Search results for: sediment pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2201

Search results for: sediment pollution

251 Hydrodynamics and Hydro-acoustics of Fish Schools: Insights from Computational Models

Authors: Ji Zhou, Jung Hee Seo, Rajat Mittal

Abstract:

Fish move in groups for foraging, reproduction, predator protection, and hydrodynamic efficiency. Schooling's predator protection involves the "many eyes" theory, which increases predator detection probability in a group. Reduced visual signature in a group scales with school size, offering per-capita protection. The ‘confusion effect’ makes it hard for predators to target prey in a group. These benefits, however, all focus on vision-based sensing, overlooking sound-based detection. Fish, including predators, possess sophisticated sensory systems for pressure waves and underwater sound. The lateral line system detects acoustic waves, while otolith organs sense infrasound, and sharks use an auditory system for low-frequency sounds. Among sound generation mechanisms of fish, the mechanism of dipole sound relates to hydrodynamic pressure forces on the body surface of the fish and this pressure would be affected by group swimming. Thus, swimming within a group could affect this hydrodynamic noise signature of fish and possibly serve as an additional protection afforded by schooling, but none of the studies to date have explored this effect. BAUVs with fin-like propulsors could reduce acoustic noise without compromising performance, addressing issues of anthropogenic noise pollution in marine environments. Therefore, in this study, we used our in-house immersed-boundary method flow and acoustic solver, ViCar3D, to simulate fish schools consisting of four swimmers in the classic ‘diamond’ configuration and discussed the feasibility of yielding higher swimming efficiency and controlling far-field sound signature of the school. We examine the effects of the relative phase of fin flapping of the swimmers and the simulation results indicate that the phase of the fin flapping is a dominant factor in both thrust enhancement and the total sound radiated into the far-field by a group of swimmers. For fish in the “diamond” configuration, a suitable combination of the relative phase difference between pairs of leading fish and trailing fish can result in better swimming performance with significantly lower hydroacoustic noise.

Keywords: fish schooling, biopropulsion, hydrodynamics, hydroacoustics

Procedia PDF Downloads 64
250 Constructed Wetlands with Subsurface Flow for Nitrogen and Metazachlor Removal from Tile Drainage: First Year Results

Authors: P. Fucik, J. Vymazal, M. Seres

Abstract:

Pollution from agricultural drainage is a severe issue for water quality, and it is a major reason for the failure in accomplishment of 'good chemical status' according to Water Framework Directive, especially due to high nitrogen and pesticide burden of receiving waters. Constructed wetlands were proposed as a suitable measure for removal of nitrogen from agricultural drainage in the early 1990s. Until now, the vast majority of constructed wetlands designed to treat tile drainage were free-surface constructed wetlands. In 2018, three small experimental constructed wetlands with horizontal subsurface flow were built in Czech Highlands to treat tile drainage from 15.73 ha watershed. The wetlands have a surface area of 79, 90 and 98 m² and were planted with Phalaris arundinacea and Glyceria maxima in parallel bands. The substrate in the first two wetlands is gravel (4-8 mm) mixed with birch woodchips (10:1 volume ratio). In one of those wetlands, the water level is kept 10 cm above the surface; in the second one, the water is kept below the surface. The third wetland has 20 cm layer of birch woodchips on top of gravel. The drainage outlet, as well as wetland outlets, are equipped with automatic discharge-gauging devices, temperature probes, as well as automatic water samplers (Teledyne ISCO). During the monitored period (2018-2019), the flows were unexpectedly low due to a drop of the shallow ground water level, being the main source of water for the monitored drainage system, as experienced at many areas of the Czech Republic. The mean water residence time was analyzed in the wetlands (KBr), which was 16, 9 and 27 days, respectively. The mean total nitrogen concentration eliminations during one-year period were 61.2%, 62.6%, and 70.9% for wetlands 1, 2, and 3, respectively. The average load removals amounted to 0.516, 0.323, and 0.399 g N m-2 d-1 or 1885, 1180 and 1457 kg ha-1 yr-1 in wetlands 1, 2 and 3, respectively. The plant uptake and nitrogen sequestration in aboveground biomass contributed only marginally to the overall nitrogen removal. Among the three variants, the one with shallow water on the surface was revealed to be the most effective for removal of nitrogen from drainage water. In August 2019, herbicide Metazachlor was experimentally poured in time of 2 hours at drainage outlet in a concentration of 250 ug/l to find out the removal rates of the aforementioned wetlands. Water samples were taken the first day every six hours, and for the next nine days, every day one water sample was taken. The removal rates were as follows 94, 69 and 99%; when the most effective wetland was the one with the longest water residence time and the birch woodchip-layer on top of gravel.

