Search results for: cell morphology prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7027

Search results for: cell morphology prediction

5017 Cytotoxic Effect of Purified and Crude Hyaluronidase Enzyme on Hep G2 Cell Line

Authors: Furqan M. Kadhum, Asmaa A. Hussein, Maysaa Ch. Hatem

Abstract:

Hyaluronidase enzyme was purified from the clinical isolate Staphyloccus aureus in three purification steps, first by precipitation with 90% saturated ammonium sulfate, ion exchange chromatography on DEAE-Cellulose, and gel filtration chromatography throughout Sephacryl S-300. Specific activity of the purified enzyme was reached 930 U/mg protein with 7.4 folds of purification and 46.5% recovery. The enzyme has an average molecular weight of about 69 kDa, with an optimum pH of enzyme activity and stability at pH 7, also the optimum temperature for activity was 37oC. The enzyme was stable with full activity at a temperature ranged between 30-40 oC. Metal ions showed variable inhibitory degree with the strongest effect for Fe+3, however, the chelating and reducing agents had no or little effects. Cytotoxic studies for purified and crude hyaluronidase against cancer cell Hep G2 type at different enzyme concentrations and exposure times showed that the inhibition effect of both crude and purified enzyme increased by increasing the enzyme concentration with no change was observed at 24hr, while at 48 and 72 hrs the same inhibition rate were observed for purified enzyme and differ for the crude filtrate.

Keywords: hyaluronidase, S. aureus, metal ions, cytotoxicity

Procedia PDF Downloads 447
5016 GaAs Based Solar Cells: Growth, Fabrication, and Characterization

Authors: Hülya Kuru Mutlu, Mustafa Kulakcı, Uğur Serincan

Abstract:

The sun is one of the latest developments in renewable energy sources, which has a variety of application. Solar energy is the most preferred renewable energy sources because it can be used directly, it protects the environment and it is economic. In this work, we investigated that important parameter of GaAs-based solar cells with respect to the growth temperature. The samples were grown on (100) oriented p-GaAs substrates by solid source Veeco GEN20MC MBE system equipped with Ga, In, Al, Si, Be effusion cells and an Arsenic cracker cell. The structures of the grown samples are presented. After initial oxide desorption, Sample 1 and Sample 2 were grown at about 585°C and 535°C, respectively. From the grown structures, devices were fabricated by using the standard photolithography procedure. Current-voltage measurements were performed at room temperature (RT). It is observed that Sample 1 which was grown at 585°C has higher efficiency and fill factor compared to Sample 2. Hence, it is concluded that the growth temperature of 585°C is more suitable to grow GaAs-based solar cells considering our samples used in this study.

Keywords: molecular beam epitaxy, solar cell, current-voltage measurement, Sun

Procedia PDF Downloads 473
5015 Intraspecific Response of the Ciliate Tetrahymena thermophila to Copper and Thermal Stress

Authors: Doufoungognon Carine Kone

Abstract:

Heavy metals present in large quantities in ecosystems can alter biological and cellular functions and disrupt trophic functions. However, their toxicity can change according to thermal conditions, as toxicity depends on their bioavailability and thermal optimum of organisms. Organisms can develop different tolerance strategies to maintain themselves in a stressful environment, but these strategies are often studied in a single-stressor context. This study evaluates the responses of the ciliate Tetrahymena thermophila to copper, high temperature, and their interaction. Six genotypes were exposed to a gradient of copper concentrations ranging from 0 to 350mg/L in synthetic media at three temperatures: 15°C, 23°C, and 31°C. Cell density, cell shape and size (and their variance), swimming speed and trajectory, and copper uptake rate were measured. Depending on the genotype, swimming speed, trajectory, and cell size were highly affected by stress gradients. One gets bigger, while two genotypes get smaller and the other remain unchanged. Some genotypes swam less rapidly, while others speed up as copper and temperature increased. Concerning copper uptake, the two genotypes accumulating the best and the worst, whatever the copper concentration or temperature, were also those that had the highest densities. Finally, very few temperature x copper interactions were observed on phenotypic parameters. The diversity of phenotypic responses revealed in this study reflects the existence of divergent strategies adopted by Tetrahymena thermophila to resist to copper and thermal stress, which suggests an important role of intraspecific variability in biodiversity response to environmental stress. One general and the surprising pattern was a global absence of interactive effects between copper and high temperature exposure on the observed phenotypic responses.

