Search results for: auto scanning beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3266

Search results for: auto scanning beam

1406 Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements

Authors: Charine Faith H. Lagrimas, Rommel N. Galvan, Rizalinda L. de Leon

Abstract:

An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model.

Keywords: Avrami model, isothermal crystallization, lipids kinetics, methyl laurate

Procedia PDF Downloads 335
1405 Polyhydroxybutyrate (PHB): Highly Porous Scaffold for Biomedicine

Authors: Neda Sinaei, Davood Zare, Mehrdad Azin

Abstract:

Polyhydroxyalkanoates (PHAs) are biocompatible and biodegradable polymers produced by a wide range of bacterial strains. These biopolymers are significantly studied for drug delivery and tissue engineering applications because of their fascinating physicochemical properties. Polyhydroxybutyrate (PHB) scaffold that has been extracted from a novel bacteria using oil wastewater was selected to study. Some physical parameters affecting scaffold properties such as PHB concentration, solvent evaporation speed, and ultrasonic time were investigated. Scanning electron microscopy was used to evaluate the porosity. Afterward, the biocompatibility of PHB scaffold was assessed. Initial results showed the highly porous PHB scaffold structure with a variety of pore sizes. Subsequent results indicated that more unique pore sizes can be obtained by optimizing physical factors. It would be noticed that the morphology of the pore structure was accordingly affected by ultrasonic time. Hence, In vitro cell viability tests on the PHB scaffold using human foreskin fibroblasts revealed strong cell attachment and proliferation supports. Therefore, it can be concluded that the cost-effective PHB scaffold has the potential using as a biomaterial cell adhesion substrate in therapeutic applications.

Keywords: Polyhydroxybutyrate, biocompatible, scaffold, porous, tissue engineering

Procedia PDF Downloads 227
1404 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel

Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao

Abstract:

This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.

Keywords: corrosion, steel, plasma nitriding, X-ray diffraction

Procedia PDF Downloads 195
1403 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 161
1402 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam

Authors: Pajaree Donkhampa, Fuangfa Unob

Abstract:

Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.

Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye

Procedia PDF Downloads 165
1401 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment

Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash

Abstract:

Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.

Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition

Procedia PDF Downloads 485
1400 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete

Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick

Abstract:

Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.

Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete

Procedia PDF Downloads 167
1399 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization

Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz

Abstract:

Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.

Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide

Procedia PDF Downloads 173
1398 Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane

Authors: Radia Imane Fertout

Abstract:

In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst.

Keywords: dry reforming of methane, Ni/Al₂O₃-La₂O₃ catalyst, strontium, nickel

Procedia PDF Downloads 82
1397 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites

Authors: Hesham Moustafa, Ahmed M. Youssef

Abstract:

The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.

Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability

Procedia PDF Downloads 80
1396 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 74
1395 NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage

Authors: Ahmed Farghali, Heba Amar, Mohamed Khedr

Abstract:

NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC.

Keywords: NiAl-LDH, preparation, characterization, photo-catalysis, hydrogen storage

Procedia PDF Downloads 310
1394 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window

Authors: Emin Z. Mahmud

Abstract:

Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz.

Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening

Procedia PDF Downloads 115
1393 Influence of Bio-Based Admixture on Compressive Strength of Concrete for Columns

Authors: K. Raza, S. Gul, M. Ali

Abstract:

Concrete is a fundamental building material, extensively utilized by the construction industry. Problems related to the strength of concrete is an immense issue for the sustainability of concrete structures. Concrete mostly loses its strength due to the cracks produced in it by shrinkage or hydration process. This study aims to enhance the strength and service life of the concrete structures by incorporating bio-based admixture in the concrete. By the injection of bio-based admixture (BBA) in concrete, it will self-heal the cracks by producing calcium carbonate. Minimization of cracks will compact the microstructure of the concrete, due to which strength will increase. For this study, Bacillus subtilis will be used as a bio-based admixture (BBA) in concrete. Calcium lactate up to 1.5% will be used as the food source for the Bacillus subtilis in concrete. Two formulations containing 0 and 5% of Bacillus subtilis by weight of cement, will be used for the casting of concrete specimens. Direct mixing method will be adopted for the usage of bio-based admixture in concrete. Compressive strength test will be carried out after 28 days of curing. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) will be performed for the examination of micro-structure of concrete. Results will be drawn by comparing the test results of 0 and 5% the formulations. It will be recommended to use to bio-based admixture (BBA) in concrete for columns because of the satisfactory increase in the compressive strength of concrete.

