Search results for: delay time
195 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar Mehrafarin, Reza Mehrafarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: archaeological surveys, computer use, iran, modern technologies, sistan
Procedia PDF Downloads 81194 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 97193 Chemicals to Remove and Prevent Biofilm
Authors: Cynthia K. Burzell
Abstract:
Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.Keywords: biofilm, potentiation, prevention, removal
Procedia PDF Downloads 104192 Erectile Dysfunction in A Middle Aged Man 6 Years After Bariatric Surgery: A Case Report
Authors: Thaminda Liyanage, Chamila Shamika Kurukulasuriya
Abstract:
Introduction: Morbid obesity has been successfully treated with bariatric surgery for over 60 years. Although operative procedures have improved and associated complications have reduced substantially, surgery still carries the risk of post-operative malabsorption, malnutrition and a range of gastrointestinal disorders. Overweight by itself can impair libido in both sexes and cause erectile dysfunction in males by inducing a state of hypogonadotropic hypogonadism, proportional to the degree of obesity. Impact of weight reduction on libido and sexual activity remains controversial, however it is broadly accepted that weight loss improves sexual drive. Zinc deficiency, subsequent to malabsorption, may lead to impaired testosterone synthesis in men while excessive and/or rapid weight loss in females may result in reversible amenorrhoea leading to sub-fertility. Methods: We describe a 37 year old male, 6 years post Roux-en-Y gastric bypass surgery, who presented with erectile dysfunction, loss of libido, worsening fatigue and generalized weakness for 4 months. He also complained of constipation and frequent muscle cramps but denied having headache, vomiting or visual disturbances. Patient had lost 38 kg of body weight post gastric bypass surgery over four years {135kg (BMI 42.6 kg/m2) to 97 kg (BMI 30.6 kg/m2)} and the weight had been stable for past two years. He had no recognised co-morbidities at the time of the surgery and noted marked improvement in general wellbeing, physical fitness and psychological confident post surgery, up until four months before presentation. Clinical examination revealed dry pale skin with normal body hair distribution, no thyroid nodules or goitre, normal size testicles and normal neurological examination with no visual field defects or diplopia. He had low serum testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), T3, T4, thyroid stimulating hormone (TSH), insulin like growth factor 1 (IGF-1) and 24-hour urine cortisol levels. Serum cortisol demonstrated an appropriate rise to ACTH stimulation test but growth hormone (GH) failed increase on insulin tolerance test. Other biochemical and haematological studies were normal, except for low zinc and folate with minimally raised liver enzymes. MRI scan of the head confirmed a solid pituitary mass with no mass effect on optic chiasm. Results: In this patient clinical, biochemical and radiological findings were consistent with anterior pituitary dysfunction. However, there were no features of raised intracranial pressure or neurological compromise. He was commenced on appropriate home replacement therapy and referred for neurosurgical evaluation. Patient reported marked improvement in his symptoms, specially libido and erectile dysfunction, on subsequent follow up visits. Conclusion: Sexual dysfunction coupled with non specific constitutional symptoms has multiple aetiologies. Clinical symptoms out of proportion to nutritional deficiencies post bariatric surgery should be thoroughly investigated. Close long term follow up is crucial for overall success.Keywords: obesity, bariatric surgery, erectile dysfunction, loss of libido
Procedia PDF Downloads 286191 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 107190 The Negative Effects of Controlled Motivation on Mathematics Achievement
Authors: John E. Boberg, Steven J. Bourgeois
Abstract:
The decline in student engagement and motivation through the middle years is well documented and clearly associated with a decline in mathematics achievement that persists through high school. To combat this trend and, very often, to meet high-stakes accountability standards, a growing number of parents, teachers, and schools have implemented various methods to incentivize learning. However, according to Self-Determination Theory, forms of incentivized learning such as public praise, tangible rewards, or threats of punishment tend to undermine intrinsic motivation and learning. By focusing on external forms of motivation that thwart autonomy in children, adults also potentially threaten relatedness measures such as trust and emotional engagement. Furthermore, these controlling motivational techniques tend to promote shallow forms of cognitive engagement at the expense of more effective deep processing strategies. Therefore, any short-term gains in apparent engagement or test scores are overshadowed by long-term diminished motivation, resulting in inauthentic approaches to learning and lower achievement. The current study focuses on the relationships between student trust, engagement, and motivation during these crucial years as students transition from elementary to middle school. In order to test the effects of controlled motivational techniques on achievement in mathematics, this quantitative study was conducted on a convenience sample of 22 elementary and middle schools from a single public charter school district in the south-central United States. The study employed multi-source data from students (N = 1,054), parents (N = 7,166), and teachers (N = 356), along with student achievement data and contextual campus variables. Cross-sectional