Search results for: transformative learning
5468 Children Overcome Learning Disadvantages through Mother-Tongue Based Multi-Lingual Education Programme
Authors: Binay Pattanayak
Abstract:
More than 9 out of every 10 children in Jharkhand struggle to understand the texts and teachers in public schools. The medium of learning in the schools is Hindi, which is very different in structure and vocabulary than those in children’s home languages. Hence around 3 out of 10 children enrolled in early grades drop out in these schools. The state realized the cause of children’s high dropout in 2013-14 when the M-TALL, the language research shared the findings of a state-wide socio-linguistic study. The study findings suggested that there was a great need for initiating a mother-tongue based multilingual education (MTB-MLE) programme for the state in early grades starting from pre-school level. Accordingly, M-TALL in partnership with department of education designed two learning packages: Bhasha Puliya pre-school education programme for 3-6-year-old children for their school readiness with bilingual picture dictionaries in 9 tribal and regional languages. This was followed by a plan for MTB-MLE programme for early primary grades. For this textbooks in five tribal and two regional languages were developed under the guidance of the author. These books were printed and circulated in the 1000 schools of the state for each child. Teachers and community members were trained for facilitating culturally sensitive mother-tongue based learning activities in and around the schools. The mother-tongue based approach of learning has worked very effectively in enabling them to acquire the basic literacy and numeracy skills in own mother-tongues. Using this basic early grade reading skills, these children are able to learn Hindi and English systematically. Community resource groups were constituted in each school for promoting storytelling, singing, painting, dancing, acting, riddles, humor, sanitation, health, nutrition, protection, etc. and were trained. School academic calendar was designed in each school to enable the community resource persons to visit the school as per the learning plan to assist children and teacher in facilitating rich cultural activities in mother-tongue. This enables children to take part in plethora of learning activities and acquire desired knowledge, skills and interest in mother-tongues. Also in this process, it is attempted to promote 21st Century learning skills by enabling children to apply their new knowledge and skills to look at their local issues and address those in a collective manner through team work, innovations and leadership.Keywords: community resource groups, learning, MTB-MLE, multilingual, socio-linguistic survey
Procedia PDF Downloads 2365467 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1335466 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 515465 Hear Me: The Learning Experience on “Zoom” of Students With Deafness or Hard of Hearing Impairments
Authors: H. Weigelt-Marom
Abstract:
Over the years and up to the arousal of the COVID-19 pandemic, deaf or hard of hearing students studying in higher education institutions, participated lectures on campus using hearing aids and strategies adapted for frontal learning in a classroom. Usually, these aids were well known to them from their earlier study experience in school. However, the transition to online lessons, due to the latest pandemic, led deaf or hard of hearing students to study outside of their physical, well known learning environment. The change of learning environment and structure rose new challenges for these students. The present study examined the learning experience, limitations, challenges and benefits regarding learning online with lecture and classmates via the “Zoom” video conference program, among deaf or hard of hearing students in academia setting. In addition, emotional and social aspects related to learning in general versus the “Zoom” were examined. The study included 18 students diagnosed as deaf or hard of hearing, studying in various higher education institutions in Israel. All students had experienced lessons on the “Zoom”. Following allocation of the group study by the deaf and hard of hearing non-profit organization “Ma’agalei Shema”, and receiving the participants inform of consent, students were requested to answer a google form questioner and participate in an interview. The questioner included background information (e.g., age, year of studying, faculty etc.), level of computer literacy, and level of hearing and forms of communication (e.g., lip reading, sign language etc.). The interviews included a one on one, semi-structured, in-depth interview, conducted by the main researcher of the study (interview duration: up to 60 minutes). The interviews were held on “ZOOM” using specific adaptations for each interviewee: clear face screen of the interviewer for lip and face reading, and/ or professional sign language or live text transcript of the conversation. Additionally, interviewees used their audio devices if needed. Questions regarded: learning experience, difficulties and advantages studying using “Zoom”, learning in a classroom versus on “Zoom”, and questions concerning emotional and social aspects related to learning. Thematic analysis of the interviews revealed severe difficulties regarding the ability of deaf or hard of hearing students to comprehend during ”Zoom“ lessons without adoptive aids. For example, interviewees indicated difficulties understanding “Zoom” lessons due to their inability to use hearing devices commonly used by them in the classroom (e.g., FM systems). 