Keywords: ciliate, copper, intraspecific variability, phenotype, temperature, tolerance, multiple stressors

Procedia PDF Downloads 76
5014 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
5013 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 98
5012 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing

Procedia PDF Downloads 304
5011 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication

Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu

Abstract:

Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.

Keywords: aristolochic acid, kidney, microRNA, swine

Procedia PDF Downloads 285
5010 Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution

Authors: Abbasali Abouei Mehrizi, Hao Wang

Abstract:

The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation.

Keywords: advancing, condensation, microscopic contact angle, partial wetting

Procedia PDF Downloads 295
5009 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon

Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi

Abstract:

Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.

Keywords: ethephon, DNA damage, γH2AX, oxidative stress

Procedia PDF Downloads 308
5008 Interferon-Induced Transmembrane Protein-3 rs12252-CC Associated with the Progress of Hepatocellular Carcinoma by Up-Regulating the Expression of Interferon-Induced Transmembrane Protein 3

Authors: Yuli Hou, Jianping Sun, Mengdan Gao, Hui Liu, Ling Qin, Ang Li, Dongfu Li, Yonghong Zhang, Yan Zhao

Abstract:

Background and Aims: Interferon-induced transmembrane protein 3 (IFITM3) is a component of ISG (Interferon-Stimulated Gene) family. IFITM3 has been recognized as a key signal molecule regulating cell growth in some tumors. However, the function of IFITM3 rs12252-CC genotype in the hepatocellular carcinoma (HCC) remains unknown to author’s best knowledge. A cohort study was employed to clarify the relationship between IFITM3 rs12252-CC genotype and HCC progression, and cellular experiments were used to investigate the correlation of function of IFITM3 and the progress of HCC. Methods: 336 candidates were enrolled in study, including 156 with HBV related HCC and 180 with chronic Hepatitis B infections or liver cirrhosis. Polymerase chain reaction (PCR) was employed to determine the gene polymorphism of IFITM3. The functions of IFITM3 were detected in PLC/PRF/5 cell with different treated:LV-IFITM3 transfected with lentivirus to knockdown the expression of IFITM3 and LV-NC transfected with empty lentivirus as negative control. The IFITM3 expression, proliferation and migration were detected by Quantitative reverse transcription polymerase chain reaction (qRT-PCR), QuantiGene Plex 2.0 assay, western blotting, immunohistochemistry, Cell Counting Kit(CCK)-8 and wound healing respectively. Six samples (three infected with empty lentiviral as control; three infected with LV-IFITM3 vector lentiviral as experimental group ) of PLC/PRF/5 were sequenced at BGI (Beijing Genomics Institute, Shenzhen,China) using RNA-seq technology to identify the IFITM3-related signaling pathways and chose PI3K/AKT pathway as related signaling to verify. Results: The patients with HCC had a significantly higher proportion of IFITM3 rs12252-CC compared with the patients with chronic HBV infection or liver cirrhosis. The distribution of CC genotype in HCC patients with low differentiation was significantly higher than that in those with high differentiation. Patients with CC genotype found with bigger tumor size, higher percentage of vascular thrombosis, higher distribution of low differentiation and higher 5-year relapse rate than those with CT/TT genotypes. The expression of IFITM3 was higher in HCC tissues than adjacent normal tissues, and the level of IFITM3 was higher in HCC tissues with low differentiation and metastatic than high/medium differentiation and without metastatic. Higher RNA level of IFITM3 was found in CC genotype than TT genotype. In PLC/PRF/5 cell with knockdown, the ability of cell proliferation and migration was inhibited. Analysis RNA sequencing and verification of RT-PCR found out the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR) pathway was associated with knockdown IFITM3.With the inhibition of IFITM3, the expression of PI3K/AKT/mTOR signaling pathway was blocked and the expression of vimentin was decreased. Conclusions: IFITM3 rs12252-CC with the higher expression plays a vital role in the progress of HCC by regulating HCC cell proliferation and migration. These effects are associated with PI3K/AKT/mTOR signaling pathway.

