Search results for: environmental flow assessment
13993 Numerical Investigations of Unstable Pressure Fluctuations Behavior in a Side Channel Pump
Authors: Desmond Appiah, Fan Zhang, Shouqi Yuan, Wei Xueyuan, Stephen N. Asomani
Abstract:
The side channel pump has distinctive hydraulic performance characteristics over other vane pumps because of its generation of high pressure heads in only one impeller revolution. Hence, there is soaring utilization and application in the fields of petrochemical, food processing fields, automotive and aerospace fuel pumping where high heads are required at low flows. The side channel pump is characterized by unstable flow because after fluid flows into the impeller passage, it moves into the side channel and comes back to the impeller again and then moves to the next circulation. Consequently, the flow leaves the side channel pump following a helical path. However, the pressure fluctuation exhibited in the flow greatly contributes to the unwanted noise and vibration which is associated with the flow. In this paper, a side channel pump prototype was examined thoroughly through numerical calculations based on SST k-ω turbulence model to ascertain the pressure fluctuation behavior. The pressure fluctuation intensity of the 3D unstable flow dynamics were carefully investigated under different working conditions 0.8QBEP, 1.0 QBEP and 1.2QBEP. The results showed that the pressure fluctuation distribution around the pressure side of the blade is greater than the suction side at the impeller and side channel interface (z=0) for all three operating conditions. Part-load condition 0.8QBEP recorded the highest pressure fluctuation distribution because of the high circulation velocity thus causing an intense exchanged flow between the impeller and side channel. Time and frequency domains spectra of the pressure fluctuation patterns in the impeller and the side channel were also analyzed under the best efficiency point value, QBEP using the solution from the numerical calculations. It was observed from the time-domain analysis that the pressure fluctuation characteristics in the impeller flow passage increased steadily until the flow reached the interrupter which separates low-pressure at the inflow from high pressure at the outflow. The pressure fluctuation amplitudes in the frequency domain spectrum at the different monitoring points depicted a gentle decreasing trend of the pressure amplitudes which was common among the operating conditions. The frequency domain also revealed that the main excitation frequencies occurred at 600Hz, 1200Hz, and 1800Hz and continued in the integers of the rotating shaft frequency. Also, the mass flow exchange plots indicated that the side channel pump is characterized with many vortex flows. Operating conditions 0.8QBEP, 1.0 QBEP depicted less and similar vortex flow while 1.2Q recorded many vortex flows around the inflow, middle and outflow regions. The results of the numerical calculations were finally verified experimentally. The performance characteristics curves from the simulated results showed that 0.8QBEP working condition recorded a head increase of 43.03% and efficiency decrease of 6.73% compared to 1.0QBEP. It can be concluded that for industrial applications where the high heads are mostly required, the side channel pump can be designed to operate at part-load conditions. This paper can serve as a source of information in order to optimize a reliable performance and widen the applications of the side channel pumps.Keywords: exchanged flow, pressure fluctuation, numerical simulation, side channel pump
Procedia PDF Downloads 13613992 Internal Financing Constraints and Corporate Investment: Evidence from Indian Manufacturing Firms
Authors: Gaurav Gupta, Jitendra Mahakud
Abstract:
This study focuses on the significance of internal financing constraints on the determination of corporate fixed investments in the case of Indian manufacturing companies. Financing constraints companies which have less internal fund or retained earnings face more transaction and borrowing costs due to imperfections in the capital market. The period of study is 1999-2000 to 2013-2014 and we consider 618 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test, and Hausman test results conclude the suitability of the fixed effect model for the estimation. The cash flow and liquidity of the company have been used as the proxies for the internal financial constraints. In accordance with various theories of corporate investments, we consider other firm specific variable like firm age, firm size, profitability, sales and leverage as the control variables in the model. From the econometric analysis, we find internal cash flow and liquidity have the significant and positive impact on the corporate investments. The variables like cost of capital, sales growth and growth opportunities are found to be significantly determining the corporate investments in India, which is consistent with the neoclassical, accelerator and Tobin’s q theory of corporate investment. To check the robustness of results, we divided the sample on the basis of cash flow and liquidity. Firms having cash flow greater than zero are put under one group, and firms with cash flow less than zero are put under another group. Also, the firms are divided on the basis of liquidity following the same approach. We find that the results are robust to both types of companies having positive and negative cash flow and liquidity. The results for other variables are also in the same line as we find for the whole sample. These findings confirm that internal financing constraints play a significant role for determination of corporate investment in India. The findings of this study have the implications for the corporate managers to focus on the projects having higher expected cash inflows to avoid the financing constraints. Apart from that, they should also maintain adequate liquidity to minimize the external financing costs.Keywords: cash flow, corporate investment, financing constraints, panel data method
