Search results for: care networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6494

Search results for: care networks

4514 Addressing Stigma on the Child and Adolescent Psychiatry Consultation Service Through Use of Video

Authors: Rachel Talbot, Nasuh Malas

Abstract:

Stigma in child and adolescent psychiatry continues to be a significant barrier for youth to receive much needed psychiatric care. Parents misperceptions regarding mental health may interfere with their child’s care and negatively influence their child’s view of mental health. For some children, their first experience with psychiatry may occur during medical hospitalization when they are seen by the Psychiatry Consultation-Liaison (C/L) Service. Despite this unique role, there is limited data on how to address mental health stigma with patients and families within the context of Child and Adolescent C/L Psychiatry. This study explores the use of a brief introductory video with messages from the psychiatry C/L team, families who have accessed mental health consultation in the hospital, as well as clips of family and C/L team interactions to address parental stigma of psychiatry. Common stigmatized concerns shared by parents include concerns about confidentiality, later ramifications of mental healthcare, outsider status, and parental self-blame. There are also stigmatized concerns about psychiatric medication use including overmedication, sedation, long-term effects, medicating ‘real problems’ and personality blunting. Each of these are addressed during the video parents will see with the intent of reducing negative parental perceptions relating to mental healthcare. For this study, families are given a survey highlighting these concerns, prior to and after watching the video. Pre-and post-video responses are compared with the hypothesis that watching the video will effectively reduce parental stigma about psychiatric care. Data collection is currently underway and will be completed by the end of November 2017 with data analysis completed by January 2018. This study will also give vital information about the demographic differences in perceptions of stigma so future interventions can be targeted towards those with higher perceived stigma. This study posits that use of an introductory video is an effective strategy to combat stigma and help educate and empower families. In this way, we will be reducing further barriers for patients and families to seek out mental health resources and supports that are often desperately needed for these youths.

Keywords: child and adolescent psychiatry, consult-liaison psychiatry, media, stigma

Procedia PDF Downloads 197
4513 Metabolomics Profile Recognition for Cancer Diagnostics

Authors: Valentina L. Kouznetsova, Jonathan W. Wang, Igor F. Tsigelny

Abstract:

Metabolomics has become a rising field of research for various diseases, particularly cancer. Increases or decreases in metabolite concentrations in the human body are indicative of various cancers. Further elucidation of metabolic pathways and their significance in cancer research may greatly spur medicinal discovery. We analyzed the metabolomics profiles of lung cancer. Thirty-three metabolites were selected as significant. These metabolites are involved in 37 metabolic pathways delivered by MetaboAnalyst software. The top pathways are glyoxylate and dicarboxylate pathway (its hubs are formic acid and glyoxylic acid) along with Citrate cycle pathway followed by Taurine and hypotaurine pathway (the hubs in the latter are taurine and sulfoacetaldehyde) and Glycine, serine, and threonine pathway (the hubs are glycine and L-serine). We studied interactions of the metabolites with the proteins involved in cancer-related signaling networks, and developed an approach to metabolomics biomarker use in cancer diagnostics. Our analysis showed that a significant part of lung-cancer-related metabolites interacts with main cancer-related signaling pathways present in this network: PI3K–mTOR–AKT pathway, RAS–RAF–ERK1/2 pathway, and NFKB pathway. These results can be employed for use of metabolomics profiles in elucidation of the related cancer proteins signaling networks.

Keywords: cancer, metabolites, metabolic pathway, signaling pathway

Procedia PDF Downloads 405
4512 Healthcare Fire Disasters: Readiness, Response and Resilience Strategies: A Real-Time Experience of a Healthcare Organization of North India

Authors: Raman Sharma, Ashok Kumar, Vipin Koushal

Abstract:

Healthcare facilities are always seen as places of haven and protection for managing the external incidents, but the situation becomes more difficult and challenging when such facilities themselves are affected from internal hazards. Such internal hazards are arguably more disruptive than external incidents affecting vulnerable ones, as patients are always dependent on supportive measures and are neither in a position to respond to such crisis situation nor do they know how to respond. The situation becomes more arduous and exigent to manage if, in case critical care areas like Intensive Care Units (ICUs) and Operating Rooms (OR) are convoluted. And, due to these complexities of patients’ in-housed there, it becomes difficult to move such critically ill patients on immediate basis. Healthcare organisations use different types of electrical equipment, inflammable liquids, and medical gases often at a single point of use, hence, any sort of error can spark the fire. Even though healthcare facilities face many fire hazards, damage caused by smoke rather than flames is often more severe. Besides burns, smoke inhalation is primary cause of fatality in fire-related incidents. The greatest cause of illness and mortality in fire victims, particularly in enclosed places, appears to be the inhalation of fire smoke, which contains a complex mixture of gases in addition to carbon monoxide. Therefore, healthcare organizations are required to have a well-planned disaster mitigation strategy, proactive and well prepared manpower to cater all types of exigencies resulting from internal as well as external hazards. This case report delineates a true OR fire incident in Emergency Operation Theatre (OT) of a tertiary care multispecialty hospital and details the real life evidence of the challenges encountered by OR staff in preserving both life and property. No adverse event was reported during or after this fire commotion, yet, this case report aimed to congregate the lessons identified of the incident in a sequential and logical manner. Also, timely smoke evacuation and preventing the spread of smoke to adjoining patient care areas by opting appropriate measures, viz. compartmentation, pressurisation, dilution, ventilation, buoyancy, and airflow, helped to reduce smoke-related fatalities. Henceforth, precautionary measures may be implemented to mitigate such incidents. Careful coordination, continuous training, and fire drill exercises can improve the overall outcomes and minimize the possibility of these potentially fatal problems, thereby making a safer healthcare environment for every worker and patient.

Keywords: healthcare, fires, smoke, management, strategies

Procedia PDF Downloads 72
4511 Combined Orthodontic and Restorative Management of Complex Cases: Concepts and Case Reports

Authors: Awais Ali, Hesham Ali

Abstract:

The absence of teeth through either premature loss or developmental absence is a common condition with potentially severe impact on affected individuals. Management of these cases presents a clinical challenge which may be difficult to resolve given the effects of tooth loss or hypodontia over the course of a patient’s lifetime. Treatment of such cases is often best provided by a multi-disciplinary team, where the patient’s expectations and care delivery can be optimally managed. Orthodontic treatment is often used to prepare the dentition in advance of restorative replacement of missing teeth. Conversely, the placement of implants may precede the delivery of orthodontic treatment and indeed may function as an adjunctive orthodontic procedure. We discuss the use of both approaches here and illustrate their clinical implementation with two case reports. The first case demonstrates the use of fixed appliances to prepare the mouth for an opposing implant-retained complete denture. A second case demonstrates the use of implant-retained crowns to provide orthodontic anchorage in a partially dentate patient. We propose that complex cases such as these should always be planned and treated by a multi-disciplinary team in order to optimise the delivery of care, patient experience, and treatment outcome. The presented cases add to the body of evidence in this area.

Keywords: orthodontics, dental implantology, hypodontia, multi-disciplinary

Procedia PDF Downloads 133
4510 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 96
4509 Addressing Rural Health Challenges: A Flexible Modular Approach for Resilient Healthcare Services

Authors: Pariya Sheykhmaleki, Debajyoti Pati

Abstract:

Rural areas in the United States face numerous challenges in providing quality and assessable primary healthcare services, especially during emergencies such as natural disasters or pandemics. This study showcases a cutting-edge flexible module that aims to overcome these challenges by offering adaptable healthcare facilities capable of providing comprehensive health services in remote and disaster-prone regions. According to the Health Resources and Services Administration (HRSA), approximately 62 million Americans, or 1 in 5 individuals, live in areas designated as Health Professional Shortage Areas (HPSAs) for primary care. These areas are characterized by limited access to healthcare facilities, shortage of healthcare professionals, transportation barriers, inadequate healthcare infrastructure, higher rates of chronic diseases, mental health disparities, and limited availability of specialized care, including urgent circumstances like pandemics that can exacerbate this issue. To address these challenges, the literature study began by examining primary health solutions in very remote areas, e.g., spaceships, to identify the state-of-the-art technologies and the methods used to facilitate primary care needs. The literature study on flexibility in architecture and interior design was also adapted to develop a conceptual design for rural areas. The designed flexible module provides an innovative solution. This module can be prefabricated as all parts are standardized. The flexibility of the module allows the structure to be modified based on local and geographical requirements as well as the ability to expand as required. It has been designed to stand either by itself or work in tandem with public buildings. By utilizing sustainable approaches and flexible spatial configurations, the module optimizes the utilization of limited resources while ensuring efficient and effective healthcare delivery. Furthermore, the poster highlights the key features of this flexible module, including its ability to support telemedicine and telehealth services for all five levels of urgent care conditions, i.e., from facilitating fast tracks to supporting emergency room services, in two divided zones. The module's versatility enables its deployment in rural areas located far from urban centers and disaster-stricken regions, ensuring access to critical healthcare services in times of need. This module is also capable of responding in urban areas when the need for primary health becomes vastly urgent, e.g., during a pandemic. It emphasizes the module's potential to bridge the healthcare gap between rural and urban areas and mitigate the impact of rural health challenges.