Keywords: IFITM3, interferon-induced transmembrane protein 3, HCC, hepatocellular carcinoma, PI3K/ AKT/mTOR, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin

Procedia PDF Downloads 124
5007 Performance of a Lytic Bacteriophage Cocktail against Pseudomonas aeruginosa in Conditions That Simulate the Cystic Fibrosis Lung Environment

Authors: Isaac Martin, Abigail Lark, Sandra Morales, Eric W. Alton, Jane C. Davies

Abstract:

Objectives: The cystic fibrosis (CF) lung is a unique microbiological niche, wherein harmful bacteria persist for many years despite antibiotic therapy. Pseudomonas aeruginosa (Pa), the major culprit leading to lung decline and increased mortality, thrives in the lungs of patients with CF due to several factors that have been linked with poor antibiotic performance. Our group is investigating alternative therapies including bacteriophage cocktails with which we have previously demonstrated efficacy against planktonic organisms. In this study, we explored the effects of a 4-phage cocktail on Pa grown in two different conditions, intended to mirror the CF lung: a) alongside standard antibiotic treatment in pre-formed biofilms (structures formed by Pa-secreted exopolysaccharides which provide both physical and cell division barriers to antimicrobials and host defenses and b) in an acidic environment postulated to be present in the CF airway due both to the primary defect in bicarbonate secretion and secondary effects of inflammation. Methods: 16 Pa strains from CF patients at the Royal Brompton Hospital were selected based on sensitivity to a) ceftazidime/ tobramycin and b) the phage cocktail in a conventional plaque assay. To assess efficacy of phage in biofilms, 96 well plates with Pa (5x10⁷ CFU/ ml) were incubated in static conditions, allowing adherent bacterial colonies to form for 24 hr. Ceftazidime and tobramycin (both at 2 × MIC) were added, +/- bacteriophage (4x10⁸ PFU/mL) for a further 24 hr. Cell viability and biomass were estimated using fluorescent resazurin and crystal violet assays, respectively. To evaluate the effect of pH, strains were grown planktonically in shaking 96 well plates at pH 6.0, 6.6, 7.0 and 7.5 with tobramycin or phage, at varying concentrations. Cell viability was quantified by fluorescent resazurin assay. Results: For the biofilm assay, treatment groups were compared with untreated controls and expressed as percent reduction in cell viability and biomass. Addition of the 4-phage cocktail resulted in a 1.3-fold reduction in cell viability and 1.7-fold reduction in biomass (p < 0.001) when compared to standard antibiotic treatment alone. Notably, there was a 50 ± 15% reduction in cell viability and 60 ± 12% reduction in biomass (95% CI) for the 4 biofilms demonstrating the most resistance to antibiotic treatment. 83% of strains tested (n=6) showed decreased bacterial killing by tobramycin at acidic pHs (p < 0.01). However, 25% of strains (n=12) showed improved phage killing at acidic pHs (p < 0.05), with none showing the pattern of reduced efficacy at acidic pH demonstrated by tobramycin. Conclusion: The 4-phage anti-Pa cocktail tested against Pa performs well in pre-formed biofilms and in acidic environments; two conditions intended to mimic the CF lung. To our knowledge, these are the first data looking at the effects of subtle pH changes on phage-mediated bacterial killing in the context of Pa infection. These findings contribute to a growing body of evidence supporting the use of nebulised lytic bacteriophage as a treatment in the context of lung infection.

Keywords: biofilm, cystic fibrosis, pH, Pseudomonas aeruginosa, lytic bacteriophage

Procedia PDF Downloads 173
5006 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 126
5005 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 141
5004 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites

Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler

Abstract:

Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.

Keywords: failure, strength, stress concentration, unidirectional composites

Procedia PDF Downloads 156
5003 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 164
5002 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 391
5001 Features of the Functional and Spatial Organization of Railway Hubs as a Part of the Urban Nodal Area

Authors: Khayrullina Yulia Sergeevna, Tokareva Goulsine Shavkatovna

Abstract:

The article analyzes the modern major railway hubs as a main part of the Urban Nodal Area (UNA). The term was introduced into the theory of urban planning at the end of the XX century. Tokareva G.S. jointly with Gutnov A.E. investigated the structure-forming elements of the city. UNA is the basic unit, the "cell" of the city structure. Specialization is depending on the position in the frame or the fabric of the city. This is related to feature of its organization. Spatial and functional features of UNA proposed to investigate in this paper. The base object for researching are railway hubs as connective nodes of inner and extern-city communications. Research used a stratified sampling type with the selection of typical objects. Research is being conducted on the 14 railway hubs of the native and foreign experience of the largest cities with a population over 1 million people located in one and close to the Russian climate zones. Features of the organization identified in the complex research of functional and spatial characteristics based on the hypothesis of the existence of dual characteristics of the organization of urban nodes. According to the analysis, there is using the approximation method that enable general conclusions of a representative selection of the entire population of railway hubs and it development’s area. Results of the research show specific ratio of functional and spatial organization of UNA based on railway hubs. Based on it there proposed typology of spaces and urban nodal areas. Identification of spatial diversity and functional organization’s features of the greatest railway hubs and it development’s area gives an indication of the different evolutionary stages of formation approaches. It help to identify new patterns for the complex and effective design as a prediction of the native hub’s development direction.

