Search results for: cognition movement time
17766 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran
Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour
Abstract:
Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.Keywords: wellbore stability, movement, stress, instability
Procedia PDF Downloads 20317765 Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older
Authors: Jeoffrey Oostrom, Robbert James Schlingmann, Hani Alers
Abstract:
This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it.Keywords: dementia care, medical data visualization, quality of life, smart companion
Procedia PDF Downloads 13917764 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 11217763 Architectural Knowledge Systems Related to Use of Terracotta in Bengal
Authors: Nandini Mukhopadhyay
Abstract:
The prominence of terracotta as a building material in Bengal is well justified by its geographical location. The architectural knowledge system associated with terracotta can be comprehended in the typology of the built structures as they act as texts to interpret the knowledge. The history of Bengal has witnessed the influence of several rulers in developing the architectural vocabulary of the region. This metamorphosis of the architectural knowledge systems in the region includes the Bhakti movement, the Islamic influence, and the British rule, which led to the evolution of the use of terracotta from decorative elements to structural elements in the present-day context. This paper intends to develop an understanding of terracotta as a building material, its use in a built structure, the common problems associated with terracotta construction, and the techniques of maintenance, repair, and conservation. This paper also explores the size, shape, and geometry of the material and its varied use in temples, mosques in the region. It also takes into note that the use of terracotta was concentrated majorly to religious structures and not in the settlements of the common people. And the architectural style of temples and mosques of Bengal is hugely influenced by the houses of the common.Keywords: terracotta, material, knowledge system, conservation
Procedia PDF Downloads 14917762 From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance
Authors: Sabariah Mohd Yusoff, Qamaruddin Adzeem Muhamad Murad
Abstract:
This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety.Keywords: car seat design, driver response time, cognitive driving, ergonomics optimization
Procedia PDF Downloads 2417761 Efficacy of the Hegab Temporomandibular Joint Splint in Treating Patients Diagnosed with Dystonia with or Without Systemic Involvement: A Report of 14 Cases
Authors: Ayman Hegab
Abstract:
Dystonia is a neurological motor disorder characterized by involuntary and uncontrollable muscle contractions, tension, twisting, and tremors. The aim of the present study was to analyze the improvement in dystonic contractions in patients with dystonia following the use of a Hegab temporomandibular joint splint (HTS). The Fahn-Marsden Dystonia Movement Scale (DMS) and Disability Scale were used in the current study to evaluate dystonia. An HTS with a thickness ranging from 4 to 6 mm was used to treat the patients enrolled in the study. The final sample comprised 14 patients (10 female and four male) with mean (range) ages of 35.64 (18 to 55) years. Pre-treatment DMS ranged from 6.5 to 57 mean (SD) 18.21 (13.38). At the end of the study, DMS ranged from 0 to 15 mean (SD) 3.14 (3.86). Statistical analysis of the differences between pre-treatment and post-treatment DMS showed a significant decrease in DMS at the end of the treatment period (p = 0.0001). Regarding the disability scale, the pre-treatment disability scale ranged from 7 to 18 mean (SD) 9.46 (3.02). At the end of the study, DMS ranged from 0 to 3 mean (SD) 1.46 (1.13). There was a statistically highly significant decrease in the Disability Scale at the end of the treatment period (p-value 0.0001). This study suggests that the HTS can be considered an effective treatment modality for dystonia, as it significantly decreases both the DMS and the Disability scale.Keywords: HTS, dystonia, DMS, disability scale
Procedia PDF Downloads 817760 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: toolpath, part program, optimization, pocket
Procedia PDF Downloads 28817759 The Impact of the EU Competition Law on the Asian Systems
Authors: Maria Casoria
Abstract:
Throughout the last decade developing countries have been undergoing substantial reforms to promote the establishment of competition regimes, as consequence of the trade liberalization and the spread of a ‘competition awareness movement’ across the globe. The legislative trend affected the whole Asia. Notwithstanding the existence of extensive joint ventures, cartels and other collusive business relationships in this geographical area, almost all the countries have already passed or are committed to enforce specific laws in the field. The study dwells into legal solutions adopted in the five sub-regions in which the continent is commonly divided –i.e. Central, East, South, Southeast, and Western Asia- and, using a comparative methodology, shed lights on the main differences and similarities in place. The final outcome of the analysis is that, despite the undeniable divergences of approach, what links together the legislation in force in the region is the unveiled influence exercised by the European Union competition regulation. Consequently, in order to properly evaluate the deterrence of the rule of law in the sector concerned, it is fundamental to scrutinize the major role played by the EU and its policy for the evolution of pro-competitive practices in the continent.Keywords: Asia, competition law, differences and similarities, European union, influences