Keywords: rural health, healthcare challenges, flexible modular design, telemedicine, telehealth

Procedia PDF Downloads 81
4508 Health Satisfaction and Family Impact of Parents of Children with Cancer

Authors: Ekhlas Al Gamal, Tony Long

Abstract:

The impact on the parents of caring for a child with cancer was intense and wide-ranging. A high level of distress and low level or resilience remains during treatment. Even completion of treatment can be a time of increased anxiety and stress for parents particularly with worries about recurrence or relapse. The purpose of this study to examine the associations between parental satisfactions with healthcare provided for their child and the impact of being a caregiver for a child with cancer. Methodology: A descriptive, correlational and cross-sectional design was employed using data from Arabic versions of self-report questionnaires which were administered to 113 parents with children with cancer in Jordan during 2015. Findings: the result indicated that Family relationship functioning was ranked as the highest (better functioning) domain while daily activities were ranked as the lowest (poorer functioning) domain. Parents were generally satisfied with the health care provided, but their emotional needs were not met adequately. Parents with better social functioning were more satisfied in all areas of healthcare satisfaction other than emotional needs and communication. Parents who had a child with more emotional and behavioural problems were more likely to experience a negative impact on the family and a poor level of family functioning. Conclusion and Significance: Nurses and other health care providers should emphasis on family centred approach rather than child centred approach.

Keywords: parents, children, cancer, Jordan

Procedia PDF Downloads 342
4507 Improving the Uptake of Community-Based Multidrug-Resistant Tuberculosis Treatment Model in Nigeria

Authors: A. Abubakar, A. Parsa, S. Walker

Abstract:

Despite advances made in the diagnosis and management of drug-sensitive tuberculosis (TB) over the past decades, treatment of multidrug-resistant tuberculosis (MDR-TB) remains challenging and complex particularly in high burden countries including Nigeria. Treatment of MDR-TB is cost-prohibitive with success rate generally lower compared to drug-sensitive TB and if care is not taken it may become the dominant form of TB in future with many treatment uncertainties and substantial morbidity and mortality. Addressing these challenges requires collaborative efforts thorough sustained researches to evaluate the current treatment guidelines, particularly in high burden countries and prevent progression of resistance. To our best knowledge, there has been no research exploring the acceptability, effectiveness, and cost-effectiveness of community-based-MDR-TB treatment model in Nigeria, which is among the high burden countries. The previous similar qualitative study looks at the home-based management of MDR-TB in rural Uganda. This research aimed to explore patient’s views and acceptability of community-based-MDR-TB treatment model and to evaluate and compare the effectiveness and cost-effectiveness of community-based versus hospital-based MDR-TB treatment model of care from the Nigerian perspective. Knowledge of patient’s views and acceptability of community-based-MDR-TB treatment approach would help in designing future treatment recommendations and in health policymaking. Accordingly, knowledge of effectiveness and cost-effectiveness are part of the evidence needed to inform a decision about whether and how to scale up MDR-TB treatment, particularly in a poor resource setting with limited knowledge of TB. Mixed methods using qualitative and quantitative approach were employed. Qualitative data were obtained using in-depth semi-structured interviews with 21 MDR-TB patients in Nigeria to explore their views and acceptability of community-based MDR-TB treatment model. Qualitative data collection followed an iterative process which allowed adaptation of topic guides until data saturation. In-depth interviews were analyzed using thematic analysis. Quantitative data on treatment outcomes were obtained from medical records of MDR-TB patients to determine the effectiveness and direct and indirect costs were obtained from the patients using validated questionnaire and health system costs from the donor agencies to determine the cost-effectiveness difference between community and hospital-based model from the Nigerian perspective. Findings: Some themes have emerged from the patient’s perspectives indicating preference and high acceptability of community-based-MDR-TB treatment model by the patients and mixed feelings about the risk of MDR-TB transmission within the community due to poor infection control. The result of the modeling from the quantitative data is still on course. Community-based MDR-TB care was seen as the acceptable and most preferred model of care by the majority of the participants because of its convenience which in turn enhanced recovery, enables social interaction and offer more psychosocial benefits as well as averted productivity loss. However, there is a need to strengthen this model of care thorough enhanced strategies that ensure guidelines compliance and infection control in order to prevent the progression of resistance and curtail community transmission.

