procedia PDF Downloads 441
1868 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil

Authors: Hakima Althalb

Abstract:

Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.

Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation

Procedia PDF Downloads 174
1867 Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants

Authors: Nassima Khanfri, Ali Boucenna

Abstract:

As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications.

Keywords: green synthesis, bio-reduction, metals nan Oparticales, Plants extracts

Procedia PDF Downloads 195
1866 Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice

Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo

Abstract:

In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.

Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide

Procedia PDF Downloads 244
1865 Laboratory Evaluation of Gilsonite Modified Bituminous Mixes

Authors: R. Vishnu, K. S. Reddy, Amrendra Kumar

Abstract:

The present guideline for the construction of flexible pavement in India, IRC 37: 2012 recommends to use viscous grade VG 40 bitumen in both wearing and binder bituminous layers. However, most of the bitumen production plants in India are unable to produce the air-blown VG40 grade bitumen. This requires plant’s air-blowing technique modification, and often the manufactures finds it as uneconomical. In this context, stiffer grade bitumen can be produced if bitumen is modified. Gilsonite, which is naturally occurring asphalt have been found to be used for increasing the stiffness of binders. The present study evaluates the physical, rheological characteristics of Gilsonite modified binders and the performance characteristics of these binders when used in the mix.

Keywords: bitumen, gilsonite, stiffness, laboratory evaluation

Procedia PDF Downloads 463
1864 Effect of Span 60, Labrasol, and Cholesterol on Labisia pumila Loaded Niosomes Quality

Authors: H. Binti Ya’akob, C. Siew Chin, A. Abd Aziz, I. Ware, M. Fauzi Abd Jalil, N. Rashidah Ahmed, R. Sabtu

Abstract:

Labisia pumila (LP) plant extract has the potential to be applied in cosmeceutical products due to its anti-photoaging properties. The main purpose of this study was to improve transdermal delivery of LP by encapsulating LP in niosomes. Niosomes loaded LPs were prepared by coacervation phase separation method using non-ionic surfactant (Span 60), labrasol, and cholesterol. The optimum formula obtained were Span 60, labrasol and cholesterol at the mole ratio of 6:1:4. At the optimum formulation, the niosome obtained significantly improved the quality of transdermal penetration of LP compared to free LP.

Keywords: Labisia pumila, niosomes, transdermal, quality

Procedia PDF Downloads 310
1863 Insecticidal Activity of Extracts Essential Oils of Mentha Rotundifolia

Authors: Bouziane Zehaira

Abstract:

Essential oils derived from aromatic or medicinal plants have recently proven useful in a variety of fields including the production of medicines, perfumes and foodstuffs. The purpose of this research is to determine the insecticidal activity of essential oils extracted from Mentha rotundifolia species against Aphis fabae. The bioassay used to determine essential oils toxicity to pest insect Aphis fabae revealed a very high effective repellent. The effect with concentrations of 100% and 30% were found to be statistically significant (F=64.800, P<0.0001) with an average of 7.66 and 7, respectively. According to the findings, the plant under consideration is promising as a source of natural pesticides and lends itself well to research in the field of pest control using biochemical alternatives.

Keywords: pest, mentha, activity, effective

Procedia PDF Downloads 55
1862 A Potential Bio-Pesticidal Molecule Derived from Indian Traditional Plant

Authors: Bunindro Nameirakpam, Sonia Sougrapakam, Shannon B. Olsson, Rajashekar Yallappa

Abstract:

Natural sources for new pesticidal compounds hold promise in view of their eco-friendly nature, selectivity and mammalian safety. Despite a large number of plants that show insecticidal activity and diversity of natural chemistry with inherent eco-friendly nature, newer classes of insecticides have eluded discovery. Artemisia vulgaris, known as Mugwort, is a universal herb used for folk medicine and religious purposes throughout the ancient world. In India, the essential oils of Artemisia vulgaris are used for its insecticidal, anti parasiticidal and antimicrobial properties. Traditionally, the dried leaves of Artemisia vulgaris are used to repel insects as well as rats in and around the granaries in the North-East India. Artemisia vulgaris collected during November from different ecological sites were studied for the bio-pesticidal utility against the stored grain pests. The insecticidal activities were found in the crude extracts of n-hexane and methanol from the samples collected in Sikkim and Manipur respectively. Using silica gel column chromatography protocol, we have isolated one novel bioactive molecule from the aerial parts of Artemisia vulgaris L based on various physical-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and mass). The novel bioactive molecule is highly toxic and very low concentration (4.35 µg/l) is needed to control the stored product insects. In additional experiment results clearly showed the involvement of sodium pumps inhibition in the insecticidal action of purified compound in the Sitophilus oryzae. The knockdown activity of the purified compound is concomitant with the in vivo inhibition of Na+/ K+- ATPase. Further, our study showed insignificant differences in the seed germination of control and the treated grains. The lack of adverse effect of the novel bioactive molecule on the seed germination is highly desirable for seed/grain protectant and showing the potential to be developed as possible natural fumigants for the control of stored grain pests. The novel bioactive molecule is selective insecticide with a high margin of safety to mammals and showed promise as novel biopesticide candidate for grain protection. It is believed that Bio-pesticides can serve as the most important pest management tools as far as global safety is concerned.