Procedia PDF Downloads 27417758 Optimizing Road Transportation Network Considering the Durability Factors
Authors: Yapegue Bayogo, Ahmadou Halassi Dicko, Brahima Songore
Abstract:
In developing countries, the road transportation system occupies an important place because of its flexibility and the low prices of infrastructure and rolling stock. While road transport is necessary for economic development, the movement of people and their goods, it is urgent to use transportation systems that minimize carbon emissions in order to ensure sustainable development. One of the main objectives of OEDC and the Word Bank is to ensure sustainable economic’ development. This paper aims to develop a road transport network taking into account environmental impacts. The methodology adopted consists of formulating a model optimizing the flow of goods and then collecting information relating to the transport of products. Our model was tested with data on product transport in CMDT areas in the Republic of Mali. The results of our study indicate that emissions from the transport sector can be significantly reduced by minimizing the traffic volume. According to our study, optimizing the transportation network, we benefit from a significant amount of tons of CO₂.Keywords: road transport, transport sustainability, pollution, flexibility, optimized network
Procedia PDF Downloads 15017757 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms
Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,
Abstract:
Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model
Procedia PDF Downloads 28217756 The Effect of Artificial Intelligence on Autism Attitudes and Laws
Authors: Nermin Noshi Esraeil Abdalla
Abstract:
Inclusive schooling offerings for college kids with Autism stays in its early developmental levels in Thailand. despite many greater youngsters with autism are attending schools since the Thai authorities brought the training Provision for human beings with Disabilities Act in 2008, the services students with autism and their families obtain are typically missing. This quantitative examine used attitude and Preparedness to educate college students with Autism Scale (APTSAS) to investigate 110 number one faculty teachers’ attitude and preparedness to educate college students with autism inside the widespread training school room. Descriptive statistical evaluation of the records discovered that scholar behavior changed into the most good sized factor in constructing teachers’ terrible attitudes students with autism. the majority of teachers additionally indicated that their pre-service schooling did not put together them to fulfill the mastering needs of children with autism especially, folks who are non-verbal. The take a look at is substantial and offers path for enhancing trainer education for inclusivity in Thailand.Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills
Procedia PDF Downloads 2217755 Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings
Authors: Naik Muhammad, Zahid Ullah, Dong-Ho Choi
Abstract:
Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT.Keywords: submerged floating tunnel, hydrodynamic analysis, time history analysis, seismic response
Procedia PDF Downloads 32917754 Interactive Shadow Play Animation System
Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding
Abstract:
The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.Keywords: hadow play animation, Kinect, gesture recognition, VRPN, HCI
Procedia PDF Downloads 40117753 Kalman Filter Gain Elimination in Linear Estimation
Authors: Nicholas D. Assimakis
Abstract:
In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.Keywords: discrete time, estimation, Kalman filter, Kalman filter gain
Procedia PDF Downloads 19617752 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker
Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee
Abstract:
The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.Keywords: heat transfer, temperature, voice coil, woofer speaker
Procedia PDF Downloads 36017751 Exploring Service Performance of Area-Based Bus Service for Dhaka: A Case Study of Dhaka Chaka
Authors: Md. Musfiqur Rahman Bhuiya Nidalia Islam, Hossain Mohiuddin, Md. Kawser Bin Zaman
Abstract:
Dhaka North City Corporation introduced first area-based bus service on 10 August 2016 to run through Gulshan and Banani area to dilute sufferings of the people which started with the ban on movement of the bus in these areas after Holy Artisan terrorist attack. This study explores service quality performance of Dhaka Chaka on the basis of information provided by its riders on a questionnaire survey. Total thirteen service quality indicators have been ranked on a scale of 1-5, and they have been classified under three latent variables based on their correlation using eigenvalue and rotated factor matrix derived through factor analysis process. Mean, and skewness has been calculated for each indicator. It has been found that ticket price and ticketing system have relatively poor average service quality rank than other factors. All other factors have moderately good performance. The study also suggests some recommendation to improve service quality of Dhaka Chaka based on the interrelation between considered parameters.Keywords: area based bus service, eigen value, factor analysis, correlation
