Search results for: temperature change
11110 The Effects of pH on the Electrochromism in Nickel Oxide Films
Authors: T. Taşköprü, M. Zor, E. Turan
Abstract:
The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.Keywords: nickel oxide, XRD, SEM, cyclic voltammetry
Procedia PDF Downloads 30611109 Affordances in Boating Performative Practices: The Case of Leisure Boating from the Swedish West Coast
Authors: Neva Leposa
Abstract:
While environmental policy makers are trying to increase pro-environmental behavior among tourists or outdoor recreation users through changing users’ attitudes, the focus of this paper is turned to the importance of so far marginalized – materiality in the users’ practices. The case study of leisure boating in Sweden used in this paper demonstrates how through the change of materiality (i.e. equipment and physical size of the leisure boats) emergent affordances in materially bound practices are transformed, and the boater-boat-sea nexus is redefined. Participatory observation and in-depth interviewing of Swedish West Coast visitors reveal two stories, first one points to the fact that sail boating practice is becoming increasingly motorized and second one describes how leisure boats are becoming increasingly perceived and used as mobile summer houses. Hence, such practice increases energy and matter consumption. This paper describes how that change happens through practice theory and affordance theory, thus points to visibility and the importance of materiality in shaping human nature nexus. Boating practice changes through the change of the materiality of the boats. In particular, energy consumption increases through the change of engagement with the matter. This study puts focus environmental attitudes focused strivings in question, for the fact that it is too individual-centered and lacks contextual understanding of the materially bound practices and may fail in the very thing it is aiming to do - reduce the environmental impacts.Keywords: practice theory, affordance theory, leisure boating, materiality
Procedia PDF Downloads 26911108 Influence of Applied Inorganic and Organic Nitrogen Fertilizers on Nitrogen Forms in Biochar-Treated Soil
Authors: Eman H. El-Gamal, Maher E. Saleh, Mohamed Rashad, Ibrahim Elsokkary, Mona M. Abd El-Latif
Abstract:
Biochar application to calcareous soils could potentially influence the nitrogen dynamics that affect the bioavailability of plants. This study was carried out to investigate the effect of incubation periods on the changes of nitrogen levels (total nitrogen TN and exchangeable ammonium NH₄⁺ and nitrate NO₃⁻) in biochar-treated calcareous soil. The incubation course was extended to 144 days at 30 ± 3 ℃ and at 50% of soil water holding capacity (WHC). Two types of biochars were obtained by pyrolysis at 500 ℃ from rice husk (RHB) and sugarcane bagasse (SCBB). The experiment was planned in a factorial experimental design with three factors (6 periods '24 days for each period' × 3 biochar types 'un-amended, RHB and SCBB' × 3 nitrogen fertilizers 'control, ammonium nitrate; AN and animal manure; AM') in a completely randomized design. The results obtained showed that the highest level of TN was found in the first 24 days of the incubation period in all treatments. However, the amount of TN was decreased with proceeding incubation period up to 144 days and reached to the lowest level at the end of incubation with values of change rate was 17.5, 16.6, and 14.6 g kg⁻¹ day⁻¹ for the un-amended, RHB and SCBB treated soil, respectively. The values of change rate in biochar-soils treated with nitrogen fertilizers were decreased gradually through the whole incubation time from 127.22 to 12.45 g kg⁻¹ day⁻¹ and from 65.00 to 13.43 g kg⁻¹ day⁻¹ for AN and AM respectively, in the case of RHB-soil. While in SCBB-soil, these values were decreased from 70.83 to 12.13 g kg⁻¹ day⁻¹ and from 59.17 to 11.48 g kg⁻¹ day⁻¹ for AN and AM treatments, respectively. The lowest concentration of exchangeable NH₄⁺ was generally found through the period from 24-48 days of incubation. However, the addition of nitrogen fertilizers, enhanced NH₄⁺ production through incubation periods. In the case of RHB-soil, the value of change rate in NH₄⁺ level in the first 24 days of incubation was 0.43 mg kg⁻¹ day⁻¹ and with the addition of AN and AM this value increased to 1.54 and 4.38 mg kg⁻¹ day⁻¹, respectively. In the case of SCBB-soil, the value of change rate in NH₄⁺ level was 0.29 mg kg⁻¹ day⁻¹ which increased to 1.04 mg kg⁻¹ day⁻¹ at the end of incubation, and due to the addition of AN and AM this value increased to 2.78 and 1.90 mg kg⁻¹ day⁻¹ in the first 24 days of incubation period, respectively. However, as compared to the control treatment, the lowest rate of change in NH₄⁺ level was found at the end of incubation. On the other hand, incubation of all biochars-amended soil and treated with AN and AM decreased the concentration levels of NO₃⁻, especially through the first 24-72 days of incubation period. As a result, the values of change rate in NO₃⁻ concentrations in all treatments were almost negative.Keywords: ammonium nitrate, animal manure, biochar, rice husk, sugarcane bagasse