questionnaires were used to measure the students’ self-regulated learning, emotional and cognitive engagement, and trust in teachers. Parents responded to a single item on incentivizing the academic performance of their child, and teachers responded to a series of questions about their acceptance of various incentive strategies. Structural equation modeling (SEM) was used to evaluate model fit and analyze the direct and indirect effects of the predictor variables on achievement. Although a student’s trust in teacher positively predicted both emotional and cognitive engagement, none of these three predictors accounted for any variance in achievement in mathematics. The parents’ use of incentives, on the other hand, predicted a student’s perception of his or her controlled motivation, and these two variables had significant negative effects on achievement. While controlled motivation had the greatest effects on achievement, parental incentives demonstrated both direct and indirect effects on achievement through the students’ self-reported controlled motivation. Comparing upper elementary student data with middle-school student data revealed that controlling forms of motivation may be taking their toll on student trust and engagement over time. While parental incentives positively predicted both cognitive and emotional engagement in the younger sub-group, such forms of controlling motivation negatively predicted both trust in teachers and emotional engagement in the middle-school sub-group. These findings support the claims, posited by Self-Determination Theory, about the dangers of incentivizing learning. Short-term gains belie the underlying damage to motivational processes that lead to decreased intrinsic motivation and achievement. Such practices also appear to thwart basic human needs such as relatedness.Keywords: controlled motivation, student engagement, incentivized learning, mathematics achievement, self-determination theory, student trust
Procedia PDF Downloads 221189 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape
Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca
Abstract:
ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)
Procedia PDF Downloads 113188 Religion and Risk: Unmasking Noah's Narratives in the Pacific Islands
Authors: A. Kolendo
Abstract:
Pacific Islands are one of the most vulnerable areas to climate change. Sea level rise and accelerating storm surge continuously threaten the communities' habitats on low-lying atolls. With scientific predictions of encroaching tides on their land, the Islanders have been informed about the need for future relocation planning. However, some communities oppose such retreat strategies through the reasoning that comprehends current climatic changes through the lenses of the biblical ark of Noah. This parable states God's promise never to flood the Earth again and never deprive people of their land and habitats. Several interpretations of this parable emerged in Oceania, prompting either climate action or denial. Resistance to relocation planning expressed through Christian thoughts led religion to be perceived as a barrier to dialogue between the Islanders and scientists. Since climate change concerns natural processes, the attitudes towards environmental stewardship prompt the communities' responses to it; some Christian teachings indicate humanity's responsibility over the environment, whereas others ascertain the people's dominion, which prompts resistance and sometimes denial. With church denominations and their various environmental standpoints, competing responses to climate change emerged in Oceania. Before miss-ionization, traditional knowledge had guided the environmental sphere, influencing current Christian teachings. Each atoll characterizes a distinctive manner of traditional knowledge; however, the unique relationship with nature unites all islands. The interconnectedness between the land, sea and people indicates the integrity between the communities and their environments. Such a factor influences the comprehension of Noah's story in the context of climate change that threatens their habitats. Pacific Islanders experience climate change through the slow disappearance of their homelands. However, the Western world perceives it as a global issue that will affect the population in the long-term perspective. Therefore, the Islanders seek to comprehend this global phenomenon in a local context that reads climate change as the Great Deluge. Accordingly, the safety measures that this parable promotes compensate for the danger of climate change. The rainbow covenant gives hope in God's promise never to flood the Earth again. At the same time, Noah's survival relates to the Islanders' current situation. Since these communities have the lowest carbon emissions rate, their contribution to anthropogenic climate change is scarce. Therefore, the lack of environmental sin would contextualize them as contemporary Noah with the ultimate survival of sea level rise. This study aims to defy religion constituting a barrier through secondary data analysis from a risk compensation perspective. Instead, religion is portrayed as a source of knowledge that enables comprehension of the communities' situation. By demonstrating that the Pacific Islanders utilize Noah's story as a vessel for coping with the danger of climate change, the study argues that religion provides safety measures that compensate for the future projections of land's disappearance. The purpose is to build a bridge between religious communities and scientific bodies and ultimately bring an understanding of two diverse perspectives. By addressing the practical challenges of interdisciplinary research with faith-based systems, this study uplifts the voices of communities and portrays their experiences expressed through Christian thoughts.Keywords: Christianity, climate change, existential threat, Pacific Islands, story of Noah