Keywords: constructed wetlands, metazachlor, nitrogen, tile drainage

Procedia PDF Downloads 150
249 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 143
248 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer

Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez

Abstract:

Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.

Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer

Procedia PDF Downloads 182
247 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests

Authors: Md. Kausar Alam, Ramin Motamed

Abstract:

The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.

Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction

Procedia PDF Downloads 98
246 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 257
245 Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia

Authors: Bedilu Tafesse

Abstract:

Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings.

Keywords: plant genetic diversity, urbanization, suburban home gardens, Ethiopia

Procedia PDF Downloads 305
244 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 40
243 Growth Rates of Planktonic Organisms in “Yerevanyan Lich” Reservoir and the Hrazdan River in Yerevan City, Armenia

Authors: G. A. Gevorgyan, A. S. Mamyan, L. G. Stepanyan, L. R. Hambaryan

Abstract:

Bacterio- and phytoplankton growth rates in 'Yerevanyan lich' reservoir and the Hrazdan river in Yerevan city, Armenia were investigated in April and June-August, 2015. Phytoplankton sampling and analysis were performed by the standard methods accepted in hydrobiological studies. The quantitative analysis of aerobic, coliform and E. coli bacteria is done by the 'RIDA COUNT' medium sheets (coated with ready-to-use culture medium). The investigations showed that the insufficient management of household discharges in Yerevan city caused the organic and fecal pollution of the Hrazdan river in this area which in turn resulted in an increase in bacterial count and increased sanitary and pathogenic risks to the environment and human health. During the investigation in April, the representatives of diatom algae prevailed quantitatively in the coastal area of 'Yerevanyan lich' reservoir, nevertheless, a significant change in the phytoplankton community in June occurred: due to green algae bloom in the reservoir, the quantitative parameters of phytoplankton increased significantly. This was probably conditioned by a seasonal increase in the water temperature in the conditions of the sufficient concentration of nutrients. However, a succession in phytoplankton groups during July-August occurred, and a dominant group (according to quantitative parameters) in the phytoplankton community was changed as follows: green algae-diatom algae-blue-green algae. Rapid increase in the quantitative parameters of diatom and blue-green algae in the reservoir may have been conditioned by increased organic matter level resulted from green algae bloom. Algal bloom in 'Yerevanyan lich' reservoir caused changes in phytoplankton community and an increase in bacterioplankton count not only in the reservoir but also in the Hrazdan river sites located in the downstream from the reservoir. Thus, the insufficient management of urban discharges and aquatic ecosystems in Yerevan city led to unfavorable changes in water quality and microbial and phytoplankton communities in “Yerevanyan lich” reservoir and the Hrazdan river which in turn caused increased sanitary and pathogenic risks to the environment and human health.

