Search results for: inorganic molecular crystals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2793

Search results for: inorganic molecular crystals

963 Sepiolite as a Processing Aid in Fibre Reinforced Cement Produced in Hatschek Machine

Authors: R. Pérez Castells, J. M. Carbajo

Abstract:

Sepiolite is used as a processing aid in the manufacture of fibre cement from the start of the replacement of asbestos in the 80s. Sepiolite increases the inter-laminar bond between cement layers and improves homogeneity of the slurries. A new type of sepiolite processed product, Wollatrop TF/C, has been checked as a retention agent for fine particles in the production of fibre cement in a Hatschek machine. The effect of Wollatrop T/FC on filtering and fine particle losses was studied as well as the interaction with anionic polyacrylamide and microsilica. The design of the experiments were factorial and the VDT equipment used for measuring retention and drainage was modified Rapid Köethen laboratory sheet former. Wollatrop TF/C increased the fine particle retention improving the economy of the process and reducing the accumulation of solids in recycled process water. At the same time, drainage time increased sharply at high concentration, however drainage time can be improved by adjusting APAM concentration. Wollatrop TF/C and microsilica are having very small interactions among them. Microsilica does not control fine particle losses while Wollatrop TF/C does efficiently. Further research on APAM type (molecular weight and anionic character) is advisable to improve drainage.

Keywords: drainage, fibre-reinforced cement, fine particle losses, flocculation, microsilica, sepiolite

Procedia PDF Downloads 326
962 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound

Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui

Abstract:

We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.

Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro

Procedia PDF Downloads 313
961 Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis

Authors: D. S. Fardhyanti, M. Megawati, H. Prasetiawan, U. Mediaty

Abstract:

Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively.

Keywords: bio-oil, pyrolysis, bagasse, sugar cane, gas chromatography-mass spectroscopy

Procedia PDF Downloads 142
960 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site

Authors: Sangram Shamrao Patil, Hara Mohan Jena

Abstract:

Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.

Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation

Procedia PDF Downloads 271
959 Exogenous Ascorbic Acid Increases Resistance to Salt of Carthamus tinctorius

Authors: Banu Aytül Ekmekçi

Abstract:

Salinity stress has negative effects on agricultural yield throughout the world, affecting production whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) NaCl + water on carthamus tinctorius plants. The results show that 10% of salt water exhibited insignificant changes, while the higher levels impaired growth by reducing seed germination, dry weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, carotenoids, endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in combination with 30% NaCl water increased the intensity of protein bands as well as synthesized additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase tolerance mechanisms of treated plants towards water salinity.

Keywords: salinity, stress, vitamin c, antioxidant, NaCl, enzyme

Procedia PDF Downloads 513
958 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters

Authors: Chii-Dong Ho, Jian-Har Chen

Abstract:

The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.

Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters

Procedia PDF Downloads 8
957 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 52
956 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers

Authors: Fayyaz Rasool, Shakeela Parveen

Abstract:

The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.

Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita

Procedia PDF Downloads 449
955 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents

Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub

Abstract:

In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.

Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model

Procedia PDF Downloads 224
954 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water

Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed

Abstract:

Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.

Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater

Procedia PDF Downloads 269
953 Molecular Survey and Genetic Diversity of Bartonella henselae Strains Infecting Stray Cats from Algeria

Authors: Naouelle Azzag, Nadia Haddad, Benoit Durand, Elisabeth Petit, Ali Ammouche, Bruno Chomel, Henri J. Boulouis

Abstract:

Bartonella henselae is a small, gram negative, arthropod-borne bacterium that has been shown to cause multiple clinical manifestations in humans including cat scratch disease, bacillary angiomatosis, endocarditis, and bacteremia. In this research, we report the results of a cross sectional study of Bartonella henselae bacteremia in stray cats from Algiers. Whole blood of 227 stray cats from Algiers was tested for the presence of Bartonella species by culture and for the evaluation of the genetic diversity of B. henselae strains by multi-locus variable number of tandem repeats assay (MLVA). Bacteremia prevalence was 17% and only B. henselae was identified. Type I was the predominant type (64%). MLVA typing of 259 strains from 30 bacteremic cats revealed 52 different profiles. 51 of these profiles were specific to Algerian cats/identified for the first time. 20/30 cats (67%) harbored 2 to 7 MLVA profiles simultaneously. The similarity of MLVA profiles obtained from the same cat, neighbor-joining clustering and structure-neighbor clustering showed that such a diversity likely results from two different mechanisms occurring either independently or simultaneously independent infections and genetic drift from a primary strain.