Procedia PDF Downloads 97187 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications
Authors: Deon Bezuidenhout
Abstract:
Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft
Procedia PDF Downloads 301186 A Case Study of a Rehabilitated Child by Joint Efforts of Parents and Community
Authors: Fouzia Arif, Arif S. Mohammad, Hifsa Altaf, Lubna Raees
Abstract:
Introduction: The term "disability", refers to any condition that impedes the completion of daily tasks using traditional methods. In developing countries like Pakistan, disable population is usually excluded from the mainstream. In squatter settlements the situation is more critical. Sultanabad is one of the squatter settlements of Karachi. Purpose of case study is to improve the health of disabled children’s, and create awareness among the parents and community. Through a household visit, Shiraz, a young disabled boy of 15.5 years old was identified. Her mother articulated that her son was living normally and happily with his parents two years back. When he was 13 years old and student of class 8th, both his legs were traumatized in a Railway Train Accident while playing cricket. He got both femoral shaft fractured severely. He was taken to Jinnah Post Graduate Medical Centre (JPMC) where his left leg was amputated at above knee level and right leg was opened & fixed by reduction internally, luckily bone healed moderately with the passage of time. Methods: In Squatter settlements of Karachi Sultanabad, a survey was conducted in two sectors. Disability screening questionnaire was developed, collaboration with community through household visits, outreach sessions 23cases of disabled were identified who were socialized through sports, Musical program and get-together was organized with stockholder for creating awareness among community and parent’s. Collaboration was established with different NGOs, Government, stakeholders and community support for establishment of Physiotherapy Center. During home visit it was identified that Shiraz was on bed since last 1 year, his family could not afforded cost of physiotherapist and medical consultation due to poverty. Parents counseling was done mentioning that Shiraz needed to take treatment. After motivation his parents agreed for treatment. He was consulted by an orthopedic surgeon in AKUH, Who referred to DMC University of Health Science for rehabilitation service. There he was assessed and referred for Community Based Physiotherapy Centre Sultanabad. Physiotherapist visited home along with Coordinator for Special children and assessed him regularly, planned Physiotherapy treatment for abdominal, high muscles strutting exercise foot muscles strengthening exercise, knee mobilization weight bearing from partial to full weight gradually, also strengthen exercise were given for residual limb as the boy was dependent on it. He was also provided by an artificial leg and training was done. Result: Shiraz is now fully mobile, he can walk independently even out of home, functional ability progress improved and dependency factors reduced. It was difficult but not impossible. We all have sympathy but if we have empathy then we can rehabilitate the community in a better way. His parents are very happy and also the community is surprised to see him in such better condition. Conclusion: Combined efforts of physiotherapist, Coordinator of special children, community and parents made a drastic change in Shiraz’s case by continuously motivating him for better outcome. He is going to school regularly without support. Since he belongs to a poor family he faces financial constraints for education and clinical follow ups regularly.Keywords: femoral shaft fracture, trauma, orthopedic surgeon, physiotherapy treatment
Procedia PDF Downloads 245185 Glucose Uptake Rate of Insulin-Resistant Human Liver Carcinoma Cells (IR/HepG2) by Flavonoids from Enicostema littorale via IR/IRS1/AKT Pathway
Authors: Priyanka Mokashi, Aparna Khanna, Nancy Pandita
Abstract:
Diabetes mellitus is a chronic metabolic disorder which will be the 7th leading cause of death by 2030. The current line of treatment for the diabetes mellitus is oral antidiabetic drugs (biguanides, sulfonylureas, meglitinides, thiazolidinediones and alpha-glycosidase inhibitors) and insulin therapy depending upon the type 1 or type 2 diabetes mellitus. But, these treatments have their disadvantages, ranging from the developing of resistance to the drugs and adverse effects caused by them. Alternative to these synthetic agents, natural products provides a new insight for the development of more efficient and safe drugs due to their therapeutic values. Enicostema littorale blume (A. Raynal) is a traditional Indian plant belongs to the Gentianaceae family. It is widely distributed in Asia, Africa, and South America. There are few reports on Swrtiamarin, major component of this plant for its antidiabetic activity. However, the antidiabetic activity of flavonoids from E. littorale and their mechanism of action have not yet been elucidated. Flavonoids have a positive relationship with disease prevention and can act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, adipocytes, hepatocytes and skeletal myofibers. They may exert beneficial effects in diabetes by (i) improving hyperglycemia through regulation of glucose metabolism in hepatocytes; (ii) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells; (iii) increasing glucose uptake in hepatocytes, skeletal muscle and white adipose tissue (iv) reducing insulin resistance, inflammation and oxidative stress. Therefore, we have isolated four flavonoid rich fractions, Fraction A (FA), Fraction B (FB), Fraction C (FC), Fraction D (FD) from crude alcoholic