Procedia PDF Downloads 24113991 Experimental Studies and CFD Predictions on Hydrodynamics of Gas-Solid Flow in an ICFB with a Draft Tube
Authors: Ravi Gujjula, Chinna Eranna, Narasimha Mangadoddy
Abstract:
Hydrodynamic study of gas and solid flow in an internally circulating fluidized bed with draft tube is made in this paper using high speed camera and pressure probes for the laboratory ICFB test rig 3.0 m X 2.7 m column having a draft tube located in the center of ICFB. Experiments were conducted using different sized sand particles with varying particle size distribution. At each experimental run the standard pressure-flow curves for both draft tube and annular region beds measured and the same time downward particles velocity in the annular bed region were also measured. The effect of superficial gas velocity, static bed height (40, 50 & 60 cm) and the draft tube gap height (10.5 & 14.5 cm) on pressure drop profiles, solid circulation pattern, and gas bypassing dynamics for the ICFB investigated extensively. The mechanism of governing solid recirculation and the pressure losses in an ICFB has been eluded based on gas and solid dynamics obtained from the experimental data. 3D ICFB CFD simulation runs conducted and extracted data validated with ICFB experimental data.Keywords: icfb, cfd, pressure drop, solids recirculation, bed height, draft tube
Procedia PDF Downloads 51613990 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory
Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol
Abstract:
This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory
Procedia PDF Downloads 30113989 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization
Authors: Karima Megdouli
Abstract:
The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.Keywords: ejector, supersonic, Taguchi, ANOVA, optimization
Procedia PDF Downloads 8813988 Assessment of Environmental Impact for Rice Mills in Burdwan District: Special Emphasis on Groundwater, Surface Water, Soil, Vegetation and Human Health
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay
Abstract:
Rice milling is an important activity in agricultural economy of India, particularly the Burdwan district. However, the environmental impact of rice mills is frequently underestimated. The environmental impact of rice mills in the Burdwan district is a major source of concern, given the importance of rice milling in the local economy and food supply. In the Burdwan district, more than fifty (50) rice mills are in operation. The goal of this study is to investigate the effects of rice mills on several environmental components, with a particular emphasis on groundwater, surface water, soil, and vegetation. The research comprises a thorough review of numerous rice mills located around the district, utilising both qualitative and quantitative approaches. Water samples taken from wells near rice mills will be tested for groundwater quality, with an emphasis on factors such as heavy metal pollution and pollutant concentrations. Monitoring rice mill discharge into neighbouring bodies of water and studying the potential impact on aquatic ecosystems will be part of surface water evaluations. Furthermore, soil samples from the surrounding areas will be taken to examine changes in soil characteristics, nutrient content, and potential contamination from milling waste disposal. Vegetation studies will be conducted to investigate the effects of emissions and effluents on plant health and biodiversity in the region. The findings will provide light on the extent of environmental degradation caused by rice mills in the Burdwan district, as well as valuable insight into the effects of such operations on water, soil, and vegetation. The findings will aid in the development of appropriate legislation and regulations to reduce negative environmental repercussions and promote sustainable practises in the rice milling business. In some cases, heavy metals have been related to health problems. Heavy metals (As, Cd, Cu, Pb, Cr, Hg) are linked to skin, lung, brain, kidney, liver, metabolic, spleen, cardiovascular, haematological, immunological, gastrointestinal, testes, pancreatic, metabolic, and bone problems. As a result, this study contributes to a better knowledge of industrial environmental impacts and establishes the framework for future studies aimed at developing a more ecologically balanced and resilient Burdwan district. The following recommendations are offered for reducing the rice mill's environmental impact: To keep untreated effluents out of bodies of water, adequate waste management systems must be established. Use environmentally friendly rice milling processes to reduce pollution. To avoid soil pollution, rice mill by-products should be used as fertiliser in a controlled and appropriate manner. Groundwater, surface water, soil, and vegetation are all regularly monitored in order to study and adapt to environmental changes. By adhering to these principles, the rice milling industry of Burdwan district may achieve long-term growth while lowering its environmental effect and safeguarding the environment for future generations.Keywords: groundwater, environmental analysis, biodiversity, rice mill, waste management, diseases, industrial impact
Procedia PDF Downloads 9513987 Effect of Needle Height on Discharge Coefficient and Cavitation Number
Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate
Procedia PDF Downloads 14813986 The Use of Piezocone Penetration Test Data for the Assessment of Iron Ore Tailings Liquefaction Susceptibility
Authors: Breno M. Castilho
Abstract:
The Iron Ore Quadrangle, located in the state of Minas Gerais, Brazil is responsible for most of the country’s iron ore production. As a result, some of the biggest tailings dams in the country are located in this area. In recent years, several major failure events have happened in Tailings Storage Facilities (TSF) located in the Iron Ore Quadrangle. Some of these failures were found to be caused by liquefaction flowslides. This paper presents Piezocone Penetration Test (CPTu) data that was used, by applying Olson and Peterson methods, for the liquefaction susceptibility assessment of the iron ore tailings that are typically found in most TSF in the area. Piezocone data was also used to determine the steady-state strength of the tailings so as to allow for comparison with its drained strength. Results have shown great susceptibility for liquefaction to occur in the studied tailings and, more importantly, a large reduction in its strength. These results are key to understanding the failures that took place over the last few years.Keywords: Piezocone Penetration Test CPTu, iron ore tailings, mining, liquefaction susceptibility assessment
Procedia PDF Downloads 23313985 Evaluation of Learning Outcomes, Satisfaction and Self-Assessment of Students as a Change Factor in the Polish Higher Education System
Authors: Teresa Kupczyk, Selçuk Mustafa Özcan, Joanna Kubicka
Abstract:
The paper presents results of specialist literature analysis concerning learning outcomes and student satisfaction as a factor of the necessary change in the Polish higher education system. The objective of the empirical research was to determine students’ assessment of learning outcomes, satisfaction of their expectations, as well as their satisfaction with lectures and practical classes held in the traditional form, e-learning and video-conference. The assessment concerned effectiveness of time spent at classes, usefulness of the delivered knowledge, instructors’ preparation and teaching skills, application of tools, studies curriculum, its adaptation to students’ needs and labour market, as well as studying conditions. Self-assessment of learning outcomes was confronted with assessment by lecturers. The indirect objective of the research was also to identify how students assessed their activity and commitment in acquisition of knowledge and their discipline in achieving education goals. It was analysed how the studies held affected the students’ willingness to improve their skills and assessment of their perspectives at the labour market. To capture the changes underway, the research was held at the beginning, during and after completion of the studies. The study group included 86 students of two editions of full-time studies majoring in Management and specialising in “Mega-event organisation”. The studies were held within the EU-funded project entitled “Responding to challenges of new markets – innovative managerial education”. The results obtained were analysed statistically. Average results and standard deviations were calculated. In order to describe differences between the studied variables present during the process of studies, as well as considering the respondents’ gender, t-Student test for independent samples was performed with the IBM SPSS Statistics 21.0 software package. Correlations between variables were identified by calculation of Pearson and Spearman correlation coefficients. Research results suggest necessity to introduce some changes in the teaching system applied at Polish higher education institutions, not only considering the obtained outcomes, but also impact on students’ willingness to improve their qualifications constantly, improved self-assessment among students and their opportunities at the labour market.Keywords: higher education, learning outcomes, students, change
Procedia PDF Downloads 24013984 A Review of the Factors That Influence on Nutrient Removal in Upflow Filters
Authors: Ali Alzeyadi, Edward Loffill, Rafid Alkhaddar Ali Alattabi
Abstract:
Phosphate, ammonium, and nitrates are forms of nutrients; they are released from different sources. High nutrient levels contribute to the eutrophication of water bodies by accelerating the extraordinary growth of algae. Recently, many filtration and treatment systems were developed and used for different removal processes. Due to enhanced operational aspects for the up-flow, continuous, granular Media filter researchers became more interested in further developing this technology and its performance for nutrient removal from wastewater. Environmental factors significantly affect the filtration process performance, and understanding their impact will help to maintain the nutrient removal process. Phosphate removal by phosphate sorption materials PSMs and nitrogen removal biologically are the methods of nutrient removal that have been discussed in this paper. Hence, the focus on the factors that influence these processes is the scope of this work. The finding showed the presence of factors affecting both removal processes; the size, shape, and roughness of the filter media particles play a crucial role in supporting biofilm formation. On the other hand, all of which are effected on the reactivity of surface between the media and phosphate. Many studies alluded to factors that have significant influence on the biological removal for nitrogen such as dissolved oxygen, temperature, and pH; this is due to the sensitivity of biological processes while the phosphate removal by PSMs showed less affected by these factors. This review work provides help to the researchers in create a comprehensive approach in regards study the nutrient removal in up flow filtration systems.Keywords: nitrogen biological treatment, nutrients, psms, upflow filter, wastewater treatment
Procedia PDF Downloads 32213983 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.Keywords: control flow graph, graph reduction, software engineering, software applications
