Search results for: antifouling properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8992

Search results for: antifouling properties

7132 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 243
7131 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 131
7130 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)

Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi

Abstract:

Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.

Keywords: copper, leaching, CCD, rate constant

Procedia PDF Downloads 242
7129 Symmetry-Protected Dirac Semi-Metallic Phases in Transition Metal Dichalcogenides

Authors: Mohammad Saeed Bahramy

Abstract:

Transition metal dichalcogenides have experienced a resurgence of interest in the past few years owing to their rich properties, ranging from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems. In all these cases, the transition metal d-electrons mainly determine the ground state properties. This presentation focuses on the chalcogen-derived states. Combining density-functional theory calculations with spin- and angle-resolved photoemission, it is shown that these states generically host a coexistence of type I and type II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. It will be discussed how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across many compounds. Our finding opens a new route to design topological materials with advanced functionalities.

Keywords: topology, electronic structure, Dirac semimetals, transition metal dichalcogenides

Procedia PDF Downloads 166
7128 Effect of Moringa (Moringa oleifera LAM) Leaves Extract on Physicochemical and Organoleptic Properties of Fullfat and Lowfat Yoghurt

Authors: B. F. Muhammad, A. M. Abdulqadeer

Abstract:

The current study determined the effect of fortification using Moringa (Moringa oleifera) Leaves Extract (MLE) at different inclusion levels (0, 6, 8, and 10% v/v) on physicochemical and sensory properties of fullfat (FFY) and lowfat (LFY) yoghurt. The results revealed significantly higher protein (p<0.01), fat (p<0.001) and pH in FFY compared to LFY. The MLE inclusion significantly (p<0.001) increased fat contents of the yoghurt types. The pH of LFY produced with 6% MLE was significantly the lowest (p<0.001). The concentration of Mg (21.0 mg/100g), Na (63.0 mg/100g), Ca (173.0 mg/100g), P (416.7 mg/100g), Cu (0.59 mg/100g), Co (0.30 mg/100g), Fe (1.13 mg/100g), and Mn (0.059 mg/100g) were significantly (p<0.001) higher in 10% MLE inclusion level for both FFY and LFY. Also, Mg, Na, Cu and Fe showed significant (p<0.001) negative correlation in fullfat and positive in lowfat yoghurt. The sensory assessment revealed that taste, flavour, colour, texture, and overall acceptability of yoghurt produced with 6% MLE (rated as liked very much) was significantly (p<0.001) better than that produced with 8 and 10% (rated liked slightly). It was concluded that fortification of FFY and LFY with 6% MLE produced acceptable yoghurt that has high nutritional value.

Keywords: moringa, fortification, yoghurt, bioactive compounds

Procedia PDF Downloads 462
7127 Thin Films of Glassy Carbon Prepared by Cluster Deposition

Authors: Hatem Diaf, Patrice Melinon, Antonio Pereira, Bernard Moine, Nicholas Blanchard, Florent Bourquard, Florence Garrelie, Christophe Donnet

Abstract:

Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist.

Keywords: glassy carbon, cluster deposition, coating, electronic structure

Procedia PDF Downloads 319
7126 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: perovskite, dielectric, ceramics, high-energy milling

Procedia PDF Downloads 325
7125 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 312
7124 The Effect of Ethylene Propylene Diene Monomer on the Rheological Properties of Bitumen

Authors: Emre Eren, Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, Çigdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study aimed to investigate the mechanical and high-temperature rheological properties of Ethylene Propylene Diene Monomer (EPDM) modified bitumen. To achieve this, the neat binder was modified with EPDM additive in different percentages: 2% to 5%. The neat and modified binder were subjected to conventional and rheological tests, including penetration and softening point tests, as well as evaluations of their rutting performance and high-temperature viscosity characteristics. Additionally, the mixing and compaction temperatures for hot mix asphalt production were identified using a rotational viscometer. The findings indicated that EPDM is a highly effective bitumen modifier, with the high temperature performance class of the neat binder improving by 3 grades according to the Superpave asphalt grading system.