hot (AH) extract from E. littorale, identified by LC/MS. Total eight flavonoids were identified on the basis of fragmentation pattern. Flavonoid FA showed the presence of swertisin, isovitexin, and saponarin; FB showed genkwanin, quercetin, isovitexin, FC showed apigenin, swertisin, quercetin, 5-O-glucosylswertisin and 5-O-glucosylisoswertisin whereas FD showed the presence of swertisin. Further, these fractions were assessed for their antidiabetic activity on stimulating glucose uptake in insulin-resistant HepG2 cell line model (IR/HepG2). The results showed that FD containing C-glycoside Swertisin has significantly increased the glucose uptake rate of IR/HepG2 cells at the concentration of 10 µg/ml as compared to positive control Metformin (0.5mM) which was determined by glucose oxidase- peroxidase method. It has been reported that enhancement of glucose uptake of cells occurs due the translocation of Glut4 vesicles to cell membrane through IR/IRS1/AKT pathway. Therefore, we have studied expressions of three genes IRS1, AKT and Glut4 by real-time PCR to evaluate whether they follow the same pathway or not. It was seen that the glucose uptake rate has increased in FD treated IR/HepG2 cells due to the activation of insulin receptor substrate-1 (IRS1) followed by protein kinase B (AKT) through phosphoinositide 3-kinase (PI3K) leading to translocation of Glut 4 vesicles to cell membrane, thereby enhancing glucose uptake and insulin sensitivity of insulin resistant HepG2 cells. Hence, the up-regulation indicated the mechanism of action through which FD (Swertisin) acts as antidiabetic candidate in the treatment of type 2 diabetes mellitus.Keywords: E. littorale, glucose transporter, glucose uptake rate, insulin resistance
Procedia PDF Downloads 309184 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 67183 High Purity Lignin for Asphalt Applications: Using the Dawn Technology™ Wood Fractionation Process
Authors: Ed de Jong
Abstract:
Avantium is a leading technology development company and a frontrunner in renewable chemistry. Avantium develops disruptive technologies that enable the production of sustainable high value products from renewable materials and actively seek out collaborations and partnerships with like-minded companies and academic institutions globally, to speed up introductions of chemical innovations in the marketplace. In addition, Avantium helps companies to accelerate their catalysis R&D to improve efficiencies and deliver increased sustainability, growth, and profits, by providing proprietary systems and services to this regard. Many chemical building blocks and materials can be produced from biomass, nowadays mainly from 1st generation based carbohydrates, but potential for competition with the human food chain leads brand-owners to look for strategies to transition from 1st to 2nd generation feedstock. The use of non-edible lignocellulosic feedstock is an equally attractive source to produce chemical intermediates and an important part of the solution addressing these global issues (Paris targets). Avantium’s Dawn Technology™ separates the glucose, mixed sugars, and lignin available in non-food agricultural and forestry residues such as wood chips, wheat straw, bagasse, empty fruit bunches or corn stover. The resulting very pure lignin is dense in energy and can be used for energy generation. However, such a material might preferably be deployed in higher added value applications. Bitumen, which is fossil based, are mostly used for paving applications. Traditional hot mix asphalt emits large quantities of the GHG’s CO₂, CH₄, and N₂O, which is unfavorable for obvious environmental reasons. Another challenge for the bitumen industry is that the petrochemical industry is becoming more and more efficient in breaking down higher chain hydrocarbons to lower chain hydrocarbons with higher added value than bitumen. This has a negative effect on the availability of bitumen. The asphalt market, as well as governments, are looking for alternatives with higher sustainability in terms of GHG emission. The usage of alternative sustainable binders, which can (partly) replace the bitumen, contributes to reduce GHG emissions and at the same time broadens the availability of binders. As lignin is a major component (around 25-30%) of lignocellulosic material, which includes terrestrial plants (e.g., trees, bushes, and grass) and agricultural residues (e.g., empty fruit bunches, corn stover, sugarcane bagasse, straw, etc.), it is globally highly available. The chemical structure shows resemblance with the structure of bitumen and could, therefore, be used as an alternative for bitumen in applications like roofing or asphalt. Applications such as the use of lignin in asphalt need both fundamental research as well as practical proof under relevant use conditions. From a fundamental point of view, rheological aspects, as well as mixing, are key criteria. From a practical point of view, behavior in real road conditions is key (how easy can the asphalt be prepared, how easy can it be applied on the road, what is the durability, etc.). The paper will discuss the fundamentals of the use of lignin as bitumen replacement as well as the status of the different demonstration projects in Europe using lignin as a partial bitumen replacement in asphalts and will especially present the results of using Dawn Technology™ lignin as partial replacement of bitumen.Keywords: biorefinery, wood fractionation, lignin, asphalt, bitumen, sustainability
Procedia PDF Downloads 160182 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization
Authors: Niharika Kaushal, Minni Singh
Abstract:
Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.Keywords: citrus, agrowaste, flavonoids, nanoparticles
Procedia PDF Downloads 135181 When the Children Touched the Paintings: New German Cinema, the Red Army Faction, and their Filmic Afterlives