80% indicated that they could not comprehend “Zoom” lessons since they could not see the lectures face, either because lectures did not agree to open their cameras or, either because they did not keep a straight forward clear face appearance while teaching. However, not all descriptions regarded learning via the “zoom” were negative. For example, 20% reported the recording of “Zoom” lessons as a main advantage. Enabling then to repeatedly watch the lessons at their own pace, mostly assisted by friends and family to translate the audio output into an accessible input. These finding and others regarding the learning experience of the group study on the “Zoom”, as well as their recommendation to enable deaf or hard of hearing students to study inclusively online, will be presented at the conference.Keywords: deaf or hard of hearing, learning experience, Zoom, qualitative research
Procedia PDF Downloads 1155464 Online vs. in vivo Workshops in a Masters’ Degree Course in Mental Health Nursing: Students’ Views and Opinions
Authors: Evmorfia Koukia, Polyxeni Mangoulia
Abstract:
Workshops tend to be a vivid and productive way as an in vivo teaching method. Due to the pandemic, COVID-19 university courses were conducted through the internet. Method It was tried for the first time to integrate online art therapy workshops in a core course named “Special Themes of Mental Health Nursing” in a MSc Program in Mental Health. The duration of the course is 3-hours per week for 11 weeks in a single semester. The course has a main instructor, a professor of psychiatric nursing experienced in arts therapies workshops and visiting art therapists. All art therapists were given a certain topic to cover. Students were encouraged to keep a logbook that was evaluated at the end of the semester and was submitted as a part of the examination process of the course. An interview of 10 minutes was conducted with each student at the end of the course from an independent investigator (an assistant professor) Participants The students (sample) of the program were: nurses, psychologists, and social workers Results: All students who participated in the courses found that the learning process was vivid, encouraging participation and self-motivation, and there were no main differences from in vivo learning. The students identified their personal needs, and they felt a personal connection with the learning experience. The result of the personalized learning was that students discovered their strengths and weaknesses and developed skills like critical thinking. All students admitted that the workshops were the optimal way for them to comprehend the courses’ content, their capability to become therapists, as well as their obstacles and weaknesses while working with patients in mental health. Conclusion: There were no important differences between the views of students in online and in vivo teaching method of the workshops. The result has shown that workshops in mental health can contribute equally in the learning experience.Keywords: mental health, workshops, students, nursing
Procedia PDF Downloads 2085463 The Implementation of Word Study Wall in an Online English Word Memorization Class
Authors: Yidan Shao
Abstract:
With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.Keywords: second language acquisition, word morphology, word memorization, the Word Wall
Procedia PDF Downloads 1175462 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19
Authors: Lan Cheng, Harry Qin, Yang Wang
Abstract:
Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis
Procedia PDF Downloads 1145461 Creating Complementary Bi-Modal Learning Environments: An Exploratory Study Combining Online and Classroom Techniques
Authors: Justin P. Pool, Haruyo Yoshida
Abstract:
This research focuses on the effects of creating an English as a foreign language curriculum that combines online learning and classroom teaching in a complementary manner. Through pre- and post-test results, teacher observation, and learner reflection, it will be shown that learners can benefit from online programs focusing on receptive skills if combined with a communicative classroom environment that encourages learners to develop their productive skills. Much research has lamented the fact that many modern mobile assisted language learning apps do not take advantage of the affordances of modern technology by focusing only on receptive skills rather than inviting learners to interact with one another and develop communities of practice. This research takes into account the realities of the state of such apps and focuses on how to best create a curriculum that complements apps which focus on receptive skills. The research involved 15 adult learners working for a business in Japan simultaneously engaging in 1) a commercial online English language learning application that focused on reading, listening, grammar, and vocabulary and 2) a 15-week class focused on communicative language teaching, presentation skills, and mitigation of error aversion tendencies. Participants of the study experienced large gains on a standardized test, increased motivation and willingness to communicate, and asserted that they felt more confident regarding English communication. Moreover, learners continued to study independently at higher rates after the study than they had before the onset of the program. This paper will include the details of the program, reveal the improvement in test scores, share learner reflections, and critically view current evaluation models for mobile assisted language learning applications.Keywords: adult learners, communicative language teaching, mobile assisted language learning, motivation
