Search results for: removal of heavy metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3482

Search results for: removal of heavy metals

1532 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process

Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi

Abstract:

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process

Procedia PDF Downloads 339
1531 Process Integration: Mathematical Model for Contaminant Removal in Refinery Process Stream

Authors: Wasif Mughees, Malik Al-Ahmad

Abstract:

This research presents the graphical design analysis and mathematical programming technique to dig out the possible water allocation distribution to minimize water usage in process units. The study involves the mass and property integration in its core methodology. Tehran Oil Refinery is studied to implement the focused water pinch technology for regeneration, reuse and recycling of water streams. Process data is manipulated in terms of sources and sinks, which are given in terms of properties. Sources are the streams to be allocated. Sinks are the units which can accept the sources. Suspended Solids (SS) is taken as a single contaminant. The model minimizes the mount of freshwater from 340 to 275m3/h (19.1%). Redesigning and allocation of water streams was built. The graphical technique and mathematical programming shows the consistency of results which confirms mass transfer dependency of water streams.

Keywords: minimization, water pinch, process integration, pollution prevention

Procedia PDF Downloads 305
1530 Noise Removal Techniques in Medical Images

Authors: Amhimmid Mohammed Saffour, Abdelkader Salama

Abstract:

Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty.

Keywords: CT imaging, median filter, adaptive filter and average filter, MATLAB

Procedia PDF Downloads 301
1529 Investigation of Internal Gettering at Low Temperatures of Metallic Elements in HEM Wafers mc-Si for Photovoltaic Solar Cells

Authors: Abdelghani Boucheham, Djoudi Bouhafs, Nabil Khelifati, Baya Palahouane

Abstract:

The main aim of this study is to investigate the low temperature internal gettering of manganese and chromium transition metals content in p-type multicrystalline silicon grown by Heat Exchanger Method (HEM). The minority carrier lifetime variation, the transition metal elements behavior, the sheet resistivity and the interstitial oxygen concentration after different temperatures annealing under N2 ambient were investigated using quasi-steady state photoconductance technique (QSSPC), secondary ion mass spectroscopy (SIMS), four-probe measurement and Fourier transform infrared spectrometer (FTIR), respectively. The obtained results indicate in the temperature range of 300°C to 700°C that the effective lifetime increases and reaches its maximum values of 28 μs at 500 °C and decreasing to 6 μs at 700 °C. This amelioration is due probably to metallic impurities internal gettering in the extended defects and in the oxygen precipitates as observed on SIMS profiles and the FTIR spectra. From 300 °C to 500 °C the sheet resistivity values rest unchanged at 30 Ohm/sq and rises significantly to reach 45 Ohm/sq for T> 500 °C.

Keywords: mc-Si, low temperature annealing, internal gettering, minority carrier lifetime, interstitial oxygen, resistivity

Procedia PDF Downloads 295
1528 Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study

Authors: B. Guezzen, M. A. Didi, B. Medjahed

Abstract:

An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.

Keywords: adsorption, dye, factorial design, kinetic, organo-bentonite

Procedia PDF Downloads 180
1527 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity

Procedia PDF Downloads 263
1526 Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal

Authors: Min Sik Kim, Hwa Sung Shin

Abstract:

From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm.

Keywords: nemertean, TTX, fiber mat, activated charcoal, zebrafish

Procedia PDF Downloads 193
1525 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow

Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan

Abstract:

The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.

Keywords: QGP, magnetohydrodynamics, hadrons, conversation

Procedia PDF Downloads 41
1524 Assessment of Cadmium Levels in Soil and Vegetables Grown Along Kubanni Stream Channels, Zaria, Kaduna State

Authors: M. D. Saeed, S. O. Oladeji

Abstract:

Quantitative determination of cadmium levels in soil and vegetables grown along Kubanni stream channels were seasonally analyzed for a period of two years using Atomic Absorption Spectrophotometer (AAS). Results revealed cadmium concentrations ranging from 1.00 – 3.50 mg/Kg for the year 2013 and 1.31 – 7.15 mg/Kg in 2014 for the soil samples while the vegetables (carrot, lettuce, onion, spinach, cabbage, tomato and okro) had concentrations in the range of 0.20 – 6.10 mg/Kg in 2013 and 0.60 – 5.60 mg/Kg in 2014 respectively. Statistical analysis showed no significant difference in cadmium levels across the locations and seasons for soil and vegetable analyzed. Pearson correlation results for cadmium concentrations between the year 2013 and 2014 revealed negligible (r = 0.002) relationship for soils while low (r = 0.395) relationship was obtained for vegetable and these were attributed to heavy application of fertilizers and nature of wastewater use for irrigation. Cadmium levels for both soil and vegetable exceeded the maximum allowable limit set by Standard Organization such as FAO and WHO.