Keywords: acceptability, cost-effectiveness, multidrug-resistant TB treatment, community and hospital approach

Procedia PDF Downloads 124
4506 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: distribution system, loss, photovoltaic generation, primal-dual interior point method

Procedia PDF Downloads 336
4505 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid

Authors: Eyad Almaita

Abstract:

In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.

Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption

Procedia PDF Downloads 350
4504 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 332
4503 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 208
4502 Optimal Pressure Control and Burst Detection for Sustainable Water Management

Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana

Abstract:

Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.

Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring

Procedia PDF Downloads 92
4501 Integration of an Evidence-Based Medicine Curriculum into Physician Assistant Education: Teaching for Today and the Future

Authors: Martina I. Reinhold, Theresa Bacon-Baguley

Abstract:

Background: Medical knowledge continuously evolves and to help health care providers to stay up-to-date, evidence-based medicine (EBM) has emerged as a model. The practice of EBM requires new skills of the health care provider, including directed literature searches, the critical evaluation of research studies, and the direct application of the findings to patient care. This paper describes the integration and evaluation of an evidence-based medicine course sequence into a Physician Assistant curriculum. This course sequence teaches students to manage and use the best clinical research evidence to competently practice medicine. A survey was developed to assess the outcomes of the EBM course sequence. Methodology: The cornerstone of the three-semester sequence of EBM are interactive small group discussions that are designed to introduce students to the most clinically applicable skills to identify, manage and use the best clinical research evidence to improve the health of their patients. During the three-semester sequence, the students are assigned each semester to participate in small group discussions that are facilitated by faculty with varying background and expertise. Prior to the start of the first EBM course in the winter semester, PA students complete a knowledge-based survey that was developed by the authors to assess the effectiveness of the course series. The survey consists of 53 Likert scale questions that address the nine objectives for the course series. At the end of the three semester course series, the same survey was given to all students in the program and the results from before, and after the sequence of EBM courses are compared. Specific attention is paid to overall performance of students in the nine course objectives. Results: We find that students from the Class of 2016 and 2017 consistently improve (as measured by percent correct responses on the survey tool) after the EBM course series (Class of 2016: Pre- 62% Post- 75%; Class of 2017: Pre- 61 % Post-70%). The biggest increase in knowledge was observed in the areas of finding and evaluating the evidence, with asking concise clinical questions (Class of 2016: Pre- 61% Post- 81%; Class of 2017: Pre- 61 % Post-75%) and searching the medical database (Class of 2016: Pre- 24% Post- 65%; Class of 2017: Pre- 35 % Post-66 %). Questions requiring students to analyze, evaluate and report on the available clinical evidence regarding diagnosis showed improvement, but to a lesser extend (Class of 2016: Pre- 56% Post- 77%; Class of 2017: Pre- 56 % Post-61%). Conclusions: Outcomes identified that students did gain skills which will allow them to apply EBM principles. In addition, the outcomes of the knowledge-based survey allowed the faculty to focus on areas needing improvement, specifically the translation of best evidence into patient care. To address this area, the clinical faculty developed case scenarios that were incorporated into the lecture and discussion sessions, allowing students to better connect the research studies with patient care. Students commented that ‘class discussion and case examples’ contributed most to their learning and that ‘it was helpful to learn how to develop research questions and how to analyze studies and their significance to a potential client’. As evident by the outcomes, the EBM courses achieved the goals of the course and were well received by the students. 