Procedia PDF Downloads 1335460 Inquiry-based Science Education in Computer Science Learning in Primary School
Authors: Maslin Masrom, Nik Hasnaa Nik Mahmood, Wan Normeza Wan Zakaria, Azizul Azizan, Norshaliza Kamaruddin
Abstract:
Traditionally, in science education, the teacher provides facts and the students learn them. It is outmoded for today’s students to equip them with real-life situations, mainly because knowledge and life skills are acquired passively from the instructors. Inquiry-Based Science Education (IBSE) is an approach that allows students to experiment, ask questions, and develop responses based on reasoning. It has provided students and teachers with opportunities to actively engage in collaborative learning via inquiry. This approach inspires the students to become active thinkers, research for solutions, and gain life-long experience and self-confidence. Therefore, the research aims to investigate how the primary-school teacher supports students or pupils through an inquiry-based science education approach for computer science, specifically coding skills. The results are presented and described.Keywords: inquiry-based science education, student-centered learning, computer science, primary school
Procedia PDF Downloads 1555459 Enhancing goal Achivement through Improved Communication Skills
Abstract:
An extensive body of research studies suggest that students, teachers, and supervisors can enhance the likelihood of reaching their goals by improving their communication skills. It is highly important to learn how and when to provide different kinds of feedback, e.g. anticipatory, corrective and positive) will gain better result and higher morale. The purpose of this mixed methods research is twofold: 1) To find out what factors affect effective communication among different stakeholders and how these factors affect student learning 2) What are the good practices for improving communication among different stakeholders and improve student achievement. This presentation first begins with an introduction to the recent research on Marshall’s Nonviolent Communication Techniques (NVC), including four important components: observations, feelings, needs, requests. These techniques can be effectively applied at all levels of communication. To develop an in-depth understanding of the relationship among different techniques within, this research collected, compared, and combined qualitative and quantitative data to better improve communication and support student learning.Keywords: communication, education, language learning, goal achievement, academic success
Procedia PDF Downloads 705458 Online Postgraduate Students’ Perceptions and Experiences With Student to Student Interactions: A Case for Kamuzu University of Health Sciences in Malawi
Authors: Frazer McDonald Ng'oma
Abstract:
Online Learning in Malawi has only immersed in recent years due to the need to increase access to higher education, the need to accommodate upgrading students who wish to study on a part time basis while still continuing their work, and the COVID-19 pandemic, which forced the closure of schools resulting in academic institutions seeking alternative modes of teaching and Learning to ensure continued teaching and Learning. Realizing that this mode of Learning is becoming a norm, institutions of higher Learning have started pioneering online post-graduate programs from which they can draw lessons before fully implementing it in undergraduate programs. Online learning pedagogy has not been fully grasped and institutions are still experimenting with this mode of Learning until online Learning guiding policies are created and its standards improved. This single case descriptive qualitative research study sought to investigate online postgraduate students’ perceptions and experiences with Student to student interactive pedagogy in their programs. The results of the study are to inform institutions and educators how to structure their programs to ensure that their students get the full satisfaction. 