Keywords: polymer, bitumen, rheology, EPDM, dynamic mechanical analysis

Procedia PDF Downloads 124
7123 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)

Procedia PDF Downloads 353
7122 Screening of Phytochemicals Compounds from Chasmanthera dependens and Carissa edulis as Potential Inhibitors of Carbonic Anhydrases CA II (3HS4) Receptor using a Target-Based Drug Design

Authors: Owonikoko Abayomi Dele

Abstract:

Epilepsy is an unresolved disease that needs urgent attention. It is a brain disorder that affects over sixty-five (65) million people around the globe. Despite the availability of commercial anti-epileptic drugs, the war against this unmet condition is yet to be resolved. Most epilepsy patients are resistant to available anti-epileptic medications thus the need for affordable novel therapy against epilepsy is a necessity. Numerous phytochemicals have been reported for their potency, efficacy and safety as therapeutic agents against many diseases. This study investigated 99 isolated phytochemicals from Chasmanthera dependens and Carissa edulis against carbonic anhydrase (ii) drug target. The absorption, distribution, metabolism, excretion and toxicity (ADMET) of the isolated compounds were examined using admet SAR-2 web server while Swiss ADME was used to analyze the oral bioavailability, drug-likeness and lead-likeness properties of the selected leads. PASS web server was used to predict the biological activities of selected leads while other important physicochemical properties and interactions of the selected leads with the active site of the target after successful molecular docking simulation with the pyrx virtual screening tool were also examined. The results of these study identified seven lead compounds; C49- alpha-carissanol (-7.6 kcal/mol), C13- Catechin (-7.4 kcal/mol), C45- Salicin (-7.4 kcal/mol), C6- Bisnorargemonine (-7.3 kcal/mol), C36- Pallidine (-7.1 kcal/mol), S4- Lacosamide (-7.1 kcal/mol), and S7- Acetazolamide (-6.4 kcal/mol) for CA II (3HS4 receptor). These leads compounds are probable inhibitors of this drug target due to the observed good binding affinities and favourable interactions with the active site of the drug target, excellent ADMET profiles, PASS Properties, drug-likeness, lead-likeness and oral bioavailability properties. The identified leads have better binding energies as compared to the binding energies of the two standards. Thus, seven identified lead compounds can be developed further towards the development of new anti-epileptic medications.

Keywords: drug-likeness, phytochemicals, carbonic anhydrases, metalloeazymes, active site, ADMET

Procedia PDF Downloads 56
7121 Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria

Authors: Augustine Osayande

Abstract:

This research is on Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria. The primary objective was to identify notable gullies sites and quantify the volume of soil loss in the study area. Direct field observation and measurement of gullies dimensions was done with the help of research assistants using a measuring tape, Camera and 3percent accuracy Global Positioning System (GPS). The result revealed that notable gullies in the area have resulted in the loss of lives and properties, destruction of arable lands and wastage of large areas of usable lands. Gullies in Edo North have Mean Volume of Soil Loss of 614, 763.33 m³, followed by Edo South with 79,604.76 m³ and Edo Central is 46,242.98 m³ and as such an average of 1,772, 888.7m3 of soil is lost annually in the study area due to gully erosion problem. The danger of gully erosion in helpless regions like Edo State called for urgent remedies in order to arrest the further loss of soil, buildings and other properties.

Keywords: Edo, magnitude, gully, volume, soil, sloss

Procedia PDF Downloads 142
7120 Stimuli-Responsive Zwitterionic Dressings for Chronic Wounds Management

Authors: Konstans Ruseva, Kristina Ivanova, Katerina Todorova, Margarita Gabrashanska, Tzanko Tzanov, Elena Vassileva

Abstract:

Zwitterionic polymers (ZP) are well-known with their ultralow biofouling. They are successfully competing with poly(ethylene glycols) (PEG), which are considered as the “golden standard” in this respect. These unique properties are attributed to their strong hydration capacity, defined by the dipole-dipole interactions, arising between the ZP pendant groups as well as to the dipoles interaction with water molecules. Beside, ZP are highly resistant to bacterial adhesion thus ensuring an excellent anti-biofilm formation ability. Moreover, ZP are able to respond upon external stimuli such as temperature, pH, salt concentration changes which in combination with their anti-biofouling effect render this type of polymers as materials with a high potential in biomedical applications. The present work is focused on the development of zwitterionic hydrogels for efficient treatment of highly exudating and hard-to-heal chronic wounds. To this purpose, two types of ZP networks with different crosslinking degree were synthesized - polysulfobetaine (PSB) and polycarboxybetaine (PCB) ones. They were characterized in terms of their physico-mechanical properties, e.g. microhardness, swelling ability, smart behaviour. Furthermore, the potential of ZP networks to resist biofilm formation towards Staphylococcus aureus and Escherichia coli was studied. Their ability to reduce the high levels of myeloperoxidase and metalloproteinase, two enzymes that are part of the chronic wounds enviroenment, was revealed. Moreover, the in vitro cytotoxic assessment of PSB and PCB networks along with their in vivo performance in rats was also studied to reveal their high biocompatibility.