Keywords: evidence-based medicine, clinical education, assessment tool, physician assistant

Procedia PDF Downloads 131
4500 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 153
4499 Incidence and Risk Factors of Central Venous Associated Infections in a Tunisian Medical Intensive Care Unit

Authors: Ammar Asma, Bouafia Nabiha, Ghammam Rim, Ezzi Olfa, Ben Cheikh Asma, Mahjoub Mohamed, Helali Radhia, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Central venous catheter associated infections (CVC-AI) are among the serious hospital-acquired infections. The aims of this study are to determine the incidence of CVC-AI, and their risk factors among patients followed in a Tunisian medical intensive care unit (ICU). Materials / Methods: A prospective cohort study conducted between September 15th, 2015 and November 15th, 2016 in an 8-bed medical ICU including all patients admitted for more than 48h. CVC-AI were defined according to CDC of ATLANTA criteria. The enrollment was based on clinical and laboratory diagnosis of CVC-AI. For all subjects, age, sex, underlying diseases, SAPS II score, ICU length of stay, exposure to CVC (number of CVC placed, site of insertion and duration catheterization) were recorded. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: Among 192 eligible patients, 144 patients (75%) had a central venous catheter. Twenty-eight patients (19.4%) had developed CVC-AI with density rate incidence 20.02/1000 CVC-days. Among these infections, 60.7% (n=17) were systemic CVC-AI (with negative blood culture), and 35.7% (n=10) were bloodstream CVC-AI. The mean SAPS II of patients with CVC-AI was 32.76 14.48; their mean Charlson index was 1.77 1.55, their mean duration of catheterization was 15.46 10.81 days and the mean duration of one central line was 5.8+/-3.72 days. Gram-negative bacteria was determined in 53.5 % of CVC-AI (n= 15) dominated by multi-drug resistant Acinetobacter baumani (n=7). Staphylococci were isolated in 3 CVC-AI. Fourteen (50%) patients with CVC-AI died. Univariate analysis identified men (p=0.034), the referral from another hospital department (p=0.03), tobacco (p=0.006), duration of sedation (p=0.003) and the duration of catheterization (p=0), as possible risk factors of CVC-AI. Multivariate analysis showed that independent factors of CVC-AI were, male sex; OR= 5.73, IC 95% [2; 16.46], p=0.001, Ramsay score; OR= 1.57, IC 95% [1.036; 2.38], p=0.033, and duration of catheterization; OR=1.093, IC 95% [1.035; 1.15], p=0.001. Conclusion: In a monocenter cohort, CVC-AI had a high density and is associated with poor outcome. Identifying the risk factors is necessary to find solutions for this major health problem.

Keywords: central venous catheter associated infection, intensive care unit, prospective cohort studies, risk factors

Procedia PDF Downloads 362
4498 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks

Procedia PDF Downloads 297
4497 Decreased Non-Communicable Disease by Surveillance, Control, Prevention Systems, and Community Engagement Process in Phayao, Thailand

Authors: Vichai Tienthavorn

Abstract:

Background: Recently, the patients of non-communicable diseases (NCDs) are increasing in Thailand; especially hypertension and diabetes. Hypertension and Diabetes patients were found to be of 3.7 million in 2008. The varieties of human behaviors have been extensively changed in health. Hence, Thai Government has a policy to reduce NCDs. Generally, primary care plays an important role in treatment using medical process. However, NCDs patients have not been decreased. Objectives: This study not only reduce the patient and mortality rate but also increase the quality of life, could apply in different areas and propose to be the national policy, effectively for a long term operation. Methods: Here we report that primary health care (PHC), which is a primary process to screening, rapidly seek the person's risk. The screening tool of the study was Vichai's 7 color balls model, the medical education tool to transfer knowledge from student health team to community through health volunteers, creating community engagement in terms of social participation. It was found that people in community were realized in their health and they can evaluate the level of risk using this model. Results: Projects implementation (2015) in Nong Lom Health Center in Phayao (target group 15-65 years, 2529); screening hypertension coveraged 99.01%, risk group (light green) was decreased to normal group (white) from 1806 to 1893, significant severe patient (red) was decreased to moderate (orange) from 10 to 5. Health Program in behaving change with best practice of 3Es (Eating, Exercise, Emotion) and 3Rs (Reducing tobacco, alcohol, obesity) were applied in risk group; and encourage strictly medication, investigation in severe patient (red). Conclusion: This is the first demonstration of knowledge transfer to community engagement by student, which is the sustainable education in PHC.

