Search results for: aromatic water
7021 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System
Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh
Abstract:
Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato
Procedia PDF Downloads 4437020 A Conceptual Design of Freeze Desalination Using Low Cost Refrigeration
Authors: Parul Sahu
Abstract:
In recent years, seawater desalination has been emerged as a potential resource to circumvent water scarcity, especially in coastal regions. Among the various methods, thermal evaporation or distillation and membrane operations like Reverse Osmosis (RO) has been exploited at commercial scale. However, the energy cost and maintenance expenses associated with these processes remain high. In this context Freeze Desalination (FD), subjected to the availability of low cost refrigeration, offers an exciting alternative. Liquefied Natural Gas (LNG) regasification terminals provide an opportunity to utilize the refrigeration available with regasification of LNG. This work presents the conceptualization and development of a process scheme integrating the ice and hydrate based FD to the LNG regasification process. This integration overcomes the high energy demand associated with FD processes by utilizing the refrigeration associated with LNG regasification. An optimal process scheme was obtained by performing process simulation using ASPEN PLUS simulator. The results indicated the new proposed process requires only 1 kWh/m³ of energy with the utilization of maximum refrigeration. In addition, a sensitivity analysis was also performed to study the effect of various process parameters on water recovery and energy consumption for the proposed process. The results show that the energy consumption decreases by 30% with an increase in water recovery from 30% to 60%. However, due to operational limitations associated with ice and hydrate handling in seawater, the water recovery cannot be maximized but optimized. The proposed process can be potentially used to desalinate seawater in integration with LNG regasification terminal.Keywords: freeze desalination, liquefied natural gas regasification, process simulation, refrigeration
Procedia PDF Downloads 1317019 The Beneficial Effects of Hydrotherapy for Recovery from Team Sport – A Meta-Analysis
Authors: Trevor R. Higgins
Abstract:
To speed/enhance recovery from sport, cold water immersion (CWI) and contrast water therapy (CWT) have become common practice within the high-level team sport. Initially, research into CWI and CWT protocols and recovery was sparse; athletes relied solely upon an anecdotal support. However, an increase into recovery research has occurred. A number of reviews have subsequently been conducted to clarify scientific evidence. However, as the nature of physiological stress and training status of participants will impact on results, an opportunity existed to narrow the focus to a more exacting review evaluating hydrotherapy for recovery in a team sport. A Boolean logic [AND] keyword search of databases was conducted: SPORTDiscus; AMED; CINAHL; MEDLINE. Data was extracted and the standardized mean differences were calculated with 95% CI. The analysis of pooled data was conducted using a random-effect model, with Heterogeneity assessed using I2. 23 peer reviewed papers (n=606) met the criteria. Meta-analyses results indicated CWI was likely beneficial for recovery at 24h (Countermovement Jump (CMJ): p= 0.05, CI -0.004 to 0.578; All-out sprint: p=0.02, -0.056 to 0.801; DOMS: p=0.08, CI -0.092 to 1.936) and at 72h (accumulated sprinting: p=0.07, CI -0.062 to 1.209; DOMS: p=0.09, CI -0.121 to 1.555) following team sport. Whereas CWT was likely beneficial for recovery at 1h (CMJ: p= 0.07, CI -0.004 to 0.863) and at 48h (fatigue: p=0.04, CI 0.013 to 0.942) following team sport. Athlete’s perceptions of muscle soreness and fatigue are enhanced with CWI and/or CWT, however even though CWI and CWT were beneficial in attenuating decrements in neuromuscular performance 24 hours following team sport, indications are those benefits were no longer Sydney evident 48 hours following team sport.Keywords: cold water immersion, contrast water therapy, recovery, team sport
Procedia PDF Downloads 5077018 Hybrid Method Development for the Removal of Crystal Violet Dye from Aqueous Medium
Authors: D. Nareshyadav, K. Anand Kishore, D. Bhagawan
Abstract:
Water scarcity is the much-identified issue all over the world. The available sources of water need to be reused to sustainable future. The present work explores the treatment of dye wastewater using combinative photocatalysis and ceramic nanofiltration membrane. Commercial ceramic membrane and TiO₂ catalyst were used in this study to investigate the removal of crystal violet dye from the aqueous solution. The effect of operating parameters such as inlet pressure, initial concentration of crystal violet dye, catalyst (TiO₂) loading, initial pH was investigated in the individual system as well as the combined system. In this study, 95 % of dye water was decolorized and 89 % of total organic carbon (TOC) was removed by the hybrid system for 500 ppm of dye and 0.75 g/l of TiO₂ concentrations at pH 9. The operation of the integrated photocatalytic reactor and ceramic membrane filtration has shown the maximum removal of crystal violet dye compared to individual systems. Hence this proposed method may be effective for the removal of Crystal violet dye from effluents.Keywords: advanced oxidation process, ceramic nanoporous membrane, dye degradation/removal, hybrid system, photocatalysis
Procedia PDF Downloads 1787017 Monte Carlo Simulations of LSO/YSO for Dose Evaluation in Photon Beam Radiotherapy