Keywords: Bartonella, cat, MLVA, genetic

Procedia PDF Downloads 149
952 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments

Authors: Netsanet Kebede Hundessa

Abstract:

Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.

Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation

Procedia PDF Downloads 69
951 Effect of Microfiltration on the Composition and Ripening of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati belvirdi, M. Shakerian, H. Mirzaei

Abstract:

The effect of Microfiltration (MF) on proteolysis, hardness, and flavor of Feta cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X Concentration Factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as α2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Fetta cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged feta cheese produced without MF.

Keywords: feta cheese, microfiltration, concentration factor, proteolysis

Procedia PDF Downloads 413
950 The Influence of Polymorphisms of NER System Genes on the Risk of Colorectal Cancer in the Polish Population

Authors: Ireneusz Majsterek, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Jacek Kabzinski

Abstract:

Colorectal cancer (CRC) is one of the deadliest cancers. Every year we see an increase in the number of cases, and in spite of intensive research etiology of the disease remains unknown. For many years, researchers are seeking to associate genetic factors with an increased risk of CRC, so far it has proved to be a compelling link between the MMR system of DNA repair and hereditary nonpolyposis colorectal cancers (HNPCC). Currently, research is focused on finding the relationship between the remaining DNA repair systems and an increased risk of developing colorectal cancer. The aim of the study was to determine the relationship between gene polymorphisms Ser835Ser of XPF gene and Gly23Ala of XPA gene–elements of NER DNA repair system, and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 23Gly/Ala of XPA gene is associated with an increased risk of colorectal cancer, while 23Ala/Ala as well as TCT allele of Ser835Ser of XPF gene may reduce the risk of CRC.

Keywords: NER, colorectal cancer, XPA, XPF, polymorphisms

Procedia PDF Downloads 568
949 Evaluation Of In Vitro Antioxidant Potential of Camellia Sinensis Leaves Extract

Authors: Jirathan Pongchababnapa

Abstract:

Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Antioxidants are substances found in medicinal plants which may have a protective role to play in certain conditions such as heart disease, stroke and some cancers. By relying on these benefits, we have traced out the presence of antioxidant in Camellia sinensis leaves extract. This study aims to evaluate flavonoids content in C. sinensisextract and investigate antioxidant activities by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. Sinensis extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The results showed that the IC₅₀ of C. Sinensis leaves extract were 40.90 μg/mL ± 0.755 and32.96 μg/mL ± 0.679 for DPPH and ABTS, respectively. C. Sinensis extract at increasing concentration showed antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. Sinensis extract consisted of a high amount of flavonoids content which possesses potent antioxidant activity. However, further investigation on the identification of pure compound of this plant and molecular antioxidant assays are still required.

Keywords: ABTS assay, antioxidant, camellia sinensis, DPPH assay, total flavonoid content

Procedia PDF Downloads 210
948 Analysis of Cannabinol and Cannabidiol affinity with GBRA1

Authors: Hamid Hossein Khezri, Afsaneh Javdani-Mallak

Abstract:

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Cannabidiol (CBD) is one of the members of cannabinoid compounds found in cannabis. CBD and Cannabinol (CBN), as the other extract of plant Cannabis were able to reduce myofascial pain in rats with immunosuppressive and anti-inflammatory activities. In this study, we accomplished protein-protein BLAST, and the sequence was found to be for Gamma-aminobutyric acid receptor subunit alpha-1 (GBRA1) chain A and its 3D structure was subsequently downloaded from Protein Data Bank. The structures of the ligands, cannabinol, and cannabidiol, were obtained from PubChem. After the necessary process of the obtained files, AutoDock Vina was used to perform molecular docking. Docking between the ligands and GBRA1 chain A revealed that cannabinol has a higher affinity to GBRA1 (binding energy = -7.5 kcal/mol) compared to cannabidiol (binding energy = -6.5 kcal/mol). Furthermore, cannabinol seems to be able to interact with 10 residues of the protein, out of which 3 are in the neurotransmitter-gated ion-channel transmembrane domain of GBRA1, whereas cannabidiol interacts with two other residues. Although the results of this project do not indicate the activating /or inhibitory capability of the studied compounds, it suggests that cannabinol can act as a relatively strong ligand for GBRA1.