Keywords: non-communicable disease, surveillance control and prevention systems, community engagement, primary health care

Procedia PDF Downloads 254
4496 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 163
4495 Experiencing the Shattered: Managing Countertransference Experiences with Anorexia Patients in Psychotherapy

Authors: M. Card

Abstract:

Working with anorexia patients can be a challenging experience for mental and health care professionals. The reasons for not wanting to work with this patient population stems from the numerous concerns surrounding the patient’s health – physically and mentally. Many health care professionals reported having strong negative feelings, such as; anger, hopelessness and helplessness when working with anorexia patients. These feelings often impaired their judgement to treatment and affected how they related to the patient. This research focused on psychotherapists who preferred to work with anorexia patients; what countertransference feelings were evoked in them during sessions with patients and most importantly, how they managed the feelings. The research used interpretative phenomenological analysis (IPA) as the theoretical framework and data analysis method. Semi-structured interviews were used with ten experienced psychotherapists to obtain their countertransference experiences with anorexia patients and how they manage it. There were three main themes discovered; (1) the use of supervision, (2) their own personal therapy and finally (3) experience and evolution. The research unearthed that experienced psychotherapists also experienced strong countertransference feelings towards their patients; some positive and some negative. However, these feelings could actually be interpreted as co-transference with their anorexia patients. The psychotherapists were able to own their part in the evocative unconscious nature of a relational therapeutic space, where their personal issues may be entangled in their anorexia patient’s symptomatology.

Keywords: anorexia nervosa, countertransference, co-transference, psychotherapy, relational psychotherapy

Procedia PDF Downloads 168
4494 Nutritional Education in Health Resort Institutions in the Face of Demographic and Epidemiological Changes in Poland

Authors: J. Woźniak-Holecka, T. Holecki, S. Jaruga

Abstract:

Spa treatment is an important area of the health care system in Poland due to the increasing needs of the population and the context of historical conditions for this form of therapy. It extends the range of financing possibilities of the outlets and increases the potential of spa services, which is very important in the context of demographic and epidemiological changes. The main advantages of spa treatment services include its relatively wide availability, low risk of side effects, good patient tolerance, long-lasting curative effect and a relatively low cost. In addition, patients should be provided with a proper diet and enable participation in health education and health promotion classes aimed at health problems consistent with the treatment profile. Challenges for global health care systems include a sharp increase in spending on benefits, dynamic development of health technologies and growing social expectations. This requires extending the competences of health resort facilities for health promotion. Within each type of health resort institutions in Poland, nutritional education services are implemented, aimed at creating and consolidating proper eating habits. Choosing the right diet can speed up recovery or become one of the methods to alleviate the symptoms of chronic diseases. During spa treatment patient learns the principles of rational nutrition and adequate dietotherapy to his diseases. The aim of the project is to assess the frequency and quality of nutritional education provided to patients in health resort facilities in a nationwide perspective. The material for the study will be data obtained as part of an in-depth interview conducted among Heads of Nutrition Departments of selected institutions. The use of nutritional education in a health resort may be an important goal of implementing the state health policy as a useful tool to reduce the risk of diet-related diseases. Recognizing nutritional education in health resort institutions as a type of full-value health service can be effective system support for health policy, including seniors, due to demographic changes currently occurring in the Polish population. Furthermore, it is necessary to increase the interest and motivation of patients to follow the recommendations of nutritional education, because it will bring tangible benefits for the long-term effects of therapy and care should be taken for the form and methodology of nutrition education implemented in health resort institutions. Finally it is necessary to construct an educational offer in terms of selected groups of patients with the highest health needs: the elderly and the disabled. In conclusion, it can be said that the system of nutritional education implemented in polish health resort institutions should be subjected to global changes and strong systemic correction.