Authors: H. Donya
Abstract:
Monte Carlo (MC) techniques play a fundamental role in radiotherapy. A two non-water-equivalent of different media were used to evaluate the dose in water. For such purpose, Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates scintillators are chosen for MC simulation using Penelope code. To get higher efficiency in dose calculation, variance reduction techniques are discussed. Overall results of this investigation ensured that the LSO/YSO bi-media a good combination to tackle over-response issue in dynamic photon radiotherapy.Keywords: Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates, Monte Carlo, correlated sampling, radiotherapy
Procedia PDF Downloads 4077016 Study on the Effect of Different Media on Green Roof Water Retention
Authors: Chen Zhi-Wei, Hsieh Wei-Fang
Abstract:
Taiwan annual rainfall is global average of 2.5 times, plus city excessive development, green constantly to reduced, instead of is big area of artificial base disc, makes Taiwan rainy season during occurred of storm cannot timely of emissions, led to flood constantly, and rain also cannot was retained again using, led to city hydrological balance suffered damage, and to Regulation city of by brings of negative effect, increased green covered rate became most effective of method, and city land limited, so roof green gradually became a alternative program. Green roofs have become one of the Central and local government policy initiatives for urban development, in foreign countries, such as the United States, and Japan, and Singapore etc. Development of roof greening as an important policy, has become a trend of the times. In recent years, many experts and scholars are also on the roof greening all aspects of research, mostly for green roof for the environmental impact of benefits, such as: carbon reduction, cooling, thermostat, but research on the benefits of green roofs under water cut but it is rare. Therefore, this research literature from green roof in to view and analyze what kind of medium suitable for roof greening and use of green base plate combination simulated green roof structure, via different proportions of the medium with water retention plate and drainage board, experiment with different planting base plate combination of water conservation performance. Research will want to test the effect of roof planting base mix, promotion of relevant departments and agencies in future implementation of green roofs, prompted the development of green roofs, which in the end Taiwan achieve sustainable development of the urban environment help.Keywords: thin-layer roof greening and planting medium, water efficiency
Procedia PDF Downloads 3547015 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos
Abstract:
The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR
Procedia PDF Downloads 5447014 Eco-Friendly Cleansers Initiation for Eco-Campsite Development in Khao Yai National Park, Thailand
Authors: Tatsanawalai Utarasakul
Abstract:
Environmental impact has occurred at Khao Yai National Park, especially the water pollution by tourist activities as a result of 800,000 tourists visiting annually. To develop an eco-campsite, eco-friendly cleansers were implemented in Lam Ta Khlong and Pha Kluay Mai Campsites for tourists and restaurants. The results indicated the positive effects of environmentally friendly cleansers on water quality in Lam Ta Khlong River and can be implemented in other protected areas to decrease chemical contamination in ecosystems.Keywords: sustainable tourism management, eco-campsite, Khao Yai National Park, ecology
Procedia PDF Downloads 3957013 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface
Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li
Abstract:
Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability
Procedia PDF Downloads 3907012 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems
Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke
Abstract:
Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.Keywords: microplastics pollution, hydraulic, transport, accumulation
Procedia PDF Downloads 707011 In Vitro Study on the Antimicrobial Activity of Ass Hay (Donkey Skin) On Some Pathogenic Microorganisms
Authors: Emmanuel Jaluchimike Iloputaife, Kelechi Nkechinyere Mbah-Omeje
Abstract:
This study was designed to determine the antimicrobial activities and minimum inhibitory concentration of three different batches (Fresh, Oven dried and Sundried) of Ass Hay extracted with water, ethanol and methanolagainst selected human pathogenic microorganisms (Escherichia coli, Klebsiella Pneumonia, Staphylococcus aureus, Aspergillus niger and Candidaalbicans). All extracts were reconstituted with peptone water and tested for antimicrobial activity. The antimicrobial activity, the Minimum Inhibitory Concentration and Minimum Bactericidal/Fungicidal concentrations were determined by agar well diffusion methodagainst test organismsin which aseptic conditions were observed. The antimicrobial activities of the different batches of Ass Hay on the test organisms varied considerably. The highest inhibition zone diameter at 200 mg/ml for the different batches of Ass Hay was recorded by sundried methanol extract against Escherichia coli at 36.4 ± 0.2 mm while fresh methanol extract inhibited Klebsiela pneumonia with the least inhibition zone diameter at 20.1 ± 0.1mm. At 100 mg/ml the highest inhibition zone diameter was recorded by oven dried water extract against Escherichia coli at 30.3 ± 0.3 mm while sun dried water extract inhibited Staphylococcus aureus with the least inhibition zone diameter at 15.1 ± 0.1 mm. At 50mg/ml, the highest inhibition zone diameter was