Keywords: cadmium, level, soil, vegetables

Procedia PDF Downloads 502
1523 Adsorption and Desorption of Emerging Water Contaminants on Activated Carbon Fabrics

Authors: S. Delpeux-Ouldriane, M. Gineys, S. Masson, N. Cohaut, L. Reinert, L. Duclaux, F. Béguin

Abstract:

Nowadays, a wide variety of organic contaminants are present at trace concentrations in wastewater effluents. In order to face these pollution problems, the implementation of the REACH European regulation has defined lists of targeted pollutants to be eliminated selectively in water. It therefore implies the development of innovative and more efficient remediation techniques. In this sense, adsorption processes can be successfully used to achieve the removal of organic compounds in waste water treatment processes, especially at low pollutant concentration. Especially, activated carbons possessing a highly developed porosity demonstrate high adsorption capacities. More specifically, carbon cloths show high adsorption rates, an easily handling, a good mechanical integrity and regeneration potentialities. When loaded with pollutants, these materials can be indeed regenerated using an electrochemical polarization.

Keywords: nanoporous carbons, activated carbon cloths, adsorption, micropollutants, emerging contaminants, regeneration, electrochemistry

Procedia PDF Downloads 387
1522 The Reducing Agent of Glycerol for the Reduction of Metal Oxides under Microwave Heating

Authors: Kianoosh Shojae

Abstract:

In recent years, the environmental challenges due to the excessive use of fossil fuels have led to heightened greenhouse gas production. In response, biodiesel has emerged as a cleaner alternative, offering reduced pollutant emissions compared to traditional fuels. The large-scale production of biodiesel, involving ester exchange of animal fats or vegetable oils, results in a surplus of crude glycerin. With environmental regulations on the rise and an increasing demand for biodiesel, glycerin production has seen a significant upswing. This paper focuses on the economic significance of glycerin through its pyrolysis as a raw material, particularly in the synthesis of metals. As industries pivoted towards cleaner fuels, glycerin, as a byproduct of biodiesel production, is poised to remain a cost-effective and surplus product. In this work, for evaluating the possible performance of using the gaseous products from the pyrolysis reaction of glycerol, we concerned the glycerin pyrolysis reactions, emphasizing the catalytic role of activated carbon, various reaction pathways and the impact of carrier gas flow rate on hydrogen production, providing valuable insights into the evolving landscape of sustainable fuel alternatives.

Keywords: biodiesel, glycerin pyrolysis, activated carbon catalysis, syngas

Procedia PDF Downloads 38
1521 Searching the Stabilizing Effects of Neutron Shell Closure via Fusion Evaporation Residue Studies

Authors: B. R. S. Babu, E. Prasad, P. V. Laveen, A. M. Vinodkumar

Abstract:

Searching the “Island of stability” is a topic of extreme interest in theoretical as well as experimental modern physics today. This “island of stability” is spanned by superheavy elements (SHE's) that are produced in the laboratory. SHE's are believed to exist primarily due to the “magic” stabilizing effects of nuclear shell structure. SHE synthesis is extremely difficult due to their very low production cross section, often of the order of pico barns or less. Stabilizing effects of shell closures at proton number Z=82 and neutron number N=126 are predicted theoretically. Though stabilizing effects of Z=82 have been experimentally verified, no concluding observations have been made with N=126, so far. We measured and analyzed the total evaporation residue (ER) cross sections for a number of systems with neutron number around 126 to explore possible shell closure effects in ER cross sections, in this work.

Keywords: super heavy elements, fusion, evaporation residue, compund nucleus

Procedia PDF Downloads 457
1520 Bioethanol Synthesis Using Cellulose Recovered from Biowaste

Authors: Ghazi Faisal Najmuldeen, Noridah Abdullah, Mimi Sakinah

Abstract:

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates, Cellulosic biomass, derived from non-food sources, such as castor shell waste, is also being developed as a feedstock for ethanol production Cellulose extracted from biomass sources is considered the future feedstock for many products due to the availability and eco-friendly nature of cellulose. In this study, castor shell (CS) biowaste resulted from the extraction of Castor oil from castor seeds was evaluated as a potential source of cellulose. The cellulose was extracted after pretreatment process was done on the CS. The pretreatment process began with the removal of other extractives from CS, then an alkaline treatment, bleaching process with hydrogen peroxide, and followed by a mixture of acetic and nitric acids. CS cellulose was analysed by infrared absorption spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The result showed that the overall process was adequate to produce cellulose with high purity and crystallinity from CS waste. The cellulose was then hydrolyzed to produce glucose and then fermented to bioethanol.