Keywords: absorption properties, biocompatibility, enzymatic inhibition activity, wound healing, zwitterionic polymers

Procedia PDF Downloads 197
7119 Bernstein Type Polynomials for Solving Differential Equations and Their Applications

Authors: Yilmaz Simsek

Abstract:

In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values.

Keywords: generating functions, Bernstein basis functions, Bernstein polynomials, Bezier curves, differential equations

Procedia PDF Downloads 274
7118 A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties

Authors: Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra

Abstract:

The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H₂ gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H₂ gas is studied under low detection limit (2–500 ppm) of H₂ in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H₂ at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H₂ gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H₂ gas sensor.

Keywords: sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor

Procedia PDF Downloads 392
7117 Influence of Partially-Replaced Coarse Aggregates with Date Palm Seeds on the Concrete Properties

Authors: Fahed Alrshoudi

Abstract:

Saudi Arabia is ranked the third of the largest suppliers of Dates worldwide (about 28.5 million palm trees), producing more than 2 million tons of dates yearly. These trees produce large quantity of dates palm seeds (DPS) which can be considered literally as a waste. The date seeds are stiff, therefore, it is possible to utilize DPS as coarse aggregates in lightweight concrete for certain structural applications and to participate at reusing the waste. The use of DPS as coarse aggregate in concrete can be an alternative choice as a partial replacement of the stone aggregates (SA). This paper reports the influence of partially replaced stone aggregates with DPS on the hardened properties of concrete performance. Based on the experimental results, the DPS has the potential use as an acceptable alternative aggregates in producing structural lightweight concrete members, instead of stone aggregates.

Keywords: compressive strength, tensile Strength, date palm seeds, aggregate

Procedia PDF Downloads 130
7116 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention

Procedia PDF Downloads 357
7115 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.

Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 326
7114 Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture

Authors: Kiza Rusati Pacifique, Ki-il Song

Abstract:

The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field.

Keywords: damping ratio, electrical resistivity, ground improvement, inorganic binder, longitudinal wave velocity, unconfined compression strength

Procedia PDF Downloads 345
7113 Evaluation of Goji By-Product as a Value-Added Ingredient for the Functional Food Industry

Authors: Sanaa Ragaee, Paragyani Bora, Wee Teng Tan, Xin Hu

Abstract:

Goji berry (Lycium barbarum) is a member of the family Solanaceae which is grown widely in China, Tibet, and other parts of Asia. Its fruits are 1–2 cm-long, bright orange-red ellipsoid berries and it has a long tradition as a food and medicinal plant. Goji berries are believed to boost immune system properties. The berries are considered an excellent source of macronutrients, micronutrients, vitamins, minerals and several bioactive components. Studies have shown effects of goji fruit on aging, neuroprotection, general well-being, fatigue/endurance, metabolism/energy expenditure, glucose control in diabetics and glaucoma, antioxidant properties, immunomodulation and anti-tumor activity. Goji berries are being used to prepare Goji beverage, and the remaining solid material is considered as by-product. The by-product is currently unused and disposed as waste despite its potential as a value-added food ingredient. Therefore, this study is intended to evaluate nutritional properties of Goji by-product and its potential applications in the baking industry. The Goji by-product was freeze dried and ground to pass through 1 mm screen prior to evaluation and food use. The Goji by-product was found to be a rich source of fiber (54%) and free phenolic components (1,307 µg/g), protein (13.6%), ash (3.3%) and fat (10%). Incorporation of the Goji by-product in muffins and cookies at various levels (10-40%) significantly improved the nutritional quality of the baked products. The baked products were generally accepted and highly rated by panelists at 20% replacement level. The results indicate the potential of Goji by-product as a value-added ingredient in particular as a source of dietary fiber and protein.

Keywords: Goji, by-product, phenolics, fibers, baked products

Procedia PDF Downloads 302
7112 Wear Resistance and Thermal Stability of Tungsten Boride Layers Deposited by Magnetron Sputtering

Authors: Justyna Chrzanowska, Jacek Hoffman, Dariusz Garbiec, Łukasz Kurpaska, Piotr Denis, Tomasz Moscicki, Zygmunt Szymanski

Abstract:

Tungsten and boron compounds belong to the group of superhard materials and its hardness could exceed 40 GPa. In this study, the properties of the tungsten boride (WB) layers deposited in magnetron sputtering process are investigated. The sputtering process occurred from specially prepared targets that were composed of boron and tungsten mixed in molar ratio of 2.5 or 4.5 and sintered in spark plasma sintering process. WB layers were deposited on silicon (100) and stainless steel 304 substrates at room temperature (RT) or in 570 °C. Layers deposited in RT and in elevated temperature varied considerably. Layers deposited in RT are amorphous and have low adhesion. In contrast, the layers deposited in 570 °C are crystalline and have good adhesion. All deposited layers have a hardness about 40 GPa. Moreover, the friction coefficient of crystalline layers is 0.22 and wear rate is about 0.67•10-6 mm3N-1m-1. After material characterization the WB layers were annealed in argon atmosphere in 1000 °C for 1 hour. On the basis of X-Ray Diffraction analysis, it has been noted that the crystalline layers are thermally stable and do not change their phase composition, whereas the amorphous layers change their phase composition. Moreover, after annealing, on the surface of WB layers some cracks were observed. It is probably connected with the differences of the thermal expansion between the layer and the substrate. Despite of the presence of cracks, the wear resistance of annealed layers is still higher than the wear resistance of uncoated substrate. The analysis of the structure and properties of tungsten boride layers lead to the discussion about the application area of this material.

Keywords: hard coatings, hard materials, magnetron sputtering, mechanical properties, tungsten boride

Procedia PDF Downloads 289
7111 Development of Multifunctional Yarns and Fabrics for Interactive Textiles

Authors: Muhammad Bilal Qadir, Danish Umer, Amir Shahzad

Abstract:

The use of conductive materials in smart and interactive textiles is gaining significant importance for creating value addition, innovation, and functional product development. These products find their potential applications in health monitoring, military, protection, communication, sensing, monitoring, actuation, fashion, and lifestyles. The materials which are most commonly employed in such type of interactive textile include intrinsically conducting polymers, conductive inks, and metallic coating on textile fabrics and inherently conducting metallic fibre yarns. In this study, silver coated polyester filament yarn is explored for the development of multifunctional interactive gloves. The composite yarn was developed by covering the silver coated polyester filament around the polyester spun yarn using hollow spindle technique. The electrical and tensile properties of the yarn were studied. This novel yarn was used to manufacture a smart glove to explore the antibacterial, functional, and interactive properties of the yarn. The change in electrical resistance due to finger movement at different bending positions and antimicrobial properties were studied. This glove was also found useful as an interactive tool to operate the commonly used touch screen devices due to its conductive nature. The yarn can also be used to develop the sensing elements like stretch, strain, and piezoresistive sensors. Such sensor can be effectively used in medical and sports textile for performance monitoring, vital signs monitoring and development of antibacterial textile for healthcare and hygiene.

Keywords: conductive yarn, interactive textiles, piezoresistive sensors, smart gloves

Procedia PDF Downloads 243
7110 Simulation of Stretching and Fragmenting DNA by Microfluidic for Optimizing Microfluidic Devices

Authors: Shuyi Wu, Chuang Li, Quanshui Zheng, Luping Xu

Abstract:

Stretching and snipping DNA molecule by microfluidic has important application value in gene analysis by lab on a chip. Movement, deformation and fragmenting of DNA in microfluidic are typical fluid-solid coupling problems. An efficient and common simulation system for researching the movement, deformation and fragmenting of DNA by microfluidic has not been well developed. In our study, Brownian dynamics-finite element method (BD-FEM) is used to simulate the dynamic process of stretching and fragmenting DNA by contraction flow. The shape and parameters of micro-channels are changed to optimize the stretching and fragmenting properties of DNA. Our results indicate that strain rate, resulting from contraction microchannel, is the main control parameter for stretching and fragmenting DNA. There is good consistency between the simulation data and previous experimental result about the single DNA molecule behavior and averaged fragmenting properties in this study. BD-FEM method is an efficient calculating tool to research stretching and fragmenting behavior of single DNA molecule and optimize microfluidic devices for manipulating, stretching and fragmenting DNA.

Keywords: fragmenting, DNA, microfluidic, optimize.

Procedia PDF Downloads 328
7109 Wettability Properties of Pineapple Leaf Fibers and Banana Pseudostem Fibers Treated by Cold Plasma

Authors: Tatiana Franco, Hugo A. Estupinan

Abstract:

Banana pseudostem fiber (BPF) and pineapple leaf fiber (PLF) for their excellent mechanical properties and biodegradability characteristics arouse interest in different areas of research. F In tropical regions, where the banana pseudostem and the pineapple leaf are transformed into hard-to-handle solid waste, they can be low-cost raw material and environmentally sustainable in research for composite materials. In terms of functionality of this type of fiber, an open structure would allow the adsorption and retention of organic, inorganic and metallic species. In general, natural fibers have closed structures on their surface with intricate internal arrangements that can be used for the solution of environmental problems and other technological uses, however it is not possible to access their internal structure and sublayers, exposing the fibers in the natural state. An alternative method to chemical and enzymatic treatment are the processes with the plasma treatments, which are known to be clean, economical and controlled. In this type of treatment, a gas contained in a reactor in the form of plasma acts on the fiber generating changes in its structure, morphology and topography. This work compares the effects on fibers of PLF and BPF treated with cold argon plasma, alternating time and current. These fibers are grown in the regions of Antioquia-Colombia. The morphological, compositional and wettability properties of the fibers were analyzed by Raman microscopy, contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy analysis (AFM). The treatment with cold plasma on PLF and BPF allowed increasing its wettability, the topography and the microstructural relationship between lignin and cellulose.

Keywords: cold plasma, contact angle, natural fibers, Raman, SEM, wettability

Procedia PDF Downloads 156
7108 In vitro Antioxidant Properties and Phytochemistry of Some Philippine Creeping Medicinal Plants

Authors: Richard I. Licayan, Aisle Janne B. Dagpin, Romeo M. Del Rosario, Nenita D. Palmes

Abstract:

Hiptage benghalensis, Antigonon leptopus, Macroptillium atropurpureum, and Dioscorea bulbifera L. are herbal weeds that have been used by traditional healers in rural communities in the Philippines as medicine. In this study, the basic pharmacological components of the crude secondary metabolites extracted from the four herbal weeds and their in vitro antioxidant properties was investigated to provide baseline data for the possible development of these metabolites in pharmaceutical products. Qualitative screening of the secondary metabolites showed that alkaloids, tannins, saponins, steroids, and flavonoids were present in their leaf extracts. All of the plant extracts showed varied antioxidant activity. The greatest DPPH radical scavenging activity was observed in H. begnhalensis (84.64%), followed by A. leptopus (68.21%), M. atropurpureum (26.62%), and D. bulbifera L. (19.04%). The FRAP assay revealed that H. benghalensis had the highest antioxidant activity (8.32 mg/g) while ABTS assay showed that M. atropurpureum had the strongest scavenging ability of free radicals (0.0842 mg Trolox/g). The total flavonoid content (TFC) analysis showed that D. bulbifera L. had the highest TFC (420.35 mg quercetin per gram-dried material). The total phenolic content (TPC) of the four herbal weeds showed large variations, between 26.56±0.160 and 55.91±0.087 mg GAE/g dried material. The plant leaf extracts arranged in increasing values of TPC are H. benghalensis (26.565) < A. leptopus (37.29) < D. bulbifera L. (46.81) < M. atropurpureum (55.91). The obtained results may support their use in herbal medicine and as baseline data for the development of new drugs and standardized phytomedicines.

Keywords: antioxidant properties, total flavonoids, total phenolics, creeping herbal weeds

Procedia PDF Downloads 732
7107 Titanium-Aluminium Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminium oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviours of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behaviour of the coating material.

Keywords: titanium-aluminum oxide, plasma electrolytic oxidation, corrosion, wear, thermal property

Procedia PDF Downloads 356
7106 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films

Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.

Keywords: physical properties, sol, gel, TiO2/SiO2 composite films

Procedia PDF Downloads 493
7105 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 127
7104 Oil Palm Shell Ash: Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of seven days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: minerals, additive, flexural strength, compressive strength, modulus of elasticity

Procedia PDF Downloads 364
7103 Psychometric Properties and Factor Structure of the College Readiness Questionnaire

Authors: Muna Al-Kalbani, Thuwayba Al Barwani, Otherine Neisler, Hussain Alkharusi, David Clayton, Humaira Al-Sulaimani, Mohammad Khan, Hamad Al-Yahmadi

Abstract:

This study describes the psychometric properties and factor structure of the University Readiness Survey (URS). Survey data were collected from sample of 2652 students from Sultan Qaboos University. Exploratory factor analysis identified ten significant factors underlining the structure. The results of Confirmatory factor analysis showed a good fit to the data where the indices for the revised model were χ2(df = 1669) = 6093.4; CFI = 0.900; GFI =0.926; PCLOSE = 1.00 and RMSAE = 0.030 where each of these indices were above threshold. The overall value of Cronbach’s alpha was 0.899 indicating that the instrument score was reliable. Results imply that the URS is a valid measure describing the college readiness pattern among Sultan Qaboos University students and the Arabic version could be used by university counselors to identify students’ readiness factors. Nevertheless, further validation of the of the USR is recommended.

Keywords: college readiness, confirmatory factor analysis, reliability, validity

Procedia PDF Downloads 226