Keywords: protein-ligand docking, cannabinol, cannabidiol, GBRA1

Procedia PDF Downloads 110
947 Protein and MDA (Malondialdehyde) Profil of Bull Sperm and Seminal Plasma After Freezing

Authors: Sri Rahayu, M. Dwi Susan, Aris Soewondo, W. M. Agung Pramana

Abstract:

Semen is an organic fluid (seminal plasma) that contain spermatozoa. Proteins are one of the major seminal plasma components that modulate sperm functionality, influence sperm capacitation and maintaining the stability of the membrane. Semen freezing is a procedure to preserve sperm cells. The process causes decrease in sperm viability due to temperature shock and oxidation stress. Oxidation stress is a disturbance on phosphorylation that increases ROS concentration, and it produces lipid peroxide in spermatozoa membrane resulted in high MDA (malondialdehyde) concentration. The objective of this study was to examine the effect of freezing on protein and MDA profile of bovine sperm cell and seminal plasma after freezing. Protein and MDA of sperm cell and seminal plasma were isolated from 10 sample. Protein profiles was analyzed by SDS PAGE with separating gel 12,5 %. The concentration of MDA was measured by spectrophotometer. The results of the research indicated that freezing of semen cause lost of the seminal plasma proteins with molecular with 20, 10, and 9 kDa. In addition, the result research showed that protein of the sperm (26, 10, 9, 7, and 6 kDa) had been lost. There were difference MDA concentration of seminal plasma and sperm cell were increase after freezing. MDA concentration of seminal plasma before and after freezing were 2.2 and 2.4 nmol, respectively. MDA concentration of sperm cell before and after freezing were 1,5 and 1.8 nmol, respectively. In conclusion, there were differences protein profiles of spermatozoa before and after semen freezing and freezing cause increasing of the MDA concentration.

Keywords: MDA, semen freezing, SDS PAGE, protein profile

Procedia PDF Downloads 275
946 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 155
945 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 75
944 Purification, Biochemical Characterization and Application of an Extracellular Alkaline Keratinase Produced by Aspergillus sp. DHE7

Authors: Dina Helmy El-Ghonemy, Thanaa Hamed Ali

Abstract:

The aim of this study was to purify and characterize a keratinolytic enzyme produced by Aspergillus sp. DHE7 cultured in basal medium containing chicken feather as substrate. The enzyme was purified through ammonium sulfate saturation of 60%, followed by gel filtration chromatography in Sephadex G-100, with a 16.4-purification fold and recovery yield of 52.2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme is a monomeric enzyme with an apparent molecular mass of 30 kDa — the purified keratinase of Aspergillus sp. DHE7 exhibited activity in a broad range of pH (7- 9) and temperature (40℃-60℃) profiles with an optimal activity at pH eight and 50℃. The keratinolytic activity was inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride and ethylenediaminetetraacetate, while no reduction of activity was detected by the addition of dimethyl sulfoxide (DMSO). Bivalent cations, Ca²⁺ and Mn²⁺, were able to greatly enhance the activity of keratinase by 125.7% and 194.8%, respectively, when used at one mM final concentration. On the other hand, Cu²⁺ and Hg²⁺ inhibited the enzyme activity, which might be indicative of essential vicinal sulfhydryl groups of the enzyme for productive catalysis. Furthermore, the purified keratinase showed significant stability and compatibility against the tested commercial detergents at 37ºC. Therefore, these results suggested that the purified keratinase from Aspergillus sp. DHE7 may have potential use in the detergent industry and should be of interest in the processing of poultry feather waste.

Keywords: Aspergillus sp. DHE7, biochemical characterization, keratinase, purification, waste management

Procedia PDF Downloads 125
943 Comparison of the Effectiveness of Neisseria gonorrhea Crude Protein Injections with Intravenous, Intracutaneous, and Subcutaneous

Authors: Annisa Amalina, Lintang Sekar Sari, Khairunnisa Salsabila, Astya Gema Ramadhan, M. Fatkhi, Andani Eka Putra

Abstract:

Gonorrhea is one of the sexually transmitted diseases by genito-genital, oro-genital and anogenital. Gonorrhea disease will cause complications if not treated properly. The diagnostic tool that has been used nowadays is microscopic. Thus a rapid diagnostic tool for gonorrhea is required, using polyclonal antibodies. The purpose of this study was to determine the effectiveness of injections of intravenous, subcutaneous and intracutaneous crude protein gonorrhea. The research method used in this research is experimental explorative. This research was conducted in Molecular Microbiology Laboratory of Faculty of Medicine, Andalas University for 3 months from April to June 2017. This study used 3 groups of rabbit with intravenous, subcutaneous, and intracutaneous injections. Each group was treated on days 1, 7, 21, and 28 with crude protein injection. After that, the examination of antibody levels held by using ELISA, followed by the antibody comparative tests contained in all three groups. The results examined by One Way ANOVA test on SPSS 21 and showed that there is no significant difference between intravenous, subcutaneous, and intracutaneous use p=0.69 (p < 0.05). However, there is an increased level (0.047 to 1.171) in antibodies from day 1 to day 14. In addition, subcutaneous use is preferred because it has minimal side effects compared to intravenous and intracutaneous use.