25 Masters students in 3 recently introduced online programs at Kamuzu University of Health Sciences (KUHES), were engaged; 19 were interviewed and 6 responded to questionnaires. The findings from the students were presented and categorized in themes and subthemes that emerged from the qualitative data that was collected and analysed following Colaizzi’s framework for data analysis that resulted in themes formulation. Findings revealed that Student to student interactions occurred in the online programme during live sessions, on class Whatsapp group, in discussion boards as well as on emails. Majority of the students (n=18) felt the level of students’ interaction initiated by the institution was too much, referring to mandatory interactions activities like commenting in discussion boards and attending to live sessons. Some participants (n=7) were satisfied with the level of interaction and also pointed out that they would be fine with more program-initiated student–to–student interactions. These participants attributed having been out of school for some time as a reason for needing peer interactions citing that it is already difficult to get back to a traditional on-campus school after some time, let alone an online class where there is no physical interaction with other students. In general, majority of the participants (n=18) did not value Student to student interaction in online Learning. The students suggested that having intensive student-to-student interaction in postgraduate online studies does not need to be a high priority for the institution and they further recommended that if a lecturer decides to incorporate student-to-student activities into a class, they should be optional.Keywords: online learning, interactions, student interactions, post graduate students
Procedia PDF Downloads 705457 The Implementation of Character Education in Code Riverbanks, Special Region of Yogyakarta, Indonesia
Authors: Ulil Afidah, Muhamad Fathan Mubin, Firdha Aulia
Abstract:
Code riverbanks Yogyakarta is a settlement area with middle to lower social classes. Socio-economic situation is affecting the behavior of society. This research aimed to find and explain the implementation and the assessment of character education which were done in elementary schools in Code riverside, Yogyakarta region of Indonesia. This research is a qualitative research which the subjects were the kids of Code riverbanks, Yogyakarta. The data were collected through interviews and document studies and analyzed qualitatively using the technique of interactive analysis model of Miles and Huberman. The results show that: (1) The learning process of character education was done by integrating all aspects such as democratic and interactive learning session also introducing role model to the students. 2) The assessment of character education was done by teacher based on teaching and learning process and an activity in outside the classroom that was the criterion on three aspects: Cognitive, affective and psychomotor.Keywords: character, Code riverbanks, education, Yogyakarta
Procedia PDF Downloads 2475456 Analogy to Continental Divisions: An Attention-Grabbing Approach to Teach Taxonomic Hierarchy to Students
Authors: Sagheer Ahmad
Abstract:
Teaching is a sacred profession whereby students are developed in their mental abilities to cope with the challenges of the remote world. Thinkers have developed plenty of interesting ways to make the learning process quick and absorbing for the students. However, third world countries are still lacking these remote facilities in the institutions, and therefore, teaching is totally dependent upon the skills of the teachers. Skillful teachers use self-devised and stimulating ideas to grab the attention of their students. Most of the time their ideas are based on local grounds with which the students are already familiar. This self-explanatory characteristic is the base of several local ideologies to disseminate scientific knowledge to new generations. Biology is such a subject which largely bases upon hypotheses, and teaching it in an interesting way is needful to create a friendly relationship between teacher and student, and to make a fantastic learning environment. Taxonomic classification if presented as it is, may not be attractive for the secondary school students who just start learning about biology at elementary levels. Presenting this hierarchy by exemplifying Kingdom, Phylum, Class, Order, family, genus and Species as comparatives of our division into continents, countries, cities, towns, villages, homes and finally individuals could be an attention-grabbing approach to make this concept get into bones of students. Similarly, many other interesting approaches have also been adopted to teach students in a fascinating way so that learning science subjects may not be boring for them. Discussing these appealing ways of teaching students can be a valuable stimulus to refine teaching methodologies about science, thereby promoting the concept of friendly learning.Keywords: biology, innovative approaches, taxonomic classification, teaching
Procedia PDF Downloads 2485455 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 725454 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 995453 Beyond the Flipped Classroom: A Tool to Promote Autonomy, Cooperation, Differentiation and the Pleasure of Learning
Authors: Gabriel Michel
Abstract:
The aim of our research is to find solutions for adapting university teaching to today's students and companies. To achieve this, we have tried to change the posture and behavior of those involved in the learning situation by promoting other skills. There is a gap between the expectations and functioning of students and university teaching. At the same time, the business world needs employees who are obviously competent and proficient in technology, but who are also imaginative, flexible, able to communicate, learn on their own and work in groups. These skills are rarely developed as a goal at university. The flipped classroom has been one solution. Thanks to digital tools such as Moodle, for example, but the model behind them is still centered on teachers and classic learning scenarios: it makes course materials available without really involving them and encouraging them to cooperate. It's against this backdrop that we've conducted action research to explore the possibility of changing the way we learn (rather than teach) by changing the posture of both the classic student and the teacher. We hypothesized that a tool we developed would encourage autonomy, the possibility of progressing at one's own pace, collaboration and learning using all available resources(other students, course materials, those on the web and the teacher/facilitator). Experimentation with this tool was carried out with around thirty German and French first-year students at the Université de Lorraine in Metz (France). The projected changesin the groups' learning situations were as follows: - use the flipped classroom approach but with a few traditional presentations by the teacher (materials having been put on a server) and lots of collective case solving, - engage students in their learning by inviting them to set themselves a primary objective from the outset, e.g. “Assimilating 90% of the course”, and secondary objectives (like a to-do list) such as “create a new case study for Tuesday”, - encourage students to take control of their learning (knowing at all times where they stand and how far they still have to go), - develop cooperation: the tool should encourage group work, the search for common solutions and the exchange of the best solutions with other groups. Those who have advanced much faster than the others, or who already have expertise in a subject, can become tutors for the others. A student can also present a case study he or she has developed, for example, or share materials found on the web or produced by the group, as well as evaluating the productions of others, - etc… A questionnaire and analysis of assessment results showed that the test group made considerable progress compared with a similar control group. These results confirmed our hypotheses. Obviously, this tool is only effective if the organization of teaching is adapted and if teachers are willing to change the way they work.Keywords: pedagogy, cooperation, university, learning environment
Procedia PDF Downloads 205452 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model
Authors: Ahmed Shuhaiber
Abstract:
The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems
Procedia PDF Downloads 2895451 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)
Authors: Ilona Buchem, Carolin Gellner
Abstract:
The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 1775450 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 2915449 Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies
Authors: Spoorthi Sripad
Abstract:
Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes.Keywords: LiDAR, remote sensing, earth observation, advancements, integration, environmental monitoring, multi-wavelength, dual-mode, technology, urban planning, infrastructure, resolution, miniaturization
Procedia PDF Downloads 815448 Explainable Deep Learning for Neuroimaging: A Generalizable Approach for Differential Diagnosis of Brain Diseases
Authors: Nighat Bibi, Jane Courtney, Kathleen M. Curran
Abstract:
The differential diagnosis of brain diseases by magnetic resonance imaging (MRI) is a crucial step in the diagnostic process, and deep learning (DL) has the potential to significantly improve the accuracy and efficiency of these diagnoses. This study focuses on creating an ensemble learning (EL) model that utilizes the ResNet50, DenseNet121, and EfficientNetB1 architectures to concurrently and accurately classify various brain conditions from MRI images. The proposed ensemble learning model identifies a range of brain disorders that encompass different types of brain tumors, as well as multiple sclerosis. The proposed model trained on two open source datasets, consisting of MRI images of glioma, meningioma, pituitary tumors, and multiple sclerosis. Central to this research is the integration of Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability, aligning with the growing emphasis on explainable AI (XAI) in medical imaging. The application of Grad-CAM improves the transparency of the decisionmaking process of the model, which is vital for clinical acceptance and trust in AI-assisted diagnostic tools. The EL model achieved an impressive 99.84% accuracy in classifying these various brain conditions, demonstrating its potential as a versatile and effective tool for differential diagnosis in neuroimaging. The model’s ability to distinguish between multiple brain diseases underscores its significant potential in the field of medical imaging. Additionally, Grad-CAM visualizations provide deeper insights into the neural network’s reasoning, contributing to a more transparent and interpretable AIdriven diagnostic process in neuroimaging.Keywords: brain tumour, differential diagnosis, ensemble learning, explainability, grad-cam, multiple sclerosis