Keywords: health care system, nutritional education, public health, spa and treatment

Procedia PDF Downloads 117
4493 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 234
4492 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 411
4491 Levels of Family Empowerment and Parenting Skills of Parents with Children with Developmental Disabilities Who Are Users of Early Intervention Services

Authors: S. Bagur, S. Verger, B. Mut

Abstract:

Early childhood intervention (ECI) is understood as the set of interventions aimed at the child population with developmental disorders or disabilities from 0 to 6 years of age, the family, and the environment. Under the principles of family-centred practices, the members of the family nucleus are direct agents of intervention. Thus, the multidisciplinary team of professionals should work to improve family empowerment and the level of parenting skills. The aim of the present study is to analyse descriptively and differentially the level of parenting skills and family empowerment of parents using ECI services during the foster care phase. There were 135 families participating in the study. Three questionnaires were completed. The results show that the employment situation, the age of the child receiving an intervention, and the number of children in the family nucleus or the professional carrying out the intervention are variables that have a differential impact on different items of empowerment and parenting skills. The results are discussed and future lines of research are proposed, with the understanding that the initial analysis of the variables of empowerment and parenting skills may be predictors for the improvement of child development and family well-being. In addition, it is proposed to identify and analyse professional training in order to be able to adapt early care practices without depending on the discipline of the professional of reference.

Keywords: developmental disabilities, early childhood intervention, family empowerment, parenting skills

Procedia PDF Downloads 112
4490 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes

Authors: Nahashon Mwirigi

Abstract:

The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.

Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling

Procedia PDF Downloads 17
4489 Clinical Evidence of the Efficacy of ArtiCovid (Artemisia Annua Extract) on Covid-19 Patients in DRC

Authors: Md, MCS, MPH Munyangi Wa Nkola Jerome

Abstract:

The pandemic of COVID-19, a recently discovered contagious respiratory disease called SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2 Majority of people infected with SARS-CoV-2: Asymptomatic or mildly ill 14% of patients will develop severe illness requiring hospitalization and oxygen support, and 5% of these will be transferred to an intensive care unit, Urgent need for new treatments that can be used quickly to avoid transfer of patients to intensive care and death. Objective: To evaluate the clinical activity (efficacy) of ArtiCovid Hypothesis: Administration of 3 times a teaspoon per day by COVID patients (symptomatic, mild, or moderate forms) results in the disappearance of symptoms and improvement of biological parameters (including viral suppression). Clinical efficacy: the disappearance of clinical signs after seven days of treatment; reduction in the rate of patients transferred to intensive care units for mechanical ventilation and a decrease in mortality related to this infection Paraclinical efficacy: improvement of biological parameters (mainly d-dimer, CRP) Virological efficacy: suppression of the viral load after seven days of treatment (control test on the seventh day is negative) Pilot study using a standardized solution based on Artemisia annua (ARTICOVID) Obtaining authorization from the health authorities of the province of Central Kongo Recruitment of volunteer patients, mainly in the Kinkanda HospitalCarrying out tests before and after treatment as well as analyses before and after treatment. The protocol obtained the approval of the ethics committee 50 patients who completed the treatment were aged between 2 and 70 years, with an average age of 36 yearsMore half were male (56%). One in four patients was a health professional (25%) Of the 12 health professionals, 4 were physicians. For those who reported the date of onset of the disease, the average duration between the appearance of the first symptoms and the medical consultation was 5 days. The 50 patients put on ARTICOVID were discharged alive with CRP levels substantially normalizedAfter seven to eight days, the control test came back negative. This pilot study suggests that ARTICOVID may be effective against COVID-19 infection.

Keywords: artiCovid, DRC, Covid-19, SARS_COV_2

Procedia PDF Downloads 123
4488 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks

Authors: A. Khan, H. Mahmood

Abstract:

In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.

Keywords: energy holes, interference, routing, underwater

Procedia PDF Downloads 411
4487 Method of Nursing Education: History Review

Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán

Abstract:

Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.

Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education

Procedia PDF Downloads 119
4486 Methods for Restricting Unwanted Access on the Networks Using Firewall

Authors: Bhagwant Singh, Sikander Singh Cheema

Abstract:

This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.

Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques

Procedia PDF Downloads 105
4485 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: mammography, early detection, genetic screening, breast cancer

Procedia PDF Downloads 563