Keywords: urban nodal area, railway hubs, features of structural, functional organization

Procedia PDF Downloads 387
5000 Characterization of WNK2 Role on Glioma Cells Vesicular Traffic

Authors: Viviane A. O. Silva, Angela M. Costa, Glaucia N. M. Hajj, Ana Preto, Aline Tansini, Martin Roffé, Peter Jordan, Rui M. Reis

Abstract:

Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas.

Keywords: autophagy, endocytosis, glioma, WNK2

Procedia PDF Downloads 370
4999 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix

Authors: Kotchamon Yodkhum, Thawatchai Phaechamud

Abstract:

Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.

Keywords: chitosan, aluminum monostearate, dispersion, controlled-release

Procedia PDF Downloads 394
4998 Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications

Authors: Priya Varshney, Soumya S. Mohapatra

Abstract:

Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 279
4997 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
4996 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 270
4995 Raman Spectroscopic of Cardioprotective Mechanism During the Metabolic Inhibition of Heart Cells

Authors: A. Almohammedi, A. J. Hudson, N. M. Storey

Abstract:

Following ischaemia/reperfusion injury, as in a myocardial infraction, cardiac myocytes undergo oxidative stress which leads to several potential outcomes including; necrotic or apoptotic cell death or dysregulated calcium homeostasis or disruption of the electron transport chain. Several studies have shown that nitric oxide donors protect cardiomyocytes against ischemia and reperfusion. However until present, the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes is not fully understood and has not been investigated before using Raman spectroscopy. For these reasons, the aim of this study was to develop a novel technique, pre-resonance Raman spectroscopy, to investigate the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes exposed to metabolic inhibition and re-energisation. The results demonstrated the first time that Raman microspectroscopy technique has the capability to monitor the metabolic inhibition of cardiomyocytes and to monitor the effectiveness of cardioprotection by nitric oxide donor prior to metabolic inhibition of cardiomyocytes. Metabolic inhibition and reenergisation were used in this study to mimic the low and high oxygen levels experienced by cells during ischaemic and reperfusion treatments. A laser wavelength of 488 nm used in this study has been found to provide the most sensitive means of observe the cellular mechanisms of myoglobin during nitric oxide donor preconditioning, metabolic inhibition and re-energisation and did not cause any damage to the cells. The data also highlight the considerably different cellular responses to metabolic inhibition to ischaemia. Moreover, the data has been shown the relationship between the release of myoglobin and chemical ischemia where that the release of myoglobin from the cell only occurred if a cell did not recover contractility.

Keywords: ex vivo biospectroscopy, Raman spectroscopy, biophotonics, cardiomyocytes, ischaemia / reperfusion injury, cardioprotection, nitric oxide donor

Procedia PDF Downloads 352
4994 Influence of Preparation, Characterisation and Application of Carbon Nano Tube

Authors: Dhaivat S. Soni, Snehal Thakor, Afroz Bhatti

Abstract:

The prepare CNTs in bulk quantity by as easiest as possible method with highly pure and small diameter. Prepared CNTs first charactered its structural parameter for the conformation of CNTs and purity. Surface morphology of CNTs stured by using various instruments finally study application of prepared CNTs in various field. Carbon nanotubes (CNTs) were synthesized in large scale by pyrolyzing activated carbon in sealed autoclaves.

Keywords: nanostructures, nanotubes, carbon, pyrolysis

Procedia PDF Downloads 399
4993 The Effects of Androgen Receptor Mutation on Cryptorchid Testes in 46, XY Female

Authors: Ihtisham Bukhari

Abstract:

In the current study, we enrolled a 46, XY phenotypically female patient bearing testes in her inguinal canal. DNA sequencing of the AR gene detected a missense mutation C.1715A > G (p. Y572C) in exon 2 which is already known to cause Complete androgen insensitivity syndrome (CAIS). We further studied the effects of this mutation on the testicular histopathology of the patient. No spermatocytes were seen in the surface spreading of testicular tissues while H&E staining showed that seminiferous tubules predominantly have only Sertoli cells. To confirm this meiotic failure is likely due to the current AR mutation we performed mRNA expression of genes associated with AR pathway, expression and location of the associated proteins in testicular tissues. Western blot and real-time PCR data showed that the patient had high levels of expression of AMH, SOX9, and INNB in testis. Tubules were stained with SOX9 and AMH which revealed Sertoli cell maturation arrest. Therefore, we suggest that AR mutation enhances AMH expression which ultimately leads to failure in the maturation of Sertoli cells and failure in spermatogenesis.