Procedia PDF Downloads 75447 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 1155446 The Use of Semantic Mapping Technique When Teaching English Vocabulary at Saudi Schools
Authors: Mohammed Hassan Alshaikhi
Abstract:
Vocabulary is essential factor of learning and mastering any languages, and it helps learners to communicate with others and to be understood. The aim of this study was to examine whether semantic mapping technique was helpful in terms of improving student's English vocabulary learning comparing to the traditional technique. The students’ age was between 11 and 13 years old. There were 60 students in total who participated in this study. 30 students were in the treatment group (target vocabulary items were taught with semantic mapping). The other 30 students were in the control group (the target vocabulary items were taught by a traditional technique). A t-test was used with the results of pre-test and post-test in order to examine the outcomes of using semantic mapping when teaching vocabulary. The results showed that the vocabulary mastery in the treatment group was increased more than the control group.Keywords: English language, learning vocabulary, Saudi teachers, semantic mapping, teaching vocabulary strategies
Procedia PDF Downloads 2465445 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 605444 Using Happening Performance in Vocabulary Teaching
Authors: Mustafa Gultekin
Abstract:
It is believed that drama can be used in language classes to create a positive atmosphere for students to use the target language in an interactive way. Thus, drama has been extensively used in many settings in language classes. Although happening has been generally used as a performance art of theatre, this new kind of performance has not been widely known in language teaching area. Therefore, it can be an innovative idea to use happening in language classes, and thus a positive environment can be created for students to use the language in an interactive way. Happening can be defined as an art performance that puts emphasis on interaction in an audience. Because of its interactive feature, happening can also be used in language classes to motivate students to use the language in an interactive environment. The present study aims to explain how a happening performance can be applied to a learning environment to teach vocabulary in English. In line with this purpose, a learning environment was designed for a vocabulary presentation lesson. At the end of the performance, students were asked to compare the traditional way of teaching and happening performance in terms of effectiveness. It was found that happening performance provided the students with a more creative and interactive environment to use the language. Therefore, happening can be used in language classrooms as an innovative tool for education.Keywords: English, happening, language learning, vocabulary teaching
Procedia PDF Downloads 3655443 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2235442 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 715441 University Lecturers' Attitudes towards Learner Autonomy in the EFL Context in Vietnam
Authors: Nhung T. Bui
Abstract:
Part of the dilemma facing educational reforms in Vietnam as in other Asian contexts is how to encourage more independence in students’ learning approaches. Since 2005, the Ministry of Education and Training of Vietnam has included the students’ ability to learn independently in its national education objectives. While learner autonomy has been viewed as a goal in the teaching and learning English as a foreign language (EFL) and there has been a considerable literature on strategies to stimulate autonomy in learners, teachers’ voices have rarely been heard. Given that teachers play a central role in helping their students to be more autonomous, especially in an inherent Confucian heritage culture like Vietnam, their attitudes towards learner autonomy should be investigated before any practical implementations could be undertaken. This paper reports significant findings of a survey questionnaire with 262 lecturers of English from 5 universities in Hanoi, Vietnam giving opinions regarding the practices and prospects of learner autonomy in their classrooms. The study reveals that lecturers perceive they should be more responsible than their students in all class-related activities; they most appreciate their students’ ability to learn cooperatively and that they consider stimulating students’ interest as the most important teaching strategy to promote learner autonomy. Lecturers, then, are strongly suggested to gradually ‘empower’ their students through the application of out-of-classroom activities; of learning activities which requires collaboration and team spirit; and of activities which could boost students’ interest in learning English.Keywords: English as a foreign language, higher education, learner autonomy, Vietnam
Procedia PDF Downloads 2655440 Teachers' Emphatic Concern for Their Learners
Authors: Prakash Singh
Abstract:
The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills
Procedia PDF Downloads 4345439 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 175