Procedia PDF Downloads 55213982 Numerical Study of UV Irradiation Effect on Air Disinfection Systems
Authors: H. Shokouhmand, M. Degheh, B. Sajadi, H. Sobhani
Abstract:
The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper.Keywords: CFD, microorganism, two-phase flow, ultraviolet germicidal irradiation
Procedia PDF Downloads 32913981 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 37513980 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 9313979 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study
Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle
Abstract:
The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area
Procedia PDF Downloads 11813978 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model
Authors: Mohammad Zamani, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.Keywords: circular vertical, spillway, numerical model, boundary conditions
Procedia PDF Downloads 8613977 Cash Flow Optimization on Synthetic CDOs
Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet
Abstract:
Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.Keywords: synthetic collateralized debt obligation (CDO), credit default swap (CDS), cash flow optimization, probability of default, default correlation, strategies, simulation, simplex
Procedia PDF Downloads 27513976 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady
Procedia PDF Downloads 18013975 Grain Size Effect of Durability of Bio-Clogging Treatment
Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht
Abstract:
In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.Keywords: bio-clogging, granulometry, permeability, nutrition
Procedia PDF Downloads 40713974 Complementing Assessment Processes with Standardized Tests: A Work in Progress
Authors: Amparo Camacho
Abstract:
ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.Keywords: assessment, hard skills, soft skills, standardized tests
Procedia PDF Downloads 28413973 Association Between Type of Face Mask and Visual Analog Scale Scores During Pain Assessment
Authors: Merav Ben Natan, Yaniv Steinfeld, Sara Badash, Galina Shmilov, Milena Abramov, Danny Epstein, Yaniv Yonai, Eyal Berbalek, Yaron Berkovich
Abstract:
Introduction: Postoperative pain management is crucial for effective rehabilitation, with the Visual Analog Scale (VAS) being a common tool for assessing pain intensity due to its sensitivity and accuracy. However, challenges such as misunderstanding of instructions and discrepancies in pain reporting can affect its reliability. Additionally, the mandatory use of face masks during the COVID-19 pandemic may impair nonverbal and verbal communication, potentially impacting pain assessment and overall care quality. Aims: This study examines the association between the type of mask worn by health care professionals and the assessment of pain intensity in patients after orthopedic surgery using the visual analog scale (VAS). Design: A nonrandomized controlled trial was conducted among 176 patients hospitalized in an orthopedic department of a hospital located in northern-central Israel from January to March 2021. Methods: In the intervention group (n = 83), pain assessment using the VAS was performed by a healthcare professional wearing a transparent face mask, while in the control group (n = 93), pain assessment was performed by a healthcare professional wearing a standard nontransparent face mask. The initial assessment was performed by a nurse, and 15 minutes later, an additional assessment was performed by a physician. Results: Healthcare professionals wearing a standard non-transparent mask obtained higher VAS scores than healthcare professionals wearing a transparent mask. In addition, nurses obtained lower VAS scores than physicians. The discrepancy in VAS scores between nurses and physicians was found in 50% of cases. This discrepancy was more prevalent among female patients, patients after knee replacement or spinal surgery, and when health care professionals were wearing a standard nontransparent mask. Conclusions: This study supports the use of transparent face masks by healthcare professionals in an orthopedic department, particularly by nurses. In addition, this study supports the assumption of problems involving the reliability of VAS.Keywords: postoperative pain management, visual analog scale, face masks, orthopedic surgery
Procedia PDF Downloads 2713972 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery
Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko
Abstract:
In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics
Procedia PDF Downloads 29313971 Mixed Convective Heat Transfer of Flow around a Radial Heat Sink
Authors: Benkherbache Souad
Abstract:
This work presents the numerical results of the mixed convective heat transfer of a three-dimensional flow around a radial heat sink composed of horizontal circular base fitted with rectangular fins. The governing equations of mass, momentum, and energy equation are solved by the finite volume method using the commercially available CFD software Fluent 6.3.26. The circular base of the heat sink is subjected to uniform heat generation; the flow enters through the sides of the heat sink around the fins then the heat is transmitted from the base to the fins afterwards the fluid. In this study two fluids are utilized, in the first case, the air for the following Reynolds numbers Re=600,900,1200 and a Grashof number Gr=3.7x10⁶, in the second case a water based nano fluid for which two types of nano particles (Cu and Al₂O₃) are carried out for Re=25 and a Richardson number Ri=2.7(Ri=Gr/Re²). The effect of the number of the fins of the heat sink as well as the type and the volume fraction of nano particles of the nano fluid were investigated. Results have been presented for N=15 and N=20 fins. The effect of the nano particles concentrations and the number of fins on the temperature in the heat sink and the Nusselt number has been studied.Keywords: heat sink, mixed convection, nano fluid, volumetric heat generation