Keywords: algal bloom, bacterioplankton, phytoplankton, Hrazdan river, Yerevanyan lich reservoir

Procedia PDF Downloads 276
242 Impact of Urban Densification on Travel Behaviour: Case of Surat and Udaipur, India

Authors: Darshini Mahadevia, Kanika Gounder, Saumya Lathia

Abstract:

Cities, an outcome of natural growth and migration, are ever-expanding due to urban sprawl. In the Global South, urban areas are experiencing a switch from public transport to private vehicles, coupled with intensified urban agglomeration, leading to frequent longer commutes by automobiles. This increase in travel distance and motorized vehicle kilometres lead to unsustainable cities. To achieve the nationally pledged GHG emission mitigation goal, the government is prioritizing a modal shift to low-carbon transport modes like mass transit and paratransit. Mixed land-use and urban densification are crucial for the economic viability of these projects. Informed by desktop assessment of mobility plans and in-person primary surveys, the paper explores the challenges around urban densification and travel patterns in two Indian cities of contrasting nature- Surat, a metropolitan industrial city with a 5.9 million population and a very compact urban form, and Udaipur, a heritage city attracting large international tourists’ footfall, with limited scope for further densification. Dense, mixed-use urban areas often improve access to basic services and economic opportunities by reducing distances and enabling people who don't own personal vehicles to reach them on foot/ cycle. But residents travelling on different modes end up contributing to similar trip lengths, highlighting the non-uniform distribution of land-uses and lack of planned transport infrastructure in the city and the urban-peri urban networks. Additionally, it is imperative to manage these densities to reduce negative externalities like congestion, air/noise pollution, lack of public spaces, loss of livelihood, etc. The study presents a comparison of the relationship between transport systems with the built form in both cities. The paper concludes with recommendations for managing densities in urban areas along with promoting low-carbon transport choices like improved non-motorized transport and public transport infrastructure and minimizing personal vehicle usage in the Global South.

Keywords: India, low-carbon transport, travel behaviour, trip length, urban densification

Procedia PDF Downloads 220
241 Inhibitory Action of Fatty Acid Salts against Cladosporium cladosporioides and Dermatophagoides farinae

Authors: Yui Okuno, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Introduction: Fungus and mite are known as allergens that cause an allergic disease for example asthma bronchiale and allergic rhinitis. Cladosporium cladosporioides is one of the most often detected fungi in the indoor environment and causes pollution and deterioration. Dermatophagoides farinae is major mite allergens indoors. Therefore, the creation of antifungal agents with high safety and the antifungal effect is required. Fatty acid salts are known that have antibacterial activities. This report describes the effects of fatty acid salts against Cladosporium cladosporioides NBRC 30314 and Dermatophagoides farinae. Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. The antifungal method, the spore suspension (3.0×104 spores/mL) was mixed with a sample of fatty acid potassium (final concentration of 175 mM). Samples were counted at 0, 10, 60, 180 min by plating (100 µL) on PDA. Fungal colonies were counted after incubation for 3 days at 30 °C. The MIC (minimum inhibitory concentration) against the fungi was determined by the two-fold dilution method. Each fatty acid salts were inoculated separately with 400 µL of C. cladosporioides at 3.0 × 104 spores/mL. The mixtures were incubated at the respective temperature for each organism for 10 min. The tubes were then contacted with the fungi incubated at 30 °C for 7 days and examined for growth of spores on PDA. The acaricidal method, twenty D. farinae adult females were used and each adult was covered completely with 2 µL fatty acid potassium for 1 min. The adults were then dried with filter paper. The filter paper was folded and fixed by two clips and kept at 25 °C and 64 % RH. Mortalities were determained 48 h after treatment under the microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that C8K, C10K, C12K, C14K was effective to decrease survival rate (4 log unit) of the fatty acids potassium incubated time for 10 min against C. cladosporioides. C18:3K was effective to decrease 4 log unit of the fatty acids potassium incubated time for 60 min. Especially, C12K was the highest antifungal activity and the MIC of C12K was 0.7 mM. On the other hand, the fatty acids potassium showed no acaricidal effects against D. farinae. The activity of D. farinae was not adversely affected after 48 hours. These results indicate that C12K has high antifungal activity against C. cladosporioides and suggest the fatty acid potassium will be used as an antifungal agent.

Keywords: fatty acid salts, antifungal effects, acaricidal effects, Cladosporium cladosporioides, Dermatophagoides farinae

Procedia PDF Downloads 273
240 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
239 Urban Compactness and Sustainability: Beijing Experience

Authors: Xilu Liu, Ameen Farooq

Abstract:

Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.