Procedia PDF Downloads 13311107 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate
Authors: Mahfuzur Rahman
Abstract:
Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO
Procedia PDF Downloads 14611106 Fabricating Sheets of Mg-Zn Alloys by Thermomechanical Process
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In the present study, hot-rolled sheets of Mg-xZn alloy s(x=6, 8, and 10 weight percent) were produced by employing casting, homogenization heat treatment, hot rolling, and annealing processes subsequently. Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys were also investigated in each process. Through calculation of phase equilibria of Mg-Zn alloys, solution treatment temperature was decided as temperatures from 350 oC, where supersaturated solid solution can be obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling.Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hot rolling
Procedia PDF Downloads 31611105 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery
Procedia PDF Downloads 40511104 A Study on Urine Flow Characteristics in Ureter with Fluid-Structure Interaction
Authors: Myoung Je Song
Abstract:
Ureteral stent insertion is being used as one of the clinical interventional treatments due to stenosis and/or obstruction in the ureter. For the development of the ureteral stents, we have to know the flow patterns with and without peristalsis in the ureter. The purpose of this study is to understand the flow characteristics and movement of the ureter for the ureter model according to the presence or absence of peristalsis and to use it as fundamental information to design the optimal ureteral stent. In this study, CFD (Computational Fluid Dynamics) and FSI (Fluid-Structure Interaction) approaches were applied and compared the flow characteristics in the ureter. The distribution of streamlines was different in the near ureteropelvic junction. As a result of analyzing the area change of the ureter, the area change was large at the frontal and posterior ends, and the frontal and posterior aspects of the area change were reversed. There was no significant difference in the flow rate at the ureter outlet, and the movement of the ureter was larger when peristalsis was considered. Finally, as an introductory stage for the development of ureteral stents, basic information about the ureters according to the presence or absence of peristalsis is acquired.Keywords: computational fluid dynamics, fluid-structure interaction, peristalsis, urine flow
Procedia PDF Downloads 11111103 Electrical and Piezoelectric Properties of Vanadium-Modified Lead-Free (K₀.₅Na₀.₅)NbO₃ Ceramics
Authors: Radhapiyari Laishram, Chongtham Jiten, K. Chandramani Singh
Abstract:
During the last decade, there has been a significant growth in developing lead-free piezoelectric ceramics which have the potential to replace the currently dominant but highly superior lead-based piezoelectric materials such as PZT. Among the lead-free piezoelectrics, (K0.5Na0.5)NbO3 - based piezoceramics are promising candidates due to their superior piezoelectric properties and high Curie temperatures. In this work, (K0.5Na0.5)(Nb1-xVx)O3 powders with x varying the range 0 to 0.05 were synthesized from the raw materials K2CO3, Na2CO3, Nb2O5, and V2O5. These powders were ball milled with high-energy Retsch PM 100 ball mill using isopropanol as the medium at the speed of 200rpm for a duration of 8h. The milled powders were sintered at 1080oC for 1h. The crystalline phase of all the calcined powders and corresponding ceramics prepared was found to be perovskite with orthorhombic symmetry. The ceramic with V5+ content of x=0.03 exhibits the maximum values in density of 4.292 g/cc, room temperature dielectric constant (εr) of 432, and piezoelectric charge constant (d33) of 93pC/N. For this sample, the dielectric tan δ loss remains relatively low over a wide temperature range. The temperature dependence of P-E hysteresis loops has been investigated for the ceramic composition with x = 0.03.Keywords: dielectric properties, ferroelectric properties, perovskie, piezoelectric properties
Procedia PDF Downloads 33511102 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates
Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia
Abstract:
In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation
Procedia PDF Downloads 21211101 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes
Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai
Abstract:
This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence
Procedia PDF Downloads 50511100 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India
Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar
Abstract:
This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies
Procedia PDF Downloads 41911099 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves
Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar
Abstract:
Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.Keywords: solvent extraction, Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate
Procedia PDF Downloads 43811098 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 16911097 Release of Legacy Persistent Organic Pollutants and Mitigating Their Effects in Downstream Communities
Authors: Kimberley Rain Miner, Karl Kreutz, Larry LeBlanc
Abstract:
During the period of 1950-1970 persistent organic pollutants such as DDT, dioxin and PCB were released in the atmosphere and distributed through precipitation into glaciers throughout the world. Recent abrupt climate change is increasing the melt rate of these glaciers, introducing the toxins to the watershed. Studies have shown the existence of legacy pollutants in glacial ice, but neither the impact nor quantity of these toxins on downstream populations has been assessed. If these pollutants are released at toxic levels it will be necessary to create a mitigation plan to lower their impact on the affected communities.Keywords: climate change, adaptation, mitigation, risk management
Procedia PDF Downloads 36111096 Design and Construction of Temperature and Humidity Control Channel for a Bacteriological Incubator
Authors: Carlos R. Duharte Rodríguez, Ibrain Ceballo Acosta, Carmen B. Busoch Morlán, Angel Regueiro Gómez, Annet Martinez Hernández
Abstract:
This work shows the designing and characterization of a prototype of laboratory incubator as support of research in Microbiology, in particular during studies of bacterial growth in biological samples, with the help of optic methods (Turbidimetry) and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of sensors and analogue components of every channel, controlled with help of a microcontroller AT89C51 (ATMEL) with adequate benefits for this type of application.Keywords: microbiology, bacterial growth, incubation station, microorganisms
Procedia PDF Downloads 40011095 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model
Authors: Sidrah Ahmed
Abstract:
The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients
Procedia PDF Downloads 20311094 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions
Authors: Alexander Vaninsky
Abstract:
The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models
Procedia PDF Downloads 31411093 IT Workforce Enablement: How Cloud Computing Changes the Competence Mix of the IT Workforce
Authors: Dominik Krimpmann
Abstract:
Cloud computing has provided the impetus for change in the demand, sourcing, and consumption of IT-enabled services. The technology developed from an emerging trend towards a ‘must-have’. Many organizations harnessed on the quick-wins of cloud computing within the last five years but nowadays reach a plateau when it comes to sustainable savings and performance. This study aims to investigate what is needed from an organizational perspective to make cloud computing a sustainable success. The study was carried out in Germany among senior IT professionals, both in management and delivery positions. Our research shows that IT executives must be prepared to realign their IT workforce to sustain the advantage of cloud computing for today and the near future. While new roles will undoubtedly emerge, roles alone cannot ensure the success of cloud deployments. What is needed is a change in the IT workforce’s business behaviour, or put more simply, the ways in which the IT personnel works. It gives clear guidance on which dimensions of an employees’ working behaviour need to be adapted. The practical implications are drawn from a series of semi-structured interviews, resulting in a high-level workforce enablement plan. Lastly, it elaborates on tools and gives clear guidance on which pitfalls might arise along the proposed workforce enablement process.Keywords: cloud computing, organization design, organizational change, workforce enablement
Procedia PDF Downloads 31011092 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation
Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders
Abstract:
Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas
Procedia PDF Downloads 27211091 Distribution and Segregation of Aerosols in Ambient Air
Authors: S. Ramteke, K. S. Patel
Abstract:
Aerosols are complex mixture of particulate matters (PM) inclusive of carbons, silica, elements, various salts, etc. Aerosols get deep into the human lungs and cause a broad range of health effects, in particular, respiratory and cardiovascular illnesses. They are one of the major culprits for the climate change. They are emitted by the high thermal processes i.e. vehicles, steel, sponge, cement, thermal power plants, etc. Raipur (22˚33'N to 21˚14'N and 82˚6'E) to 81˚38'E) is a growing industrial city in central India with population of two million. In this work, the distribution of inorganics (i.e. Cl⁻, NO³⁻, SO₄²⁻, NH₄⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) associated to the PM in the ambient air is described. The PM₁₀ in ambient air of Raipur city was collected for duration of one year (December 2014 - December 2015). The PM₁₀ was segregated into nine modes i.e. PM₁₀.₀₋₉.₀, PM₉.₀₋₅.₈, PM₅.₈₋₄.₇, PM₄.₇₋₃.₃, PM₃.₃₋₂.₁, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇, PM₀.₇₋₀.₄ and PM₀.₄ to know their emission sources and health hazards. The analysis of ions and metals was carried out by techniques i.e. ion chromatography and TXRF. The PM₁₀ concentration (n=48) was ranged from 100-450 µg/m³ with mean value of 73.57±20.82 µg/m³. The highest concentration of PM₄.₇₋₃.₃, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇ was observed in the commercial, residential and industrial area, respectively. The effect of meteorology i.e. temperature, humidity, wind speed and wind direction in the PM₁₀ and associated elemental concentration in the air is discussed.Keywords: ambient aerosol, ions, metals, segregation
Procedia PDF Downloads 20011090 On the Other Side of Shining Mercury: In Silico Prediction of Cold Stabilizing Mutations in Serine Endopeptidase from Bacillus lentus
Authors: Debamitra Chakravorty, Pratap K. Parida
Abstract:
Cold-adapted proteases enhance wash performance in low-temperature laundry resulting in a reduction in energy consumption and wear of textiles and are also used in the dehairing process in leather industries. Unfortunately, the possible drawbacks of using cold-adapted proteases are their instability at higher temperatures. Therefore, proteases with broad temperature stability are required. Unfortunately, wild-type cold-adapted proteases exhibit instability at higher temperatures and thus have low shelf lives. Therefore, attempts to engineer cold-adapted proteases by protein engineering were made previously by directed evolution and random mutagenesis. The lacuna is the time, capital, and labour involved to obtain these variants are very demanding and challenging. Therefore, rational engineering for cold stability without compromising an enzyme's optimum pH and temperature for activity is the current requirement. In this work, mutations were rationally designed with the aid of high throughput computational methodology of network analysis, evolutionary conservation scores, and molecular dynamics simulations for Savinase from Bacillus lentus with the intention of rendering the mutants cold stable without affecting their temperature and pH optimum for activity. Further, an attempt was made to incorporate a mutation in the most stable mutant rationally obtained by this method to introduce oxidative stability in the mutant. Such enzymes are desired in detergents with bleaching agents. In silico analysis by performing 300 ns molecular dynamics simulations at 5 different temperatures revealed that these three mutants were found to be better in cold stability compared to the wild type Savinase from Bacillus lentus. Conclusively, this work shows that cold adaptation without losing optimum temperature and pH stability and additionally stability from oxidative damage can be rationally designed by in silico enzyme engineering. The key findings of this work were first, the in silico data of H5 (cold stable savinase) used as a control in this work, corroborated with its reported wet lab temperature stability data. Secondly, three cold stable mutants of Savinase from Bacillus lentus were rationally identified. Lastly, a mutation which will stabilize savinase against oxidative damage was additionally identified.Keywords: cold stability, molecular dynamics simulations, protein engineering, rational design
Procedia PDF Downloads 14011089 Effect of Climatic Change on the Life Activities of Schistocerca graria from Thar Desert, Sindh, Pakistan
Authors: Ahmed Ali Samejo, Riffat Sultana
Abstract:
Pakistan has the sandy Thar Desert in the eastern area, which share border line with India and has exotic fauna and flora, the livelihood of native people rely on livestock and rain fed cultivated fields. The climate of Thar Desert is very harsh and stressful due to frequent drought and very little rainfall, which may occur during monsoon season in the months of July to October and temperature is high, and wind speed also increases in April to June. Schistocerca gregaria is a destructive pest of vegetation from Mauritania to the border line of Pakistan and India. Sometimes they produce swarms which consume all plant where ever they land down and cause the loss in agro-economy of the world. During the recent study, we observed that vegetation was not unique throughout the Thar Desert in the year 2015, because the first spell of rainfall showered over all areas of the Thar Desert in July. However, the second and third spell of rain was confined to village Mahandre jo par and surroundings from August to October. Consequently, vegetation and cultivated crops grew up specially bajra crop (Pennistum glaucum). The climate of Mahandre jo par and surroundings became favorable for S.gregaria, and remaining areas of Thar Desert went hostile. Therefore desert locust attracted to the pleasant area (Mahandre jo par and surroundings) and gradually concentrated, increased reproductive activities, but did not gregarize due to the harvest of bajra crop and the onset of the winter season with an immediate decrease in temperature. An outbreak was near to come into existence, and thereupon conditions become stressful for hoppers to continue further development. Afore mentioned was one reason behind hurdle to the outbreak, another reason might be that migration and concentration of desert locust took place at the end of the season, so climate becomes unfavorable for hoppers, due to dryness of vegetation. Soils also become dry, because rainfall was not showered in end of the season, that’s why eggs that were deposited in late summer were desiccated. This data might be proved fruitful to forecast any outbreak update in future.Keywords: agro-economy, destructive pest, climate, outbreak, vegetation
Procedia PDF Downloads 17211088 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan
Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem
Abstract:
Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.Keywords: PV panel efficiency, PCM, numerical model, solar energy
Procedia PDF Downloads 17311087 Process Parameter Study on Friction Push Plug Welding of AA6061 Alloy
Authors: H. Li, W. Qin, Ben Ye
Abstract:
Friction Push Plug Welding (FPPW) is a solid phase welding suitable for repairing defective welds and filling self-reacting weld keyholes in Friction Stir Welds. In FPPW process, a tapered shaped plug is rotated at high speed and forced into a tapered hole in the substrate. The plug and substrate metal is softened by the increasing temperature generated by friction and material plastic deformation. This paper aims to investigate the effect of process parameters on the quality of the weld. Orthogonal design methods were employed to reduce the amount of experiment. Three values were selected for each process parameter, rotation speed (1500r/min, 2000r/min, 2500r/min), plunge depth (2mm, 3mm, 4mm) and plunge speed (60mm/min, 90mm/min, 120r/min). AA6061aluminum alloy plug and substrate plate was used in the experiment. In a trial test with the plunge depth of 1mm, a noticeable defect appeared due to the short plunge time and insufficient temperature. From the recorded temperature profiles, it was found that the peak temperature increased with the increase of the rotation speed, plunge speed and plunge depth. In the initial stage, the plunge speed was the main factor affecting heat generation, while in the steady state welding stage, the rotation speed played a more important role. The FPPW weld defect includes flash and incomplete penetration in the upper, middle and bottom interface with the substrate. To obtain defect free weld, the higher rotation speed and proper plunge depth were recommended.Keywords: friction push plug welding, process parameter, weld defect, orthogonal design
Procedia PDF Downloads 14611086 Bringing Design Science Research Methodology into Real World Applications
Authors: Maya Jaber
Abstract:
In today's ever-changing world, organizational leaders will need to transform their organizations to meet the demands they face from employees, consumers, local and federal governments, and the global market. Change agents and leaders will need a new paradigm of thinking for creative problem solving and innovation in a time of uncertainty. A new framework that is developed from Design Science Research foundations with holistic design thinking methodologies (HTDM) and action research approaches has been developed through Dr. Jaber’s research. It combines these philosophies into a three-step process that can be utilized in practice for any sustainability, change, or project management applications. This framework was developed to assist in the pedagogy for the implementation of her holistic strategy formalized framework Integral Design Thinking (IDT). Her work focuses on real world application for the streamlining and adoption of initiatives into organizational culture transformation. This paper will discuss the foundations of this philosophy and the methods for utilization in practice developed in Dr. Jaber's research.Keywords: design science research, action research, critical thinking, design thinking, organizational transformation, sustainability management, organizational culture change