Keywords: androgen receptor, spermatogenesis, infertility, Sertoli cell only syndrome

Procedia PDF Downloads 143
4992 Electrochemical Study of Prepared Cubic Fluorite Structured Titanium Doped Lanthanum Gallium Cerate Electrolyte for Low Temperature Solid Oxide Fuel Cell

Authors: Rida Batool, Faizah Altaf, Saba Nadeem, Afifa Aslam, Faisal Alamgir, Ghazanfar Abbas

Abstract:

Today, the need of the hour is to find out alternative renewable energy resources in order to reduce the burden on fossil fuels and prevent alarming environmental degradation. Solid oxide fuel cell (SOFC) is considered a good alternative energy conversion device because it is environmentally benign and supplies energy on demand. The only drawback associated with SOFC is its high operating temperature. In order to reduce operating temperature, different types of composite material are prepared. In this work, titanium doped lanthanum gallium cerate (LGCT) composite is prepared through the co-precipitation method as electrolyte and examined for low temperature SOFCs (LTSOFCs). The structural properties are analyzed by X-Ray Diffractometry (XRD) and Fourier Transform Infrared (FTIR) Spectrometry. The surface properties are investigated by Scanning Electron Microscopy (SEM). The electrolyte LGCT has the formula LGCTO₃ because it showed two phases La.GaO and Ti.CeO₂. The average particle size is found to be (32 ± 0.9311) nm. The ionic conductivity is achieved to be 0.073S/cm at 650°C. Arrhenius plots are drawn to calculate activation energy and found 2.96 eV. The maximum power density and current density are achieved at 68.25mW/cm² and 357mA/cm², respectively, at 650°C with hydrogen. The prepared material shows excellent ionic conductivity at comparatively low temperature, that makes it a potentially good candidate for LTSOFCs.

Keywords: solid oxide fuel cell, LGCTO₃, cerium composite oxide, ionic conductivity, low temperature electrolyte

Procedia PDF Downloads 108
4991 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 374
4990 In situ Investigation of PbI₂ Precursor Film Formation and Its Subsequent Conversion to Mixed Cation Perovskite

Authors: Dounya Barrit, Ming-Chun Tang, Hoang Dang, Kai Wang, Detlef-M. Smilgies, Aram Amassian

Abstract:

Several deposition methods have been developed for perovskite film preparation. The one-step spin-coating process has emerged as a more popular option thanks to its ability to produce films of different compositions, including mixed cation and mixed halide perovskites, which can stabilize the perovskite phase and produce phases with desired band gap. The two-step method, however, is not understood in great detail. There is a significant need and opportunity to adopt the two-step process toward mixed cation and mixed halide perovskites, but this requires deeper understanding of the two-step conversion process, for instance when using different cations and mixtures thereof, to produce high-quality perovskite films with uniform composition. In this work, we demonstrate using in situ investigations that the conversion of PbI₂ to perovskite is largely dictated by the state of the PbI₂ precursor film in terms of its solvated state. Using time-resolved grazing incidence wide-angle X-Ray scattering (GIWAXS) measurements during spin coating of PbI₂ from a DMF (Dimethylformamide) solution we show the film formation to be a sol-gel process involving three PbI₂-DMF solvate complexes: disordered precursor (P₀), ordered precursor (P₁, P₂) prior to PbI₂ formation at room temperature after 5 minutes. The ordered solvates are highly metastable and eventually disappear, but we show that performing conversion from P₀, P₁, P₂ or PbI₂ can lead to very different conversion behaviors and outcomes. We compare conversion behaviors by using MAI (Methylammonium iodide), FAI (Formamidinium Iodide) and mixtures of these cations, and show that conversion can occur spontaneously and quite rapidly at room temperature without requiring further thermal annealing. We confirm this by demonstrating improvements in the morphology and microstructure of the resulting perovskite films, using techniques such as in situ quartz crystal microbalance with dissipation monitoring, SEM and XRD.

Keywords: in situ GIWAXS, lead iodide, mixed cation, perovskite solar cell, sol-gel process, solvate phase

Procedia PDF Downloads 148
4989 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks

Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox

Abstract:

miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.

Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network

Procedia PDF Downloads 511
4988 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating

Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.

Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis

Procedia PDF Downloads 342