Keywords: Beijing, density, sustainability, urban compactness

Procedia PDF Downloads 425
238 Conflict around the Brownfield Reconversion of the Canadian Forces Base Rockcliffe in Ottawa: A Clash of Ambitions and Visions in Canadian Urban Sustainability

Authors: Kenza Benali

Abstract:

Over the past decade, a number of remarkable projects in urban brownfield reconversion emerged across Canada, including the reconversion of former military bases owned by the Canada Lands Company (CLC) into sustainable communities. However, unlike other developments, the regeneration project of the former Canadian Forces Base Rockcliffe in Ottawa – which was announced as one of the most ambitious Smart growth projects in Canada – faced serious obstacles in terms of social acceptance by the local community, particularly urban minorities composed of Francophones, Indigenous and vulnerable groups who live near or on the Base. This turn of events led to the project being postponed and even reconsidered. Through an analysis of its press coverage, this research aims to understand the causes of this urban conflict which lasted for nearly ten years. The findings reveal that the conflict is not limited to the “standard” issues common to most conflicts related to urban mega-projects in the world – e.g., proximity issues (threads to the quality of the surrounding neighbourhoods; noise, traffic, pollution, New-build gentrification) often associated with NIMBY phenomena. In this case, the local actors questioned the purpose of the project (for whom and for what types of uses is it conceived?), its local implementation (to what extent are the local history and existing environment taken into account?), and the degree of implication of the local population in the decision-making process (with whom is the project built?). Moreover, the interests of the local actors have “jumped scales” and transcend the micro-territorial level of their daily life to take on a national and even international dimension. They defined an alternative view of how this project, considered strategic by his location in the nation’s capital, should be a reference as well as an international showcase of Canadian ambition and achievement in terms of urban sustainability. This vision promoted, actually, a territorial and national identity approach - in which some cultural values are highly significant (respect of social justice, inclusivity, ethnical diversity, cultural heritage, etc.)- as a counterweight to planners’ vision which is criticized as a normative/ universalist logic that ignore the territorial peculiarities.

Keywords: smart growth, brownfield reconversion, sustainable neighborhoods, Canada Lands Company, Canadian Forces Base Rockcliffe, urban conflicts

Procedia PDF Downloads 383
237 Identifying the Determinants of Compliance with Maritime Environmental Legislation in the North and Baltic Sea Area: A Model Developed from Exploratory Qualitative Data Collection

Authors: Thea Freese, Michael Gille, Andrew Hursthouse, John Struthers

Abstract:

Ship operators on the North and Baltic Sea have been experiencing increased political interest in marine environmental protection and cleaner vessel operations. Stricter legislation on SO2 and NOx emissions, ballast water management and other measures of protection are currently being phased in or will come into force in the coming years. These measures benefit the health of the marine environment, while increasing company’s operational costs. In times of excess shipping capacity and linked consolidation in the industry non-compliance with environmental rules is one way companies might hope to stay competitive with both intra- and inter-modal trade. Around 5-15% of industry participants are believed to neglect laws on vessel-source pollution willingly or unwillingly. Exploratory in-depth interviews conducted with 12 experts from various stakeholder groups informed the researchers about variables influencing compliance levels, including awareness and apprehension, willingness to comply, ability to comply and effectiveness of controls. Semi-structured expert interviews were evaluated using qualitative content analysis. A model of determinants of compliance was developed and is presented here. While most vessel operators endeavour to achieve full compliance with environmental rules, a lack of availability of technical solutions, expediency of implementation and operation and economic feasibility might prove a hindrance. Ineffective control systems on the other hand foster willing non-compliance. With respect to motivations, lacking time, lacking financials and the absence of commercial advantages decrease compliance levels. These and other variables were inductively developed from qualitative data and integrated into a model on environmental compliance. The outcomes presented here form part of a wider research project on economic effects of maritime environmental legislation. Research on determinants of compliance might inform policy-makers about actual behavioural effects of shipping companies and might further the development of a comprehensive legal system for environmental protection.