Procedia PDF Downloads 18313970 Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element
Authors: Mohammad Alhajeri
Abstract:
This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters.Keywords: filtration, CFD, CCF, hot gas filtration
Procedia PDF Downloads 46213969 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 32813968 Exploring the Applicability of a Rapid Health Assessment in India
Authors: Claudia Carbajal, Jija Dutt, Smriti Pahwa, Sumukhi Vaid, Karishma Vats
Abstract:
ASER Centre, the research and assessment arm of Pratham Education Foundation sees measurement as the first stage of action. ASER uses primary research to push and give empirical foundations to policy discussions at a multitude of levels. At a household level, common citizens use a simple assessment (a floor-level test) to measure learning across rural India. This paper presents the evidence on the applicability of an ASER approach to the health sector. A citizen-led assessment was designed and executed that collected information from young mothers with children up to a year of age. The pilot assessments were rolled-out in two different models: Paid surveyors and student volunteers. The survey covered three geographic areas: 1,239 children in the Jaipur District of Rajasthan, 2,086 in the Rae Bareli District of Uttar Pradesh, and 593 children in the Bhuj Block in Gujarat. The survey tool was designed to study knowledge of health-related issues, daily practices followed by young mothers and access to relevant services and programs. It provides insights on behaviors related to infant and young child feeding practices, child and maternal nutrition and supplementation, water and sanitation, and health services. Moreover, the survey studies the reasons behind behaviors giving policy-makers actionable pathways to improve implementation of social sector programs. Although data on health outcomes are available, this approach could provide a rapid annual assessment of health issues with indicators that are easy to understand and act upon so that measurements do not become an exclusive domain of experts. The results give many insights into early childhood health behaviors and challenges. Around 98% of children are breastfed, and approximately half are not exclusively breastfed (for the first 6 months). Government established diet diversity guidelines are met for less than 1 out of 10 children. Although most households are satisfied with the quality of drinking water, most tested households had contaminated water.Keywords: citizen-led assessment, rapid health assessment, Infant and Young Children Feeding, water and sanitation, maternal nutrition, supplementation
Procedia PDF Downloads 17013967 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications
Authors: Avinoam Rabinovich
Abstract:
CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow
Procedia PDF Downloads 7013966 Effects of Umbilical Cord Clamping on Puppies Neonatal Vitality
Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
In veterinary medicine, the standard procedure during a caesarian section is clamping the umbilical cord immediately after birth. In human neonates, when the umbilical cord is kept intact after birth, blood continues to flow from the cord to the newborn, but this procedure may prove to be difficult in dogs due to the shorter umbilical cord and the number of newborns in the litter. However, a possible detachment of the placenta while keeping the umbilical cord intact may make the residual blood to flow to the neonate. This study compared the effects on neonatal vitality between clamping and no clamping the umbilical cord of dogs born through cesarean section, assessing them through Apgar and reflex scores. Fifty puppies delivered from 16 bitches were randomly allocated to receive clamping of the umbilical cord immediately (n=25) or to not receive the clamping until breathing (n=25). The neonates were assessed during the first five min of life and once again 10 min after the first assessment. The differences observed between the two moments were significant (p < 0.01) for both the Apgar and reflex scores. The differences observed between the groups (clamped vs. not clamped) were not significant for the Apgar score in the 1st moment (p=0.1), but the 2nd moment was significantly (p < 0.01) in the group not clamped, as well as significant (p < 0.05) for the reflex score in the 1st moment and 2nd moment (p < 0.05), revealing higher neonatal vitality in the not clamped group. The differences observed between the moments (1st vs. 2nd) of each group as significant (p < 0.01), revealing higher neonatal vitality in the 2nd moments. In the no clamping group, after removing the neonates together with the umbilical cord and the placenta, we observed that the umbilical cords were full of blood at the time of birth and later became whitish and collapsed, demonstrating the blood transfer. The results suggest that keeping the umbilical cord intact for at least three minutes after the onset breathing is not detrimental and may contribute to increase neonate vitality in puppies delivered by cesarean section.Keywords: puppy vitality, newborn dog, cesarean section, Apgar score
Procedia PDF Downloads 15313965 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium
Authors: D. Srinivasacharya, Nidhi Humnekar
Abstract:
The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media
Procedia PDF Downloads 11213964 The Effectiveness of Multiphase Flow in Well- Control Operations
Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia
Abstract:
Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic
Procedia PDF Downloads 119