Keywords: Indian traditional plant, Artemisia vulgaris, bio-pesticides, Na+/ K+- ATPase, seed germination

Procedia PDF Downloads 191
1861 An Institutional Mapping and Stakeholder Analysis of ASEAN’s Preparedness for Nuclear Power Disaster

Authors: Nur Azha Putra Abdul Azim, Denise Cheong, S. Nivedita

Abstract:

Currently, there are no nuclear power reactors among the Association of Southeast Asian Nations (ASEAN) member states (AMS) but there are seven operational nuclear research reactors, and Indonesia is about to construct the region’s first experimental power reactor by the end of the decade. If successful, the experimental power reactor will lay the foundation for the country’s and region’s first nuclear power plant. Despite projecting confidence during the period of nuclear power renaissance in the region in the last decade, none of the AMS has committed to a political decision on the use of nuclear energy and this is largely due to the Fukushima nuclear power accident in 2011. Of the ten AMS, Vietnam, Indonesia and Malaysia have demonstrated the most progress in developing nuclear energy based on the nuclear power infrastructure development assessments made by the International Atomic Energy Agency. Of these three states, Vietnam came closest to building its first nuclear power plant but decided to delay construction further due to safety and security concerns. Meanwhile, Vietnam along with Indonesia and Malaysia continue with their nuclear power infrastructure development and the remaining SEA states, with the exception of Brunei and Singapore, continue to build their expertise and capacity for nuclear power energy. At the current rate of progress, Indonesia is expected to make a national decision on the use of nuclear power by 2023 while Malaysia, the Philippines, and Thailand have included the use of nuclear power in their mid to long-term power development plans. Vietnam remains open to nuclear power but has not placed a timeline. The medium to short-term power development projection in the region suggests that the use of nuclear energy in the region is a matter of 'when' rather than 'if'. In lieu of the prospects for nuclear energy in Southeast Asia (SEA), this presentation will review the literature on ASEAN radiological emergency and preparedness response (EPR) plans and examine ASEAN’s disaster management and emergency framework. Through a combination of institutional mapping and stakeholder analysis methods, which we examine in the context of the international EPR, and nuclear safety and security regimes, we will identify the issues and challenges in developing a regional radiological EPR framework in the SEA. We will conclude with the observation that ASEAN faces serious structural, institutional and governance challenges due to the AMS inherent political structures and history of interstate conflicts, and propose that ASEAN should either enlarge the existing scope of its disaster management and response framework or that its radiological EPR framework should exist as a separate entity.

Keywords: nuclear power, nuclear accident, ASEAN, Southeast Asia

Procedia PDF Downloads 147
1860 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns

Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido

Abstract:

The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.

Keywords: leaching, organic amendments, phytostabilization, polluted soils

Procedia PDF Downloads 105
1859 New Drug Discoveries and Packaging Challenges

Authors: Anupam Chanda

Abstract:

Presently Packaging plays a significant role for drug discoveries. The process of selecting materials and the type of packaging also offers an opportunity for the Packaging scientist to look for biological delivery choices. Most injectable protein products were supplied in some sort of glass vial, prefilled syringe, cartridge. Those product having high Ph content there is a chance of “delamination “from inner surface of glass vial. With protein-based drugs, the biggest issue is the effect of packaging derivatives on the protein’s threedimensional and surface structure. These are any effects that relate to denaturation or aggregation of the protein due to oxidation or interactions from contaminants or impurities in the preparation. The potential for these effects needs to be carefully considered in choosing the container and the container closure system to avoid putting patients in jeopardy. Cause of Delamination : -Formulations with a high pH include phosphate and citrate buffers increase the risk of glass delamination. -High alkali content in glass could accelerate erosion. -High temperature during the vial-forming process increase the risk of glass delamination. -Terminal sterilization (irradiated at 20-40 kGy for 150 min) also is a risk factor for specific products(veterinary parenteral administration),could cause delamination. -High product-storage temperatures and long exposure times can increase the rate and severity of glass delamination. How to prevent Delamination -Treating the surface of the glass vials with materials, such as ammonium sulfate or siliconization can reduce the rate of glass erosion. -Consider alternative sterilization methods only in rare cases. -The correct specification for the glass to ensure its suitability for the pH of the product. -Use Cyclic olefin copolymer(COC)/Cyclic olefin Polymer(COP) Adsorption of protein and Solutions: Option#1 Coat with linear methoxylated polyglycerol and hyperbranchedmethoxylated polyglycerol. Option#2 Thehyperbranched non-methoxylated coating performed best. Option#3 Coat with hyperbranched polyglycerol Option#4 Right selection of Sterilization of glass vial/syringe.

Keywords: delamination of glass, ptrotien adoptions inside the glass surface, extractable & leachable solutions, injectable designs for new drugs

Procedia PDF Downloads 91
1858 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils

Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.