Keywords: compliance, marine environmental protection, exploratory qualitative research study, clean vessel operations, North and Baltic Sea area

Procedia PDF Downloads 383
236 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts

Authors: Yawen Dai, Ping Cheng, Jian Ru Gong

Abstract:

Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.

Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting

Procedia PDF Downloads 141
235 Soil Quality Response to Long-Term Intensive Resources Management and Soil Texture

Authors: Dalia Feiziene, Virginijus Feiza, Agne Putramentaite, Jonas Volungevicius, Kristina Amaleviciute, Sarunas Antanaitis

Abstract:

The investigations on soil conservation are one of the most important topics in modern agronomy. Soil management practices have great influence on soil physico-chemical quality and GHG emission. Research objective: To reveal the sensitivity and vitality of soils with different texture to long-term antropogenisation on Cambisol in Central Lithuania and to compare them with not antropogenised soil resources. Methods: Two long-term field experiments (loam on loam; sandy loam on loam) with different management intensity were estimated. Disturbed and undisturbed soil samples were collected from 5-10, 15-20 and 30-35 cm depths. Soil available P and K contents were determined by ammonium lactate extraction, total N by the dry combustion method, SOC content by Tyurin titrimetric (classical) method, texture by pipette method. In undisturbed core samples soil pore volume distribution, plant available water (PAW) content were determined. A closed chamber method was applied to quantify soil respiration (SR). Results: Long-term resources management changed soil quality. In soil with loam texture, within 0-10, 10-20 and 30-35 cm soil layers, significantly higher PAW, SOC and mesoporosity (MsP) were under no-tillage (NT) than under conventional tillage (CT). However, total porosity (TP) under NT was significantly higher only in 0-10 cm layer. MsP acted as dominant factor for N, P and K accumulation in adequate layers. P content in all soil layers was higher under NT than in CT. N and K contents were significantly higher than under CT only in 0-10 cm layer. In soil with sandy loam texture, significant increase in SOC, PAW, MsP, N, P and K under NT was only in 0-10 cm layer. TP under NT was significantly lower in all layers. PAW acted as strong dominant factor for N, P, K accumulation. The higher PAW the higher NPK contents were determined. NT did not secure chemical quality within deeper layers than CT. Long-term application of mineral fertilisers significantly increased SOC and soil NPK contents primarily in top-soil. Enlarged fertilization determined the significantly higher leaching of nutrients to deeper soil layers (CT) and increased hazards of top-soil pollution. Straw returning significantly increased SOC and NPK accumulation in top-soil. The SR on sandy loam was significantly higher than on loam. At dry weather conditions, on loam SR was higher in NT than in CT, on sandy loam SR was higher in CT than in NT. NPK fertilizers promoted significantly higher SR in both dry and wet year, but suppressed SR on sandy loam during usual year. Not antropogenised soil had similar SOC and NPK distribution within 0-35 cm layer and depended on genesis of soil profile horizons.

Keywords: fertilizers, long-term experiments, soil texture, soil tillage, straw

Procedia PDF Downloads 299
234 An Analysis of Insulation Defects in TRNC: The Case of Toros Dormitory of Eastern Mediterranean University

Authors: Arash Imani Fooladi

Abstract:

In recent years, with the growing population and decrease in the amount of non-renewable energy supplies, which is caused by the uncontrolled energy use, the world witnesses air pollution and destruction of the natural resources. Most of the buildings which are constructed in order to inhabit this great amount of population have minimum facilities. With the passing time researchers began to feel anxious about increase in the amount of energy which people are continuously using and they tried to find some ways to solve it. One of the methods, which human being has used all during the history, was considering the orientation, size, form and shape of the building during design process and trying to take advantage of the methods which his ancestors used in order to make buildings thermally comfortable. In the last forty years with the development of building materials a new way of conserving energy, called insulation, was invented. In North Cyprus, with its adverse weather condition (hot and dry summers and rainy winters) no method was used to make buildings thermally comfortable. This fact leads to wasting a noticeable amount of energy for heating and cooling the buildings. The main aim of this article is to evaluate the defects of insulation in North Cyprus and to introduce some suggestions to improve the current defects of insulation. Therefore, this paper focuses on the Toros dormitory and the construction firms in TRNC. Toros Dormitory is situated in North Cyprus and it is one of the dormitories of Eastern Mediterranean University. Lots of problems are observed with its insulation. Forty students who inhabit in this dormitory are selected randomly in order to study these defects. Close ended questionnaires are used to find out the level of satisfaction of these students on the subject. Furthermore, eight constructors in North Cyprus are selected to study their level of satisfaction, the most important factors for choosing an insulation type and the material they often use as insulation. The results demonstrated that most of the students in the dormitory are not satisfied with the thermal conditions. Constructors are also unsatisfied with the insulating conditions in TRNC. They claimed that polystyrene which is commonly used is not the proper material for insulation in this area. Finally ICF system is evaluated, it is a new system of construction which also works as an insulation and recently it is being used all over the world. The material is suggested as a proper insulation type for North Cyprus.

Keywords: thermal comfort, insulation, building envelop, hot and humid climate, ICF system

Procedia PDF Downloads 343
233 Assessment of Heavy Metal Contamination in Soil and Groundwater Due to Leachate Migration from an Open Dumping Site

Authors: Kali Prasad Sarma

Abstract:

Indiscriminate disposal of municipal solid waste (MSW) in open dumping site is a common scenario in developing countries like India which poses a risk to the environment as well as human health. The objective of the present investigation was to find out the concentration of heavy metals (Pb, Cr, Ni, Mn, Zn, Cu, and Cd) and other physicochemical parameters of leachate and soil collected from an open dumping site of Tezpur town, Assam, India and its associated potential ecological risk. Tezpur is an urban agglomeration coming under the category of Class I UAs/Towns with a population of 105,377 as per data released by Government of India for Census 2011. Impact of the leachate on the groundwater was also addressed in our study. The concentrations of heavy metals were determined using ICP-OES. Energy dispersive X-Ray (SEM-EDS) microanalysis was also conducted to see the presence of the studied metals in the soil. X-Ray diffraction analysis (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were also used to identify dominant minerals present in the soil samples. The trend of measured heavy metals in the soil samples was found in the following order: Mn > Pb > Cu > Zn > Cr > Ni > Cd. The assessment of heavy metal contamination in the soil was carried out by calculating enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (Cfi), degree of contamination (Cd), pollution load index (PLI) and ecological risk factor (Eri). The study showed that the concentrations of Pb, Cu, and Cd were much higher than their respective average shale value and the EF of the soil samples depicted very severe enrichment for Pb, Cu, and Cd; moderate enrichment for Cr and Zn. Calculated Igeo values indicated that the soil is moderate to strongly contaminated with Pb and uncontaminated to moderately contaminated with Cd and Cu. The Cfi value for Pb indicates a very strong contamination level of the metal in the soil. The Cfi values for Cu and Cd were 2.37 and 1.65 respectively indicating moderate contamination level. To apportion the possible sources of heavy metal contamination in soil, principal components analysis (PCA) has been adopted. From the leachate, heavy metals are accumulated at the dumping site soil which could easily percolate through the soil and reach the groundwater. The possible relation of groundwater contamination due to leachate percolation was examined by analyzing the heavy metal concentrations in groundwater with respect to distance from the dumping site. The concentrations of Cd and Pb in groundwater (at a distance of 20m from dumping site) exceeded the permissible limit for drinking water as set by WHO. Occurrence of elevated concentration of potentially toxic heavy metals such as Pb and Cd in groundwater and soil are much environmental concern as it is detrimental to human health and ecosystem.

Keywords: groundwater, heavy metal contamination, leachate, open dumping site

Procedia PDF Downloads 109
232 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey

Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt

Abstract:

Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.

Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone

Procedia PDF Downloads 255
231 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction

Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso

Abstract:

The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.

Keywords: LiDAR, OBIA, remote sensing, local scale

Procedia PDF Downloads 283
230 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids

Authors: Jiancheng Zheng

Abstract:

When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.

Keywords: metal, colloid, groundwater, mobility, fractionation, sorption

Procedia PDF Downloads 363
229 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid

Procedia PDF Downloads 177
228 Evaluation of Health Services after Emergency Decrees in Turkey

Authors: Sengul Celik, Alper Ketenci

Abstract:

In Turkish Constitution about health care in Article 56, it is said that: everyone has the right to live in a healthy and balanced environment. It is the duty of the state and citizens to improve the environment, protect environmental health, and prevent environmental pollution. The state ensures that everyone lives their lives in physical and mental health; it organizes the planning and service of health institutions from a single source in order to realize cooperation by increasing savings and efficiency in human and substance power. The state fulfills this task by utilizing and supervising health and social institutions in the public and private sectors. General health insurance can be established by law for the widespread delivery of health services. To have health care is one of the basic rights of patients. After the coupe attempt in July 2016, the Government of Turkey has announced a state of emergency and issued lots of emergency decrees. By these emergency decrees, lots of people were dismissed from their jobs and lost their some basic social rights. The violations occur in social life. One of the most common observations is the discrimination by government in health care system. This study aims to put forward the violation of human rights in health care system in Turkey due to their discriminated position by an emergency decree. The study is a case study that is based on nine interviews with the people or relatives of people who lost their jobs by an emergency decree in Turkey. In this study, no personally identifiable information was obtained for the safety of individuals. Also no distinctive questions regarding the identity of individuals were asked. The interviews are obtained through internet call applications. The data were analyzed through the requirements of regular health care system in Turkey. The interviews expose that the people or the relatives of people lost their right to have regular health care. They have to pay extra amount both in clinical services and in medication treatment. The patient right to quality medical care without prejudice is violated. It was assessed that the people who are involved in emergency decree and their relatives are discriminated by government and deprived of regular medical care and supervision. Although international legal arrangements and legal responsibilities of the state have been put forward by Article 56, they are violated in practice. To prevent these kinds of violations, some measures should be taken against the deprivation in health care system especially towards the discriminated people by an emergency decree.

Keywords: emergency decree in Turkey, health care, discriminated people, patients rights

Procedia PDF Downloads 111
227 Safe Disposal of Processed Industrial Biomass as Alternative Organic Manure in Agriculture

Authors: V. P. Ramani, K. P. Patel, S. B. Patel

Abstract:

It is necessary to dispose of generated industrial wastes in the proper way to overcome the further pollution for a safe environment. Waste can be used in agriculture for good quality higher food production. In order to evaluate the effect and rate of processed industrial biomass on yield, contents, uptake and soil status in maize, a field experiment was conducted during 2009 - 2011 at Anand on loamy sand soil for two years. The treatments of different levels of NPK i.e. 100% RD, 75% RD and 50% RD were kept to study the possibility of reduction in fertilizer application with the use of processed biomass (BM) in different proportion with FYM. (Where, RD= Recommended dose, FYM= Farm Yard Manure, BM= Processed Biomass.) The significantly highest grain yield of maize was recorded under the treatment of 75% NPK + BM application @ 10t ha-1. The higher (10t ha-1) and lower (5t ha-1) application rate of BM with full dose of NPK was found beneficial being at par with the treatment 75% NPK along with BM application @ 10t ha-1. There is saving of 25% recommended dose of NPK when combined with BM application @ 10.0t ha-1 or 50% saving of organics when applied with full dose (100%) of NPK. The highest straw yield (7734 kg ha-1) of maize on pooled basis was observed under the treatment of recommended dose of NPK along with FYM application at 7.5t ha-1 coupled with BM application at 2.5t ha-1. It was also observed that highest straw yield was at par under all the treatments except control and application of 100% recommended dose of NPK coupled with BM application at 7.5t ha-1. The Fe content of maize straw were found altered significantly due to different treatments on pooled basis and it was noticed that biomass application at 7.5t ha-1 along with recommended dose of NPK showed significant enhancement in Fe content of straw over other treatments. Among heavy metals, Co, Pb and Cr contents of grain were found significantly altered due to application of different treatments variably during the pooled. While, Ni content of maize grain was not altered significantly due to application of different organics. However, at higher rate of BM application i.e. of 10t ha-1, there was slight increase in heavy metal content of grain/ straw as well as DTPA heavy metals in soil; although the increase was not alarming Thus, the overall results indicated that the application of BM at 5t ha-1 along with full dose of NPK is beneficial to get higher yield of maize without affecting soil / plant health adversely. It also indicated that the 5t BM ha-1 could be utilized in place of 10t FYM ha-1 where FYM availability is scarce. The 10t BM ha-1 helps to reduce a load of chemical fertilizer up to 25 percent in agriculture. The lower use of agro-chemicals always favors safe environment. However, the continuous use of biomass needs periodical monitoring to check any buildup of heavy metals in soil/ plant over the years.