Keywords: bioethanol, castor shell, cellulose, biowaste

Procedia PDF Downloads 209
1519 Experimental and Computational Investigations of Baffle Position Effects on ‎the Performance of Oil and Water Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah‏‎, Md Azlin Md Said ‎

Abstract:

Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow ‎uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. ‎In this study, the effect on hydraulic performance of different baffle structure positions inside a tank ‎was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the ‎numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For ‎laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The ‎measurements were compared with the result of the computational model. The results of the ‎experimental and computational simulations indicate that the best location of a baffle structure is ‎achieved when the standard deviation of the velocity profile and the volume of the circulation zone ‎inside the tank are minimized.‎

Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet

Procedia PDF Downloads 306
1518 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis

Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar

Abstract:

Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.

Keywords: fatigue, journal bearing, sound signals, vibration signals, wear

Procedia PDF Downloads 49
1517 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control

Authors: M. Ezati Kooshki , H. Pourmohamad

Abstract:

Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.

Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis

Procedia PDF Downloads 385
1516 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: baby care system, Internet of Things, deep learning, machine vision

Procedia PDF Downloads 211
1515 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis

Authors: Arpan Kumar Nayak, Debabrata Pradhan

Abstract:

A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.

Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone

Procedia PDF Downloads 225
1514 The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes

Authors: Youngmin Kim, Jae-Hwan Ahn, Seog-Ku Kim, Hye-Cheol Oh, Bokjin Lee, Hee-Jun Kang

Abstract:

The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse.

Keywords: capacitive deionization, energy efficient process, nanofiltration, water reuse

Procedia PDF Downloads 169
1513 A Brief Review of Urban Green Vegetation (Green Wall) in Reduction of Air Pollution

Authors: Masoumeh Pirhadi

Abstract:

Air pollution is becoming a major health problem affecting millions. In support of this observation, the world health organization estimates that many people feel unhealthy due to pollution. This is a coupled fact that one of the main global sources of air pollution in cities is greenhouse gas emissions due heavy traffic. Green walls are developed as a sustainable strategy to reduce pollution by increasing vegetation in developed areas without occupying space in the city. This concept an offer advantageous environmental benefits and they can also be proposed for aesthetic purposes, and today they are used to preserve the urban environment. Green walls can also create environments that can promote a healthy lifestyle. Findings of multiple studies also indicate that Green infrastructure in cities is a strategy for improving air quality and increasing the sustainability of cities. Since these green solutions (green walls) act as porous materials that affect the diffusion of air pollution they can also act as a removing air vents that clean the air. Therefore, implementation of this strategy can be considered as a prominent factor in achieving a cleaner environment.

Keywords: green vegetation, air pollution, green wall, urban area

Procedia PDF Downloads 137
1512 Damages Inflicted on Steel Structures and Metal Buildings due to Insufficient Supervision and Monitoring and Non-Observance of the Rules of the Regulations

Authors: Ehsan Sadie

Abstract:

Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provides appropriate and possible solutions to improve the construction.

Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building

Procedia PDF Downloads 114
1511 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.

Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion

Procedia PDF Downloads 51
1510 Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster

Authors: A. Elain, M. Le Fellic, A. Le Pemp, N. Hachet

Abstract:

Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community.

Keywords: iodinated compounds, biodegradability, deiodination, electron-accepting conditions, microbial consortium

Procedia PDF Downloads 309
1509 The Consequences of Vibrations in Machining

Authors: Boughedaoui Rachid, Belaidi Idir, Ouali Mohamed

Abstract:

The formatting by removal of material remains an indispensable means for obtaining different forms of pieces. The objective of this work is to study the influence of parameters of the vibratory regime of the system PTM 'Piece-Tool-Machine, in the case of the machining of the thin pieces on the surface finish. As a first step, an analytical study of essential dynamic models 2D slice will be presented. The stability lobes will be thus obtained. In a second step, a characterization of PTM system will be realized. This system will be instrumented with accelerometric sensors but also a laser vibrometer so as to have the information closer to the cutting area. Dynamometers three components will be used for the analysis of cutting forces. Surface states will be measured and the condition of the cutting edge will be visualized thanks to a binocular microscope coupled to a data acquisition system. This information will allow quantifying the influence of chatter on the dimensional quality of the parts. From lobes stabilities previously determined experimental validation allow for the development a method for detecting of the phenomenon of chatter and so an approach will be proposed.