Procedia PDF Downloads 18917750 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors: U. Datta
Abstract:
The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection
Procedia PDF Downloads 13517749 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining
Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre
Abstract:
Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systemsKeywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format
Procedia PDF Downloads 6917748 In vitro Effects of Salvia officinalis on Bovine Spermatozoa
Authors: Eva Tvrdá, Boris Botman, Marek Halenár, Tomáš Slanina, Norbert Lukáč
Abstract:
In vitro storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the Salvia officinalis extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of in vitro culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL Salvia extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL Salvia extract had no effects on bovine male gametes, however 2 µg/mL Salvia had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL Salvia exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire in vitro culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in Salvia officinalis may have individually or collectively on the in vitro sperm vitality and oxidative profile.Keywords: bulls, CASA, MTT test, reactive oxygen species, sage, Salvia officinalis, spermatozoa
Procedia PDF Downloads 33817747 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method
Authors: Jurriaan Gillissen
Abstract:
This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence
Procedia PDF Downloads 22417746 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 20517745 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications
Authors: Artion Kashuri, Rozana Liko
Abstract:
In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale
Procedia PDF Downloads 15017744 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries
Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma
Abstract:
Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion
Procedia PDF Downloads 23817743 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks
Authors: Yen-Luan Chen
Abstract:
Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability
Procedia PDF Downloads 27517742 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model
Procedia PDF Downloads 16817741 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery
Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft
Abstract:
Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics
Procedia PDF Downloads 56817740 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 20317739 ‘Ethical Relativism’ in Offshore Business: A Critical Assessment
Authors: Biswanath Swain
Abstract:
Ethical relativism, as an ethical perspective, holds that moral worth of a course of action is dependent on a particular space and time. Moral rightness or wrongness of a course of action varies from space to space and from time to time. In short, ethical relativism holds that morality is relative to the context. If we reflect conscientiously on the scope of this perspective, we will find that it is wide-spread amongst the marketers involved in the offshore business. However, the irony is that most of the marketers gone along with ethical relativism in their offshore business have been found to be unsuccessful in terms of loss in market-share and bankruptcy. The upshot is purely self-defeating in nature for the marketers. GSK in China and Nestle Maggi in India are some of the burning examples of that sort. The paper argues and recommends that a marketer, as an alternative, should have recourse to Kantian ethical perspective to deliberate courses of action sensitive to offshore business as Kantian ethical perspective is logically and methodologically sound in nature.Keywords: business, course of action, Kant, morality, offshore, relativism
Procedia PDF Downloads 30317738 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters
Authors: K. Parandhama Gowd
Abstract:
The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)
Procedia PDF Downloads 57217737 Mechanism of Religion on Community Movement for Solid Waste Management
Authors: Sophaphan Intahphuak, Narong Pamala, Boonyaporn Yodkhong, Samuhavitayaa
Abstract:
The amount of solid waste increases each year as a result of population growth, urbanization and economic expansion; however, there was little public cooperation in the segregation of solid waste due to the lack of awareness. This study aims to encourage all sectors in the community to participate in the development of a suitable model to reduce environmental waste by emerging the cultural context that bares a close relationship with Buddhism through faith and merit-making. The monks, involving stakeholder in the entire waste management system, help publicize the campaign on Buddhist holy days, religious ceremonies and they also teach people to be responsible for the garbage problem in the community. As for the garbage brought for merit-making, they are sold and the money is used to help build the pavilion. It was found that people can separate recycled garbage and the amount of solid waste slightly decrease. The results obtained suggest that the religion is not only the moral center of the community, it is also the center of community empowerment to consciousness in waste management.Keywords: community empowerment, religion’s role, waste management, recycled garbage
Procedia PDF Downloads 477