Keywords: alternate use of industrial waste, heavy metals, maize, processed industrial biomass

Procedia PDF Downloads 325
226 Immuno-Modulatory Role of Weeds in Feeds of Cyprinus Carpio

Authors: Vipin Kumar Verma, Neeta Sehgal, Om Prakash

Abstract:

Cyprinus carpio has a wide spread occurrence in the lakes and rivers of Europe and Asia. Heavy losses in natural environment due to anthropogenic activities, including pollution as well as pathogenic diseases have landed this fish in IUCN red list of vulnerable species. The significance of a suitable diet in preserving the health status of fish is widely recognized. In present study, artificial feed supplemented with leaves of two weed plants, Eichhornia crassipes and Ricinus communis were evaluated for their role on the fish immune system. To achieve this objective fish were acclimatized to laboratory conditions (25 ± 1 °C; 12 L: 12D) for 10 days prior to start of experiment and divided into 4 groups: non-challenged (negative control= A), challenged [positive control (B) and experimental (C & D)]. Group A, B were fed with non-supplemented feed while group C & D were fed with feed supplemented with 5% Eichhornia crassipes and 5% Ricinus communis respectively. Supplemented feeds were evaluated for their effect on growth, health, immune system and disease resistance in fish when challenged with Vibrio harveyi. Fingerlings of C. carpio (weight, 2.0±0.5 g) were exposed with fresh overnight culture of V. harveyi through bath immunization (concentration 2 Χ 105) for 2 hours on 10 days interval for 40 days. The growth was monitored through increase in their relative weight. The rate of mortality due to bacterial infection as well as due to effect of feed was recorded accordingly. Immune response of fish was analyzed through differential leucocyte count, percentage phagocytosis and phagocytic index. The effect of V. harveyi on fish organs were examined through histo-pathological examination of internal organs like spleen, liver and kidney. The change in the immune response was also observed through gene expression analysis. The antioxidant potential of plant extracts was measured through DPPH and FRAP assay and amount of total phenols and flavonoids were calculates through biochemical analysis. The chemical composition of plant’s methanol extracts was determined by GC-MS analysis, which showed presence of various secondary metabolites and other compounds. Investigation revealed immuno-modulatory effect of plants, when supplemented with the artificial feed of fish.

Keywords: immuno-modulation, gc-ms, Cyprinus carpio, Eichhornia crassipes, Ricinus communis

Procedia PDF Downloads 493
225 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 141
224 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 153
223 Understanding the Accumulation of Microplastics in Riverbeds and Soils

Authors: Gopala Krishna Darbha

Abstract:

Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.

Keywords: microplastics, minerals, sorption, soils

Procedia PDF Downloads 90
222 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia

Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman

Abstract:

The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.

Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development

Procedia PDF Downloads 435