Keywords: bio-based admixture, Bacillus subtilis, calcium lactate, compressive strength

Procedia PDF Downloads 219
1392 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 357
1391 Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces

Authors: Lukas Munster, Pavel Bazant, Ivo Kuritka

Abstract:

Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition.

Keywords: microcrystalline cellulose, microwave synthesis, silver nanoparticles, zinc oxide sub-microparticles, cellulose dialdehyde

Procedia PDF Downloads 473
1390 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman

Abstract:

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst

Procedia PDF Downloads 363
1389 Morphological Comparison of the Gustatory Papillae of New Zealand White Rabbits (Oryctolagus cuniculus) and Egyptian Fruit Bats (Rousettus aegyptiacus) Using Scanning Electron Microscopic Examinations

Authors: Mohamed Abumandour

Abstract:

This research presents a comparison of the morphological structure of the gustatory papillae in New Zealand white rabbits as domestic mammals and Egyptian fruit bats as wild mammals. In this study, the tongues of adult healthy New Zealand white rabbits and Egyptian fruit bats of both sexes were used. In the New Zealand white rabbits, there are three types of the gustatory papillae; fungiform, foliate and circumvallate papillae while the Egyptian fruit bats tongue contain only two types; fungiform and circumvallate papillae. In New Zealand white rabbits, there only one subtype is the round shape fungiform papillae while in Egyptian fruit bats, there are two subtypes; small rectangular fungiform papillae and large round fungiform papillae. In New Zealand white rabbits, there only two circumvallate papillae while in Egyptian fruit bats, there are three papillae. The shape, size, number, and distribution of the lingual papillae were varied according to their location within the tongue (region-specific) in relation to the feeding habits, strategies for obtaining food, climate conditions, and types of food particles.

Keywords: morphology, circumvallate papillae, fungiform papillae, foliate papillae

Procedia PDF Downloads 236
1388 Formation of In-Situ Composite during Reactive Wetting and Imbibition Ta by Cu(B) Melt

Authors: Sergei Zhevnenko

Abstract:

Сontinuous layer of tantalum boride is formed on the surface as a result of reactive wetting of oxidized tantalum by copper melt with boron at a temperatures above 1150 °C. An increase in the wetting temperature above 1400 °C leads to a change in the formation mechanism of tantalum borides, they are formed in the nanosized flakes. In the presented work, we studied the process of copper-based in-situ composite formation, strengthened by the particles of tantalum borides. We investigated the structure of the formed particles, the conditions, and the kinetics of their formation. Dissolving boride particles do not have time to mix uniformly in the melt upon sufficiently rapid cooling and form a macrostructure, partly repeating the shape of the metallic tantalum. This allows to set different gradient structures in the copper alloy. Such macrostructures have been obtained. Boride particles and microstructures were studied by scanning and transmission electron microscopy, and regions with particles were investigated by nanoindentation. In this work, we also measured the kinetics of impregnation of porous tantalum with copper-boron melt and studied the structures of the composite, in which the melt filling the interpore space is saturated with boride particles.

Keywords: copper, tantalum borides, in-situ composites, wetting, imbibition

Procedia PDF Downloads 100
1387 Antioxidant Activity of Nanoparticle of Etlingera elatior (Jack) R.M.Sm Flower Extract on Liver and Kidney of Rats

Authors: Tita Nofianti, Tresna Lestari, Ade Y. Aprillia, Lilis Tuslinah, Ruswanto Ruswanto

Abstract:

Nanoparticle technology gives a chance for drugs, especially natural based product, to give better activities than in its macromolecule form. The ginger torch is known to have activities as an antioxidant, antimicrobial, anticancer, etc. In this research, ginger torch flower extract was nanoparticlized using poloxamer 1, 3, and 5%. Nanoparticle was charaterized for its particle size, polydispersity index, zeta potential, entrapment efficiency, and morphological form by SEM (scanning electron microscope). The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index is less than 0.5 for all formulations, zeta potential is -41.0 to (-24.3) mV, and entrapment efficiency is 89.93 to 97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of drug to enhance superoxide dismutase activity.

Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer

Procedia PDF Downloads 201
1386 Corrosion Inhibition of Mild Steel by Calcium Gluconate in Magnesium Chloride Solution

Authors: Olaitan Akanji, Cleophas Loto, Patricia Popoola, Andrei Kolesnikov

Abstract:

Studies involving performance of corrosion inhibitors had been identified as one of the critical research needs for improving the durability of mild steel used in various industrial applications. This paper investigates the inhibiting effect of calcium gluconate against the corrosion of mild steel in 2.5M magnesium chloride using weight loss method and linear polarization technique, calculated corrosion rates from the obtained weight loss data, potentiodynamic polarization measurements are in good agreement. Results revealed calcium gluconate has strong inhibitory effects with inhibitor efficiency increasing with increase in inhibitor concentration at ambient temperature, the efficiency of the inhibitor increased in the following order of concentrations 2%g/vol,1.5%g/vol,1%g/vol,0.5%g/vol. Further results obtained from potentiodynamics experiments had good correlation with those of the gravimetric methods, the adsorption of the inhibitor on the mild steel surface from the chloride has been found to obey Langmuir, Frumkin and Freudlich adsorption isotherm. Scanning electron microscopy (SEM) observation confirmed the existence of an absorbed protective film on the metal surface.

Keywords: calcium gluconate, corrosion, magnesium chloride, mild steel

Procedia PDF Downloads 343
1385 Mass-Transfer Processes of Textile Dyes Adsorption onto Food Waste Adsorbent

Authors: Amel Asselah, Nadia Chabli, Imane Haddad

Abstract:

The adsorption of methylene blue and congo red dyes in an aqueous solution, on a food waste adsorbent: potato peel, and on a commercial adsorbent: activated carbon powder, was investigated using batch experiments. The objective of this study is the valorization of potato peel by its application in the elimination of these dyes. A comparison of the adsorption efficiency with a commercial adsorbent was carried out. Characterization of the potato peel adsorbent was performed by scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction, and X-ray fluorescence. Various parameters were analyzed, in particular: the adsorbent mass, the initial dye concentration, the contact time, the pH, and the temperature. The results reveal that it is about 98% for methylene blue-potato peel, 84% for congo red-potato peel, 84% for methylene blue-activated carbon, and 66% for congo red-activated carbon. The kinetic data were modeled by different equations and revealed that the adsorption of textile dyes on adsorbents follows the model pseudo-second-order, and the particular extra diffusion governs the adsorption mechanism. It has been found that the adsorption process could be described by the Langmuir isotherm.

Keywords: bioadsorbent, waste valorization, adsorptio, textile dyes

Procedia PDF Downloads 86
1384 Kinetic and Thermodynamic Modified Pectin with Chitosan by Forming Polyelectrolyte Complex Adsorbent to Remediate of Pb(II)

Authors: Budi Hastuti, Mudasir, Dwi Siswanta, Triyono

Abstract:

Biosorbent, such as pectin and chitosan, are usually produced with low physical stability, thus the materials need to be modified. In this research, the physical characteristic of adsorbent was increased by grafting chitosan using acetate carboxymetyl chitosan (CC). Further, CC and Pectin (Pec) were crosslinked using cross-linking agent BADGE (bis phenol A diglycidyl ether) to get CC-Pec-BADGE (CPB) adsorbent. The cross-linking processes aim to form stable structure and resistance on acidic media. Furthermore, in order to increase the adsorption capacity in removing Pb(II), the adsorbent was added with NaCl to form macroporous adsorbent named CCPec-BADGE-Na (CPB-Na). The physical and chemical characteristics of the porogenic adsorbent structure were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The adsorption parameter of CPB-Na to adsorb Pb(II) ion was determined. The kinetics and thermodynamics of the bath sorption of Pb(II) on CPB-Na adsorbent and using chitosan and pectin as a comparison were also studied. The results showed that the CPB-Na biosorbent was stable on acidic media. It had a rough and porous surface area, increased and gave higher sorption capacity for removal of Pb(II) ion. The CPB-Na 1/1 and 1/3 adsorbent adsorbed Pb(II) with adsorption capacity of 45.48 mg/g and 45.97 mg/g respectively, whereas pectin and chitosan were of 39.20 mg /g and 24.67 mg /g respectively.