Keywords: crude protein, Neisseria gonorrhea, polyclonal antibodies, subcutaneous

Procedia PDF Downloads 160
942 Virtual Screening of Potential Inhibitors against Efflux Pumps of Mycobacterium tuberculosis

Authors: Gagan Dhawan

Abstract:

Mycobacterium tuberculosis was described as ‘captain of death’ with an inherent property of multiple drug resistance majorly caused by the competent mechanism of efflux pumps. In this study, various open source tools combining chemo-informatics with bioinformatics were used for efficient in-silico drug designing. The efflux pump, Rv1218c, belonging to the ABC transporter superfamily, which is predicted to be a tetronasin-transporter in M. tuberculosis was targeted. Recent studies have shown that Rv1218c forms a complex with two more efflux pumps (Rv1219c and Rv1217c) to provide multidrug resistance to the bacterium. The 3D structure of the protein was modeled (as the structure was unavailable in the previously collected databases on this gene). The TMHMM analysis of this protein in TubercuList has shown that this protein is present in the outer membrane of the bacterium. Virtual screening of compounds from various publically available chemical libraries was performed on the M. tuberculosis protein using various open source tools. These ligands were further assessed where various physicochemical properties were evaluated and analyzed. On comparison of different physicochemical properties, toxicity and docking, the ligand 2-(hydroxymethyl)-6-[4, 5, 6-trihydroxy-2-(hydroxymethyl) tetrahydropyran-3-yl] oxy-tetrahydropyran-3, 4, 5-triol was found to be best suited for further studies.

Keywords: drug resistance, efflux pump, molecular docking, virtual screening

Procedia PDF Downloads 370
941 Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine

Authors: Samir Hmaimou, Marouane Ait Lahcen, Mohamed Adardour, Mohamed Maatallah, Abdesselam Baouid

Abstract:

Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control.

Keywords: cycloaddition reaction, regioselectivity, mechanism reaction, NMR analysis

Procedia PDF Downloads 17
940 Identification of Anaplasma Species in Sheep of Khouzestan Province by PCR

Authors: Masoud Soltanialvar, Ali Bagherpour

Abstract:

The aim of this study was to determinate the variety of Anaplasma species among sheep of khouzestan province, Iran. From April 2013 to June 2013, a total of 200 blood samples were collected via the jugular vein from healthy sheep (100), randomly. The extracted DNA from blood cells were amplified by Anaplasma-all primers, which amplify an approximately 1468bp DNA fragment from region of 16S rRNA gene from various members of the genus Anaplasma. For raising the test sensivity, the PCR products were amplified with the primers, which were designed from the region flanked by the first primers. The amplified nested PCR product had an expected PCR product with 345 nucleotides in length. In 100 sheep blood samples, 7 samples were Anaplasma spp. positive by first PCR and nested PCR. The results showed that 2 of total 100 blood samples (2%) were A.phagocytophilum positive by specific nested PCR based on 16S rRNA gene. The extracted DNA from positive Anaplasma spp. samples were amplified by Anaplasma ovis specific primers, which amplify an approximately 866bp DNA fragment from region of msp4 gene. 5 out of 100 sheep blood samples (5%) were positive for Anaplasma ovis. This study is the first molecular detection of A. ovis and A.phagocytophilum from sheep in Iran.

Keywords: Iran, anaplasma species, sheep, A. ovis, A. phagocytophilum, PCR

Procedia PDF Downloads 524
939 Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole

Authors: Lamla Thungathaa, Conrad Mahlasea, Lisa Ngcebesha

Abstract:

1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules.

Keywords: LLM-119, fused rings, azole, structural isomers, detonation properties

Procedia PDF Downloads 92
938 Sensitivity, Specificity and Efficiency Real-Time PCR Using SYBR Green Method to Determine Porcine and Bovine DNA Using Specific Primer Cytochrome B Gene

Authors: Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman, Mohd Sukri Hassan

Abstract:

Real-time PCR is a molecular biology technique that is currently being widely used for halal services to differentiating between porcine and bovine DNA. The useful of technique become very important for student or workers (who works in the laboratory) to learn how the technique could be run smoothly without fail. Same concept with conventional PCR, real-time PCR also needed DNA template, primer, enzyme polymerase, dNTP, and buffer. The difference is in real-time PCR, have additional component namely fluorescent dye. The most common use of fluorescent dye in real-time PCR is SYBR green. The purpose of this study was to find out how sensitive, specific and efficient real-time PCR technique was combined with SYBR green method and specific primers of CYT b. The results showed that real-time PCR technique using SYBR Green, capable of detecting porcine and bovine DNA concentrations up to 0.0001 µl/ng. The level of efficiency for both types of DNA was 91% (90-110). Not only that in specific primer CYT b bovine primer could detect only bovine DNA, and porcine primer could detect only porcine primer. So, from the study could be concluded that real-time PCR technique that was combined with specific primer CYT b and SYBR green method, was sensitive, specific and efficient to detect porcine and bovine DNA.

Keywords: sensitivity, specificity, efficiency, real-time PCR, SYBR green, Cytochrome b, porcine DNA, bovine DNA

Procedia PDF Downloads 315
937 The Lytic Bacteriophage VbɸAB-1 Against Drug-Resistant Acinetobacter Baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of a variety of bacterial infections. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi-drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. The present study analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, the range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin. According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Podoviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients. The findings of our research indicated that isolated phages could be an effective antimicrobial and an appreciate candidate for prophylaxis against pressure ulcers.

Keywords: acinetobacter baumannii, extremely drug-resistant, phage therapy, surgery wound

Procedia PDF Downloads 90
936 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 114
935 Roles of Lysine-63-Linked Ubiquitination in Cell Decision Fate between Cell Proliferation and Apoptosis

Authors: Chargui Abderrahman, Nehdi Afef , BelaïD Amine , Djerbi Nadir, Tauc Michel, Hofman Paul, Mograbi Baharia, El May MichèLe

Abstract:

K63-linked ubiquitination — i.e. conjugation of a chain of ubiquitins (Ub) linked through lys63 — has emerged as a key mechanism regulating signalling transduction pathways. Although critical, very little information is currently available about how subversion of K63 ubiquitination might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cadmium (Cd), a widespread environmental carcinogen and toxicant, is a powerful activator of K63 ubiquitination. Indeed, Cd induces accumulation of K63 polyUb proteins. Importantly, Cd-induced ubiquitination does not stem on oxidative damage or proteasome impairment. Rather, we demonstrate that Cd not only activates K63 ubiquitination but also amplifies their accumulation by overloading the capacity of autophagy pathway. At molecular level, Cd-induced ubiquitination is correlated with stabilization of HIF-1 and the activation of NF-B, two transcription factors. Strikingly, prolonged cell exposure to high Cd concentrations induces an exaggerated K63 ubiquitination that fosters aggresome formation, thus precluding these proteins from interacting with their downstream nuclear targets. We therefore propose that the aberrant activation of K63 ubiquitination by the carcinogen Cadmium could promote cell proliferation and inflammation at low levels while high levels committed cell to death.

Keywords: cadmium, environmental exposure, Lysine-63-ubiquitination, kidney, apoptosis, proliferation, autophagy

Procedia PDF Downloads 209
934 Phylogenetic Relationships of Common Reef Fish Species in Vietnam

Authors: Dang Thuy Binh, Truong Thi Oanh, Le Phan Khanh Hung, Luong thi Tuong Vy

Abstract:

One of the greatest environmental challenges facing Asia is the management and conservation of the marine biodiversity threaten by fisheries overexploitation, pollution, habitat destruction, and climate change. To date, a few molecular taxonomical studies has been conducted on marine fauna in Vietnam. The purpose of this study was to clarify the phylogeny of economic and ecological reef fish species in Vietnam Reef fish species covering Labridae, Scaridae, Nemipteridae, Serranidae, Acanthuridae, Lutjanidae, Lethrinidae, Mullidae, Balistidae, Pseudochromidae, Pinguipedidae, Fistulariidae, Holocentridae, Synodontidae, and Pomacentridae representing 28 genera were collected from South and Center, Vietnam. Combine with Genbank sequences, a phylogenetic tree was constructed based on 16S gene of mitochondrial DNA using maximum parsimony, maximum likelihood, and Bayesian inference approaches. The phylogram showed the well-resolved clades at genus and family level. Perciformes is the major order of reef fish species in Vietnam. The monophyly of Perciformes is not strongly supported as it was clustered in the same clade with Tetraodontiformes syngnathiformes and Beryciformes. Continue sampling of commercial fish species and classification based on morphology and genetics to build DNA barcoding of fish species in Vietnam is really necessary.

Keywords: reef fish, 16s rDNA, Vietnam, phylogeny

Procedia PDF Downloads 438