Keywords: chatter, dynamic, milling, lobe stability

Procedia PDF Downloads 345
1508 A Novel CeO2-WOx-TiO2 Catalyst for Oxidative Desulfurization of Model Fuel Oil

Authors: Corazon Virtudazo-Ligaray, Mark Daniel G. de Luna, Meng-Wei Wan, Ming-Chun Lu

Abstract:

A series of ternary compound catalyst with nanocomposites of ceria, tungsten trioxide and titania (CeO2-WOx-TiO2) with different WOx mole fraction (10, 20, 30, 40) have been synthesized by sol-gel method. These nanocomposite catalysts were used for oxidative extractive desulfurization of model fuel oil, which were composed of dibenzothiophene (DBT) dissolved in toluene. The 30% hydrogen peroxide, H2O2 was used as oxidant and acetonitrile as extractant. These catalysts were characterized by SEM-EDS to determine the morphology. Catalytic oxidation results show that the catalysts have high selectivity in refractory fuel oil with organo sulfur contents. The oxidative removal of DBT increases as the HPW content increases. The nanocomposites CeO2-WOx-TiO2 also shows high selectivity for DBT oxidation in the DBT–toluene acetonitrile system. The catalytic oxidative desulfurization ratio of model fuel reached to 100% with nanocomposites CeO2-WOx-TiO2 (35-30-35) mol percent catalyst nanocomposition under 333 K in 30 minutes.

Keywords: ceria, oxidative desulfurization, titania, phosphotungstic acid

Procedia PDF Downloads 397
1507 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 128
1506 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 250
1505 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control

Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines

Abstract:

This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.

Keywords: extraction, cloud point, non ionic surfactant, bezanyl green

Procedia PDF Downloads 105
1504 A Focus Group Study of Student's Attitude towards University Teachers and Semester System

Authors: Sehrish Khan

Abstract:

The present study investigated the attitude of university students towards semester system and teachers with a specific objective of finding problems faced by students in semester system. 10 focus group discussions were conducted among students in five Universities of Hazara Division of KPK regarding their knowledge and attitudes about semester system and problems they faced due to this system and teacher’s attitude. The key findings were the problems like favoritism, gender biased ness, racial biased ness, biased ness in marking, relative marking, harassment, using students for personal tasks and authoritarian attitude from teachers’ side and the heavy tasks in less time which are causing stress among students. It was recommended that proper training and monitoring system should be maintained for evaluation of teachers to minimize the corruption in this sacred profession and maximize the optimal functioning. The information gathered in this research can be used to develop training modules for University teachers.

Keywords: university teachers, favoritism, biasedness, harassment

Procedia PDF Downloads 347
1503 Waste Management and Education: The Case of York, UK

Authors: Ruijie Fan, Hao Xu

Abstract:

Due to the increasing demand for resources, solid waste disposal is becoming an increasingly important issue to be addressed. Solid waste is not only hazardous to human health but also has a negative impact on the environment. The main sources of solid waste are metals, glass, food, plastics, paper, and electrical waste. Different types of waste may require different treatments. The UK currently lags behind other countries, such as Japan and Germany, in terms of waste management. Although the UK is catching up through various incentives, waste management education in the UK still faces challenges. Education requires a lot of work before the UK can achieve a circular economy. This paper first presents the latest information on the five main types of solid waste in the UK today. It delves into the current state of waste paper management in the UK, in addition to gathering information from the literature on the current state of waste management education in the UK as a whole. Potential barriers to the disposal of each waste type in the UK are identified, along with potential barriers to education in the UK. This study was based on a pragmatic philosophy to find possible solutions for these barriers, including questionnaires to conduct an in-depth investigation. In addition, the questionnaire analysis reveals a correlation between educational attainment and individual waste management behaviour and attitudes. This research guides inspiration on the current problems of waste management in the UK.

Keywords: circular economy, education, solid waste, waste management

Procedia PDF Downloads 165