Keywords: porogen, Pectin, Carboxymethyl Chitosan (CC), CC- Pec-BADGE-Na

Procedia PDF Downloads 150
1383 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures

Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa

Abstract:

The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.

Keywords: Carrier-charge-separation, nickel, photoluminescence, sulphur, zinc oxide

Procedia PDF Downloads 301
1382 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

Authors: Shivalinge Gowda

Abstract:

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.

Keywords: mass attenuation coefficient, atomic cross-section, effective atomic number, electron density

Procedia PDF Downloads 376
1381 Effect of Composition and Cooling Rate on the Solidification Structure of Al-Er Alloy

Authors: Jing Ning, Kunyuan Gao

Abstract:

The microstructure and phase structure of Al-Er alloys with Er content of 10, 20, 30wt% at cooling rate of 60, 40 and 5℃/h were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). Experimental results showed that for solidification of the hypereutectic Al-Er alloys at different conditions, a halo of α-Al appeared around the primary Al₃Er phase. Analysis of the solidification process indicated that after the primary Al₃Er phase formed, the composition of supercooled liquid phase located outside the coupled zone of eutectic growth below the eutectic line, which leaded to the formation of Al halo. With the increase of Er content, the blocky primary Al₃Er phase expanded from 200μm to 1mm in size. With the decrease of cooling rate, the morphology and phase structure of alloy were different. At the cooling rate of 60℃/h, it was obtained the primary Al3Er phase with L1₂ structure, whose profile was straight. Meanwhile, the eutectic structure was flocculent. At the quite slow cooling rate of 5℃/h, it was obtained the primary Al₃Er phase with hR20 structure with irregular jagged profile, and the eutectic structure was approximately strip-shaped. These characteristics were closely related to the cooling rate of solidification. The XRD analysis showed that for Al₃Er phase, the lattice constant a of L1₂ structure was 4.2158Å, and a, c of hR20 structure were 6.0321Å and 35.6290Å, respectively.

Keywords: Al-Er alloy, composition, cooling rate, microstructure

Procedia PDF Downloads 104
1380 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate

Authors: Renu Kumari, Jyotsna Dutta Majumdar

Abstract:

In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.

Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite

Procedia PDF Downloads 316
1379 Determination of Sintering Parameters of TiB₂ – Ti₃SiC₂ Composites

Authors: Bilge Yaman Islak, Erhan Ayas

Abstract:

The densification behavior of TiB₂ – Ti₃SiC₂ composites is investigated for temperatures in the range of 1200°C to 1400°C, for the pressure of 40 and 50MPa, and for holding time between 15-30 min by spark plasma sintering (SPS) technique. Ti, Si, TiC and 5 wt.% TiB₂ were used to synthesize TiB₂ – Ti₃SiC₂ composites and the effect of different sintering parameters on the densification and phase evolution of these composites were investigated. The bulk densities were determined by using the Archimedes method. The polished and fractured surfaces of the samples were examined using a scanning electron microscope equipped with an energy dispersive spectroscopy (EDS). The phase analyses were accomplished by using the X-Ray diffractometer. Sintering temperature and holding time are found to play a dominant role in the phase development of composites. TiₓCᵧ and TiSi₂ secondary phases were found in 5 wt.%TiB₂ – Ti₃SiC₂ composites densified at 1200°C and 1400°C under the pressure of 40 MPa, due to decomposition of Ti₃SiC₂. The results indicated that 5 wt.%TiB₂ – Ti₃SiC₂ composites were densified into the dense parts with a relative density of 98.77% by sintering at 1300 °C, for 15 min, under a pressure of 50 MPa via SPS without the formation of any other ancillary phase. This work was funded and supported by Scientific Research Projects Commission of Eskisehir Osmangazi University with the Project Number 201915C103 (2019-2517).

Keywords: densification, phase evolution, sintering, TiB₂ – Ti₃SiC₂ composites

Procedia PDF Downloads 140
1378 A Unified Approach for Digital Forensics Analysis

Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles

Abstract:

Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.

Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool

Procedia PDF Downloads 191
1377 Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants

Authors: A. Asselah, A. Khalfi, M. A.Toumi, A.Tazerouti

Abstract:

The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant.

Keywords: carbon steel, oilfield, corrosion, anionic surfactants

Procedia PDF Downloads 88