recorded by fresh water extract against Escherichia coli at 25.9 ± 0.1 mm while oven dried water extract inhibited Klebsiela pneumonia with least inhibition zone diameter at 12.1 ± 0.2 mm. At 25mg/ml, the highest inhibition zone diameter was recorded by fresh water extract against Escherichia coli at 18.3 ± 0.2 mm while sun dried ethanol extract inhibited Escherichia coli with least inhibition zone diameter at 10.1 ± 0.1 mm. The MIC and MBC result of ethanol extract of fresh Ass Hay showed a uniform value of 6.25 mg/ml and 12.5 mg/ml respectively for all test bacterial isolates. The Minimum Inhibitory concentration and Minimum bactericidal concentration results of Oven dried ethanol Ass Hay extract showed a uniform value of 3.125 mg/ml and 6.25 mg/ml respectively for all test bacterial isolates and Minimum fungicidal concentration value of 12.5 mg/ml for Aspergillus niger. Statistical analysis showed there is significant difference in mean zone inhibition diameter of the products at p < 0.05, p = 0.019. This study has shown there is antimicrobial potential in Ass Hay and at such there is need to further exploit Donkey Ass Hay in order to maximize the potential.Keywords: microorganisms, Ass Hay, antimicrobial activity, extracts
Procedia PDF Downloads 1397010 Aquatic Intervention Research for Children with Autism Spectrum Disorders
Authors: Mehmet Yanardag, Ilker Yilmaz
Abstract:
Children with autism spectrum disorders (ASD) enjoy and success the aquatic-based exercise and play skills in a pool instead of land-based exercise in a gym. Some authors also observed that many children with ASD experience more success in attaining movement skills in aquatic environment. Properties of the water and hydrodynamic principles cause buoyancy of the water and decrease effects of gravity and it leads to allow a child to practice important aquatic skills with limited motor skills. Also, some authors experience that parents liked the effects of the aquatic intervention program on children with ASD such as improving motor performance, movement capacity and learning basic swimming skills. The purpose of this study was to investigate the effects of aquatic exercise training on water orientation and underwater working capacity were measured in the pool. This study included in four male children between 5 and 7 years old with ASD and 6.25±0.5 years old. Aquatic exercise skills were applied by using one of the error less teaching which is called the 'most to least prompt' procedure during 12-week, three times a week and 60 minutes a day. The findings of this study indicated that there were improvements test results both water orientation skill and underwater working capacity of children with ASD after 12-weeks exercise training. It was seen that the aquatic exercise intervention would be affected to improve working capacity and orientation skills with the special education approaches applying children with ASD in multidisciplinary team-works.Keywords: aquatic, autism, orientation, ASD, children
Procedia PDF Downloads 4327009 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System
Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang
Abstract:
Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS
Procedia PDF Downloads 1417008 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation
Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz
Abstract:
Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower
Procedia PDF Downloads 2907007 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen
Abstract:
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic
Procedia PDF Downloads 4267006 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)
Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen
Abstract:
Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha
Procedia PDF Downloads 1337005 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines
Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk
Abstract:
Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper
Procedia PDF Downloads 1817004 Synthesis of Cardanol Oil Building Blocks for Polymer Synthesis
Authors: Sylvain Caillol
Abstract:
Uncertainty in terms of price and availability of petroleum, in addition to global political and institutional tendencies toward the principles of sustainable development, urge chemical industry to a sustainable chemistry and particularly the use of renewable resources in order to synthesize biobased chemicals and products. We propose a platform approach for the synthesis of various building blocks from cardanol in one or two-steps syntheses. Cardanol, which is a natural phenol, is issued from Cashew Nutshell Liquid (CNSL), a non-edible renewable resource, co-produced from cashew industry in large commercial volumes. Cardanol is particularly interesting to replace fossil aromatic groups in polymers and materials. Our team studied various routes for the synthesis of cardanol-derived biobased building blocks used after that in polymer syntheses. For example, we used phenolation to dimerize/oligomerize cardanol to propose increase functionality of cardanol. Thio-ene was used to synthesize new reactive amines. Epoxidation and (meth)acrylation were also used to insert oxirane or (meth)acrylate groups in order to synthesize polymers and materials.Keywords: cardanol, cashew nutshell liquid, epoxy, vinyl ester, latex, emulsion
Procedia PDF Downloads 1767003 The Importance of Water Temperature and Curing Conditions on Concrete Curing
Authors: Ahmad Javid Zia, Abdulkerim Ilgun, Suleyman Kamil Akin, Mustafa Altin
Abstract:
Curing conditions that help concrete, which is one of the most widely used building materials in construction sector, gain strength today is one the important issues. In this study the varying concrete strength depending on water temperature at curing stage is investigated through tests at laboratory. At laboratory the curing conditions has been determined according to both TS EN 12390-2 and regular construction site while performing the experiments on specimens. Five samples have been taken from concrete and cured under five different curing conditions and the compressive strength results of concrete specimens have been compared. One of these five curing conditions has been prepared accordance with TS EN 12390-2, the sample cured at 20 ± 2 ˚C and accepted as reference samples. Two of the remaining sample groups have been cured in 5 ± 2 ˚C and 15 ± 2 ˚C and the other two have been cured outside of the laboratory. One group of the samples which have been cured outside has been watered twice a day and the other group has not been watered at all. The experiments have been carried out on 150x150x150 mm cube samples of C20 (200 kg/cm2) and C25 (250 kg/cm2). 7 and 28 days compressive strength of specimens have been measured and compared.Keywords: concrete curing, curing conditions, water temperature, concrete compressive strength
Procedia PDF Downloads 3707002 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials
Authors: M. Zafar, S. Rasheed, Imran Hashmi
Abstract:
Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.Keywords: biofilm, DWDs, pipe material, bacterial population
Procedia PDF Downloads 3477001 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 717000 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage
Authors: Oh Hyeon Jeon, WooYoung Jung
Abstract:
In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.Keywords: weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo simulation, permeability coefficient
Procedia PDF Downloads 3526999 Efficient Reduction of Organophosphate Pesticide from Fruits and Vegetables Using Cost Effective Neutralizer
Authors: Debjani Dasgupta, Aman Zalawadia, Anuj Thapa, Pranjali Sing, Ashish Dabade
Abstract:
Organophosphate group pesticides are common pesticide group, which gain entry into food product due to incomplete removal of pesticide residues. The current food industry raw material handling process is not sufficient to eliminate pesticide residues. A neutralizer was used to neutralize the residues of pesticide on Vitis vinifera (Grapes). The water based dilution of neutralizer was demonstrated on fruits like grapes. Analysis for pesticides in water wash and neutralizer wash was carried out using GCMS. Fruits washed with neutralizer exhibited 72.95% removal of pesticides compared with normal water wash method. An economical chemical neutralizer can be used to remove such residues in raw material handling at industrial scale with minor modification in process to achieve minimum pesticide entry into final food products.Keywords: GCMS, organophosphate, raw material handling, Vitis vinifera, pesticide neutralizer
Procedia PDF Downloads 2736998 Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy
Authors: Ruqyyah Mushtaq, Chiacar Gamberdella, Roberta Miroglio, Fabio Novelli, Domenica Papro, M. Paturzo, A. Rubano, Angela Sardo
Abstract:
Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length.Keywords: THz-TDS spectroscopy, diatoms, marine ecotoxicology, marine pollution
Procedia PDF Downloads 316997 On the Evaluation of Different Turbulence Models through the Displacement of Oil-Water Flow in Porous Media
Authors: Sidique Gawusu, Xiaobing Zhang
Abstract:
Turbulence models play a significant role in all computational fluid dynamics based modelling approaches. There is, however, no general turbulence model suitable for all flow scenarios. Therefore, a successful numerical modelling approach is only achievable if a more appropriate closure model is used. This paper evaluates different turbulence models in numerical modelling of oil-water flow within the Eulerian-Eulerian approach. A comparison among the obtained numerical results and published benchmark data showed reasonable agreement. The domain was meshed using structured mesh, and grid test was performed to ascertain grid independence. The evaluation of the models was made through analysis of velocity and pressure profiles across the domain. The models were tested for their suitability to accurately obtain a scalable and precise numerical experience. As a result, it is found that all the models except Standard-ω provide comparable results. The study also revealed new insights on flow in porous media, specifically oil reservoirs.Keywords: turbulence modelling, simulation, multi-phase flows, water-flooding, heavy oil
Procedia PDF Downloads 2796996 Application of Nanofibers in Heavy Metal (HM) Filtration
Authors: Abhijeet Kumar, Palaniswamy N. K.
Abstract:
Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction
Procedia PDF Downloads 686995 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes
Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang
Abstract:
To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.Keywords: advanced boiling water reactor, TRACE, PARCS, SNAP
Procedia PDF Downloads 2076994 Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water
Authors: Morteza Keshavarz
Abstract:
In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes.Keywords: carbon nanotube, drug delivery, cyclophosphamide drug, density functional theory (DFT)
Procedia PDF Downloads 3706993 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 3206992 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties
Authors: Innocent Kafodya, Guijun Xian
Abstract:
This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta
Procedia PDF Downloads 269