Keywords: copper, Klara, lime, N100, phytoextraction

Procedia PDF Downloads 143
1857 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 265
1856 Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material

Authors: P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid

Abstract:

Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre.

Keywords: bamboo fibres, natural fibres, bio composite, mechanical extraction, glass fibres

Procedia PDF Downloads 486
1855 Evaluation of the Efficacy of Surface Hydrophobisation and Properties of Composite Based on Lime Binder with Flax Fillers

Authors: Stanisław Fic, Danuta Barnat-Hunek, Przemysław Brzyski

Abstract:

The aim of the study was to evaluate the possibility of applying modified lime binder together with natural flax fibers and straw to the production of wall blocks to the usage in energy-efficient construction industry and the development of proposals for technological solutions. The following laboratory tests were performed: the analysis of the physical characteristics of the tested materials (bulk density, total porosity, and thermal conductivity), compressive strength, a water droplet absorption test, water absorption of samples, diffusion of water vapor, and analysis of the structure by using SEM. In addition, the process of surface hydrophobisation was analyzed. In the paper, there was examined the effectiveness of two formulations differing in the degree of hydrolytic polycondensation, viscosity and concentration, as these are the factors that determine the final impregnation effect. Four composites, differing in composition, were executed. Composites, as a result of the presence of flax straw and fibers showed low bulk density in the range from 0.44 to 1.29 kg/m3 and thermal conductivity between 0.13 W/mK and 0.22 W/mK. Compressive strength changed in the range from 0,45 MPa to 0,65 MPa. The analysis of results allowed observing the relationship between the formulas and the physical properties of the composites. The results of the effectiveness of hydrophobisation of composites after 2 days showed a decrease in water absorption. Depending on the formulation, after 2 days, the water absorption ratio WH of composites was from 15 to 92% (effectiveness of hydrophobization was suitably from 8 to 85%). In practice, preparations based on organic solvents often cause sealing of surface, hindering the diffusion of water vapor from materials but studies have shown good water vapor permeability by the hydrophobic silicone coating. The conducted pilot study demonstrated the possibility of applying flax composites. The article shows that the reduction of CO2 which is produced in the building process can be affected by using natural materials for the building components whose quality is not inferior as compared to the materials which are commonly used.

Keywords: ecological construction, flax fibers, hydrophobisation, lime

Procedia PDF Downloads 328
1854 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets

Authors: Ayodeji Fasuyi

Abstract:

Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.

Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives

Procedia PDF Downloads 131
1853 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers

Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie

Abstract:

As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.

Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth

Procedia PDF Downloads 61
1852 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects

Authors: Lukas Vierus, Thomas Schuster

Abstract:

A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.

Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions

Procedia PDF Downloads 43
1851 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate

Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg

Abstract:

The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. ASI alone has been shown to improve performance on cognitive tasks. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25g 0.75g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.

Keywords: arginine, inositol, arginase, cognitive benefits

Procedia PDF Downloads 108
1850 Investigation the Effect of Nano-Alumina Particles on Physical Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shamsollah Alijanlou

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and the environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in the adsorption process. In the present research gamma, Nano-alumina particle is added to Polyacrylonitrile (PAN) polymer through simple loading method and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gasses including SO2, CO, NO2, NO and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: acrylic fiber, adsorbent, wet spun, nano gamma alumina

Procedia PDF Downloads 309
1849 Modelisation of a Full-Scale Closed Cement Grinding

Authors: D. Touil, L. Ouadah

Abstract:

An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.

Keywords: grinding circuit, clinker, cement, modeling, population balance, energy

Procedia PDF Downloads 523
1848 Development of a Vegetation Searching System

Authors: Rattanathip Rattanachai, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript, and MySQL database system and it was designed to support searching endemic and rare species of tree on web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.3 and 4.5, and standard deviation for experts and users were 0.61 and 0.73 respectively. Further analysis showed that the quality of plant searching web site was also at a good level as well.

Keywords: endemic species, vegetation, web-based system, black box testing, Thailand

Procedia PDF Downloads 307
1847 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 281
1846 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax

Procedia PDF Downloads 171
1845 Phytochimical Screening and Antimicrobial Activity of Ethanolic Extract of Solenostemma Argel (Asclepiadaceae)

Authors: Fatma Acheuk, Akila Hamichi, Siham Semmar

Abstract:

The crude ethanolic extract from Solenostemma argel was obtained by maceration of leaves and stems of the plant. Phytochimical study revealed the richness of the species on flavonoids, alkaloids, tannins and glycosides. Antimicrobial activity of the growth of clinical isolates of Eschirichia coli, Pseudomonas aeriginosa, Staphylococus aureus and Bacillus Subtilis was carried out using agar disc diffusion. The results of the study revealed that the test compound has antimicrobial activity against gram-positive bacteria which are resistant to commonly antimicrobial agents used. However, no effect was observed on other species tested.

Keywords: Solenostemma argel, crude extract, phytochemical screening, antimicrobial activity

Procedia PDF Downloads 376