Authors: Rudy Ralph Martinez
Abstract:
The 1960s provided us with some of the most iconic protest images of the late-20th century. This was the result of worldwide unrest and the proliferation of filmmaking equipment, which led to a flood of photos and films depicting war and activism. Many of these images and films played a pivotal role in shaping the ever-evolving discussions surrounding the ‘60s. However, too often, radical imagery finds itself subsumed by consumer culture, a degradation that flattens radical imagery and turns it into consumer products. With this in mind, the work that follows is an analysis of one of the little-discussed chapters of the 60s and 70s, and it is that of the New German Cinema movement and its relationship with the Rote Armee Fraktion, or Red Army Faction (RAF), an armed Marxist-Leninist group founded in West Germany in 1970. The RAF arose out of a milieu which included student activists protesting Western military involvement in the Vietnam War, civil rights activists, and third world guerillas. The actions undertaken by the group throughout their first decade in existence, including bombings, and assassinations, would create West Germany’s most dire political crisis since the Nazi era, culminating in a crisis of legitimation remembered as the German Autumn, which saw the suicides of several of the militants and the assassination of SS officer-cum-prominent industrialist, Hans Martin-Schleyer. Throughout the 1970s, young filmmakers associated with the New German Cinema sought to analyze the political situation as it was unfolding, their films contributing to the public discourse in concomitance with the government and the media. Four notable examples of these films are Volker Schlöndorff and Margarethe von Trotta’sDie Verlorene Ehre der Katharina Blum oder: Wie Gewaltentstehen und wohinsieführenkann (The Lost Honour of Katharina Blum, or: How Violence Develops and Where it Can Lead) (1975), a dark drama about the media’s role in forming public opinion, Deutschland im Herbst(Germany in Autumn) (1977), an experimental collective work released mere months after the German Autumn, Rainer Werner Fassbinder’s Die Dritte Generation (The Third Generation) (1979), a satire about an inept cell of radical militants, and Die bleierne Zeit (The Leaden Time, alt. title: Marianne and Juliane) (1981), an intimate portrayal about two sisters whose activism leads them down disparate paths. The filmmakers of the New German Cinema refused to underline their films with the Manichaean claims respectively espoused by the RAF and the government. These complex portrayals found offspring in films such as Christian Petzold’s Die innere Sicherheit(The State I Am In) (2000), a portrait of a family on the run after the reunification of Germany but were countered by glossy high-budget portrayals such as Uli Edel’s Der Baader-Meinhof Komplex(The Baader-Meinhof Complex) (2008). In focusing on the aesthetic structure of these films in relation to the political atmosphere of the late-60s and 70s West Germany, I hope to shed light on questions concerning spectatorship, surveillance, the role of journalism, and how politics disrupts personal relationships, and the kinship between artists and so-called terrorists.Keywords: new german cinema, film history, red army faction, german cinema
Procedia PDF Downloads 104180 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather
Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour
Abstract:
The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati TropicalKeywords: energyplus, multi-layer of PCM, phase changing materials, tropical area
Procedia PDF Downloads 100179 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi
Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev
Abstract:
Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy
Procedia PDF Downloads 327178 Extension of Moral Agency to Artificial Agents
Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney
Abstract:
Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfullyKeywords: artificial agency, correctional system, ethics, natural agency, responsibility
Procedia PDF Downloads 192177 Learning from Dendrites: Improving the Point Neuron Model
Authors: Alexander Vandesompele, Joni Dambre
Abstract:
The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.Keywords: dendritic computation, spiking neural networks, point neuron model
Procedia PDF Downloads 137176 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor
Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang
Abstract:
Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry
Procedia PDF Downloads 339175 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties
Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer
Abstract:
Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory
Procedia PDF Downloads 131174 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles
Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng
Abstract:
Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies
Procedia PDF Downloads 69173 Preliminary Results on Marine Debris Classification in The Island of Mykonos (Greece) via Coastal and Underwater Clean up over 2016-20: A Successful Case of Recycling Plastics into Useful Daily Items
Authors: Eleni Akritopoulou, Katerina Topouzoglou
Abstract:
The last 20 years marine debris has been identified as one of the main marine pollution sources caused by anthropogenic activities. Plastics has reached the farthest marine areas of the planet affecting all marine trophic levels including the, recently discovered, amphipoda Eurythenes plasticus inhabiting Mariana Trench to large cetaceans, marine reptiles and sea birds causing immunodeficiency disorders, deteriorating health and death overtime. For the time period 2016-20, in the framework of the national initiative ‘Keep Aegean Blue”, All for Blue team has been collecting marine debris (coastline and underwater) following a modified in situ MEDSEALITTER monitoring protocol from eight Greek islands. After collection, marine debris was weighted, sorted and categorised according to material; plastic (PL), glass (G), metal (M), wood (W), rubber (R), cloth (CL), paper (P), mixed (MX). The goal of the project included the documentation of marine debris sources, human trends, waste management and public marine environmental awareness. Waste management was focused on plastics recycling and utilisation into daily useful products. This research is focused on the island of Mykonos due to its continuous touristic activity and lack of scientific information. In overall, a field work area of 1.832.856 m2 was cleaned up yielding 5092 kg of marine debris. The preliminary results indicated PL as main source of marine debris (62,8%) followed by M (15,5%), GL (13,2%) and MX (2,8%). Main items found were fishing tools (lines, nets), disposable cutlery, cups and straws, cigarette butts, flip flops and other items like plastic boat compartments. In collaboration with a local company for plastic management and the Circular Economy and Eco Innovation Institute (Sweden), all plastic debris was recycled. Granulation process was applied transforming plastic into building materials used for refugees’ houses, litter bins bought by municipalities and schools and, other items like shower components. In terms of volunteering and attendance in public awareness seminars, there was a raise of interest by 63% from different age ranges and professions. Regardless, the research being fairly new for Mykonos island and logistics issues potentially affected systemic sampling, it appeared that plastic debris is the main littering source attributed, possibly to the intense touristic activity of the island all year around. However, marine environmental awareness activities were pointed out to be an effective tool in forming public perception against marine debris and, alter the daily habits of local society. Since the beginning of this project, three new local environmental teams were formed against marine pollution supported by the local authorities and stakeholders. The continuous need and request for the production of items made by recycled marine debris appeared to be beneficial socio-economically to the local community and actions are taken to expand the project nationally. Finally, as an ongoing project and whilst, new scientific information is collected, further funding and research is needed.Keywords: Greece, marine debris, marine environmental awareness, Mykonos island, plastics debris, plastic granulation, recycled plastic, tourism, waste management
Procedia PDF Downloads 114172 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery
Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini
Abstract:
Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.Keywords: process safety management, turn around, oil refinery, risk assessment
Procedia PDF Downloads 80171 Sensitivity and Specificity of Some Serological Tests Used for Diagnosis of Bovine Brucellosis in Egypt on Bacteriological and Molecular Basis
Authors: Hosein I. Hosein, Ragab Azzam, Ahmed M. S. Menshawy, Sherin Rouby, Khaled Hendy, Ayman Mahrous, Hany Hussien
Abstract:
Brucellosis is a highly contagious bacterial zoonotic disease of a worldwide spread and has different names; Infectious or enzootic abortion and Bang's disease in animals; and Mediterranean or Malta fever, Undulant Fever and Rock fever in humans. It is caused by the different species of genus Brucella which is a Gram-negative, aerobic, non-spore forming, facultative intracellular bacterium. Brucella affects a wide range of mammals including bovines, small ruminants, pigs, equines, rodents, marine mammals as well as human resulting in serious economic losses in animal populations. In human, Brucella causes a severe illness representing a great public health problem. The disease was reported in Egypt for the first time in 1939; since then the disease remained endemic at high levels among cattle, buffalo, sheep and goat and is still representing a public health hazard. The annual economic losses due to brucellosis were estimated to be about 60 million Egyptian pounds yearly, but actual estimates are still missing despite almost 30 years of implementation of the Egyptian control programme. Despite being the gold standard, bacterial isolation has been reported to show poor sensitivity for samples with low-level of Brucella and is impractical for regular screening of large populations. Thus, serological tests still remain the corner stone for routine diagnosis of brucellosis, especially in developing countries. In the present study, a total of 1533 cows (256 from Beni-Suef Governorate, 445 from Al-Fayoum Governorate and 832 from Damietta Governorate), were employed for estimation of relative sensitivity, relative specificity, positive predictive value and negative predictive value of buffered acidified plate antigen test (BPAT), rose bengal test (RBT) and complement fixation test (CFT). The overall seroprevalence of brucellosis revealed (19.63%). Relative sensitivity, relative specificity, positive predictive value and negative predictive value of BPAT,RBT and CFT were estimated as, (96.27 %, 96.76 %, 87.65 % and 99.10 %), (93.42 %, 96.27 %, 90.16 % and 98.35%) and (89.30 %, 98.60 %, 94.35 %and 97.24 %) respectively. BPAT showed the highest sensitivity among the three employed serological tests. RBT was less specific than BPAT. CFT showed the least sensitivity 89.30 % among the three employed serological tests but showed the highest specificity. Different tissues specimens of 22 seropositive cows (spleen, retropharyngeal udder, and supra-mammary lymph nodes) were subjected for bacteriological studies for isolation and identification of Brucella organisms. Brucella melitensis biovar 3 could be recovered from 12 (54.55%) cows. Bacteriological examinations failed to classify 10 cases (45.45%) and were culture negative. Bruce-ladder PCR was carried out for molecular identification of the 12 Brucella isolates at the species level. Three fragments of 587 bp, 1071 bp and 1682 bp sizes were amplified indicating Brucella melitensis. The results indicated the importance of using several procedures to overcome the problem of escaping of some infected animals from diagnosis.Bruce-ladder PCR is an important tool for diagnosis and epidemiologic studies, providing relevant information for identification of Brucella spp.Keywords: brucellosis, relative sensitivity, relative specificity, Bruce-ladder, Egypt
Procedia PDF Downloads 357170 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects
Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm
Abstract:
Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology
Procedia PDF Downloads 185169 Planning Railway Assets Renewal with a Multiobjective Approach
Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida
Abstract:
Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling
Procedia PDF Downloads 147168 Ethnic Andean Concepts of Health and Illness in the Post-Colombian World and Its Relevance Today
Authors: Elizabeth J. Currie, Fernando Ortega Perez
Abstract:
—‘MEDICINE’ is a new project funded under the EC Horizon 2020 Marie-Sklodowska Curie Actions, to determine concepts of health and healing from a culturally specific indigenous context, using a framework of interdisciplinary methods which integrates archaeological-historical, ethnographic and modern health sciences approaches. The study will generate new theoretical and methodological approaches to model how peoples survive and adapt their traditional belief systems in a context of alien cultural impacts. In the immediate wake of the conquest of Peru by invading Spanish armies and ideology, native Andeans responded by forming the Taki Onkoy millenarian movement, which rejected European philosophical and ontological teachings, claiming “you make us sick”. The study explores how people’s experience of their world and their health beliefs within it, is fundamentally shaped by their inherent beliefs about the nature of being and identity in relation to the wider cosmos. Cultural and health belief systems and related rituals or behaviors sustain a people’s sense of identity, wellbeing and integrity. In the event of dislocation and persecution these may change into devolved forms, which eventually inter-relate with ‘modern’ biomedical systems of health in as yet unidentified ways. The development of new conceptual frameworks that model this process will greatly expand our understanding of how people survive and adapt in response to cultural trauma. It will also demonstrate the continuing role, relevance and use of TM in present-day indigenous communities. Studies will first be made of relevant pre-Colombian material culture, and then of early colonial period ethnohistorical texts which document the health beliefs and ritual practices still employed by indigenous Andean societies at the advent of the 17th century Jesuit campaigns of persecution - ‘Extirpación de las Idolatrías’. Core beliefs drawn from these baseline studies will then be used to construct a questionnaire about current health beliefs and practices to be taken into the study population of indigenous Quechua peoples in the northern Andean region of Ecuador. Their current systems of knowledge and medicine have evolved within complex historical contexts of both the conquest by invading Inca armies in the late 15th century, followed a generation later by Spain, into new forms. A new model will be developed of contemporary Andean concepts of health, illness and healing demonstrating the way these have changed through time. With this, a ‘policy tool’ will be constructed as a bridhging facility into contemporary global scenarios relevant to other Indigenous, First Nations, and migrant peoples to provide a means through which their traditional health beliefs and current needs may be more appropriately understood and met. This paper presents findings from the first analytical phases of the work based upon the study of the literature and the archaeological records. The study offers a novel perspective and methods in the development policies sensitive to indigenous and minority people’s health needs.Keywords: Andean ethnomedicine, Andean health beliefs, health beliefs models, traditional medicine
Procedia PDF Downloads 349167 Global Evidence on the Seasonality of Enteric Infections, Malnutrition, and Livestock Ownership
Authors: Aishwarya Venkat, Anastasia Marshak, Ryan B. Simpson, Elena N. Naumova
Abstract:
Livestock ownership is simultaneously linked to improved nutritional status through increased availability of animal-source protein, and increased risk of enteric infections through higher exposure to contaminated water sources. Agrarian and agro-pastoral households, especially those with cattle, goats, and sheep, are highly dependent on seasonally various environmental conditions, which directly impact nutrition and health. This study explores global spatiotemporally explicit evidence regarding the relationship between livestock ownership, enteric infections, and malnutrition. Seasonal and cyclical fluctuations, as well as mediating effects, are further examined to elucidate health and nutrition outcomes of individual and communal livestock ownership. The US Agency for International Development’s Demographic and Health Surveys (DHS) and the United Nations International Children's Emergency