Procedia PDF Downloads 18011085 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement
Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen
Abstract:
Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening
Procedia PDF Downloads 11411084 Study of the Thermomechanical Behavior of a Concrete Element
Authors: Douhi Reda Bouabdellah, Khalafi Hamid, Belamri Samir
Abstract:
The desire to improve the safety of nuclear reactor containment has revealed the need for data on the thermo mechanical behavior of concrete in case of accident during which the concrete is exposed to high temperatures. The aim of the present work is to study the influence of high temperature on the behavior of ordinary concrete specimens loaded by an effort of compression. A thermal model is developed by discretization volume elements (CASTEM). The results of different simulations, combined with other findings help to bring a physical phenomenon explanation Thermo mechanical concrete structures, which allowed to obtain the variation of the stresses anywhere in point or node and each subsequent temperature different directions X, Y and Z.Keywords: concrete, thermic-gradient, fire resistant, simulation by CASTEM, mechanical strength
Procedia PDF Downloads 30911083 Thermal Simulation for Urban Planning in Early Design Phases
Authors: Diego A. Romero Espinosa
Abstract:
Thermal simulations are used to evaluate comfort and energy consumption of buildings. However, the performance of different urban forms cannot be assessed precisely if an environmental control system and user schedules are considered. The outcome of such analysis would lead to conclusions that combine the building use, operation, services, envelope, orientation and density of the urban fabric. The influence of these factors varies during the life cycle of a building. The orientation, as well as the surroundings, can be considered a constant during the lifetime of a building. The structure impacts the thermal inertia and has the largest lifespan of all the building components. On the other hand, the building envelope is the most frequent renovated component of a building since it has a great impact on energy performance and comfort. Building services have a shorter lifespan and are replaced regularly. With the purpose of addressing the performance, an urban form, a specific orientation, and density, a thermal simulation method were developed. The solar irradiation is taken into consideration depending on the outdoor temperature. Incoming irradiation at low temperatures has a positive impact increasing the indoor temperature. Consequently, overheating would be the combination of high outdoor temperature and high irradiation at the façade. On this basis, the indoor temperature is simulated for a specific orientation of the evaluated urban form. Thermal inertia and building envelope performance are considered additionally as the materiality of the building. The results of different thermal zones are summarized using the 'Degree day method' for cooling and heating. During the early phase of a design process for a project, such as Masterplan, conclusions regarding urban form, density and materiality can be drawn by means of this analysis.Keywords: building envelope, density, masterplanning, urban form
Procedia PDF Downloads 14511082 Aging Time Effect of 58s Microstructure
Authors: Nattawipa Pakasri
Abstract:
58S (60SiO2-36CaO-4P2O5), three-dimensionally ordered macroporous bioactive glasses (3DOM-BGs) were synthesized by the sol-gel method using dual templating methods. non-ionic surfactant Brij56 used as templates component produced mesoporous and the spherical PMMA colloidal crystals as one template component yielded either three-dimensionally ordered microporous products or shaped bioactive glass nanoparticles. The bioactive glass with aging step for 12 h at room temperature, no structure transformation occurred and the 3DOM structure was produced (Figure a) due to no shrinkage process between the aging step. After 48 h time of o 3DOM structure remained and, nanocube with ∼120 nm edge lengths and nanosphere particle with ∼50 nm was obtained (Figure c, d). PMMA packing templates have octahedral and tetrahedral holes to make 2 final shapes of 3DOM-BGs which is rounded and cubic, respectively. The ageing time change from 12h, 24h and 48h affected to the thickness of interconnecting macropores network. The wall thickness was gradually decrease after increase aging time.Keywords: three-dimensionally ordered macroporous bioactive glasses, sol-gel method, PMMA, bioactive glass
Procedia PDF Downloads 11511081 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 383