Fund’s Multi-Indicator Cluster Surveys (MICS) provide valuable sources of household-level information on anthropometry, asset ownership, and disease outcomes. These data are especially important in data-sparse regions, where surveys may only be conducted in the aftermath of emergencies. Child-level disease history, anthropometry, and household-level asset ownership information have been collected since DHS-V (2003-present) and MICS-III (2005-present). This analysis combines over 15 years of survey data from DHS and MICS to study 2,466,257 children under age five from 82 countries. Subnational (administrative level 1) measures of diarrhea prevalence, mean livestock ownership by type, mean and median anthropometric measures (height for age, weight for age, and weight for height) were investigated. Effects of several environmental, market, community, and household-level determinants were studied. Such covariates included precipitation, temperature, vegetation, the market price of staple cereals and animal source proteins, conflict events, livelihood zones, wealth indices and access to water, sanitation, hygiene, and public health services. Children aged 0 – 6 months, 6 months – 2 years, and 2 – 5 years of age were compared separately. All observations were standardized to interview day of year, and administrative units were harmonized for consistent comparisons over time. Geographically weighted regressions were constructed for each outcome and subnational unit. Preliminary results demonstrate the importance of accounting for seasonality in concurrent assessments of malnutrition and enteric infections. Household assets, including livestock, often determine the intensity of these outcomes. In many regions, livestock ownership affects seasonal fluxes in malnutrition and enteric infections, which are also directly affected by environmental and local factors. Regression analysis demonstrates the spatiotemporal variability in nutrition outcomes due to a variety of causal factors. This analysis presents a synthesis of evidence from global survey data on the interrelationship between enteric infections, malnutrition, and livestock. These results provide a starting point for locally appropriate interventions designed to address this nexus in a timely manner and simultaneously improve health, nutrition, and livelihoods.Keywords: diarrhea, enteric infections, households, livestock, malnutrition, seasonality
Procedia PDF Downloads 128166 3D Interactions in Under Water Acoustic Simulationseffect of Green Synthesized Metal Nanoparticles on Gene Expression in an In-Vitro Model of Non-alcoholic Steatohepatitis
Authors: Nendouvhada Livhuwani Portia, Nicole Sibuyi, Kwazikwakhe Gabuza, Adewale Fadaka
Abstract:
Metabolic dysfunction-associated liver disease (MASLD) is a chronic condition characterized by excessive fat accumulation in the liver, distinct from conditions caused by alcohol, viral hepatitis, or medications. MASLD is often linked with metabolic syndrome, including obesity, diabetes, hyperlipidemia, and hypertriglyceridemia. This disease can progress to metabolic dysfunction-associated steatohepatitis (MASH), marked by liver inflammation and scarring, potentially leading to cirrhosis. However, only 43-44% of patients with steatosis develop MASH, and 7-30% of those with MASH progress to cirrhosis. The exact mechanisms underlying MASLD and its progression remain unclear, and there are currently no specific therapeutic strategies for MASLD/MASH. While anti-obesity and anti-diabetic medications can reduce progression, they do not fully treat or reverse the disease. As an alternative, green-synthesized metal nanoparticles (MNPs) are emerging as potential treatments for liver diseases due to their anti-diabetic, anti-inflammatory, and anti-obesity properties with minimal side effects. MNPs like gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have been shown to improve metabolic processes by lowering blood glucose, body fat, and inflammation. The study aimed to explore the effects of green-synthesized MNPs on gene expression in an in vitro model of MASH using C3A/HepG2 liver cells. The MASH model was created by exposing these cells to free fatty acids (FFAs) followed by lipopolysaccharide (LPS) to induce inflammation. Cell viability was assessed with the Water-Soluble Tetrazolium (WST)-1 assay, and lipid accumulation was measured using the Oil Red O (ORO) assay. Additionally, mitochondrial membrane potential was assessed by the tetramethyl rhodamine, methyl ester (TMRE) assay, and inflammation was measured with an Enzyme-Linked Immunosorbent Assay (ELISA). The study synthesized AuNPs from Carpobrotus edulis fruit (CeF) and avocado seed (AvoSE) and AgNPs from Salvia africana-lutea (SAL) using optimized conditions. The MNPs were characterized by UV-Vis spectrophotometry and Dynamic Light Scattering (DLS). The nanoparticles were tested at various concentrations for their impact on the C3A/HepG2-induced MASH model. Among the MNPs tested, AvoSE-AuNPs showed the most promise. They reduced cell proliferation and intracellular lipid content more effectively than CeFE-AuNPs and SAL-AgNPs. Molecular analysis using real-time polymerase chain reaction revealed that AvoSE-AuNPs could potentially reverse MASH effects by reducing the expression of key pro-inflammatory and metabolic genes, including tumor necrosis factor-alpha (TNF-α), Fas cell surface death receptor (FAS), Peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and Sterol regulatory element-binding protein (SREBPF)-1. Further research is needed to confirm the molecular mechanisms behind the effects of these MNPs and to identify the specific phytochemicals responsible for their synthesis and bioactivities.Keywords: gold nanoparticles, green nanotechnology, metal nanoparticles, obesity
Procedia PDF Downloads 33