Search results for: semantic processing
2339 Analysis of Shrinkage Effect during Mercerization on Himalayan Nettle, Cotton and Cotton/Nettle Yarn Blends
Authors: Reena Aggarwal, Neha Kestwal
Abstract:
The Himalayan Nettle (Girardinia diversifolia) has been used for centuries as fibre and food source by Himalayan communities. Himalayan Nettle is a natural cellulosic fibre that can be handled in the same way as other cellulosic fibres. The Uttarakhand Bamboo and Fibre Development Board based in Uttarakhand, India is working extensively with the nettle fibre to explore the potential of nettle for textile production in the region. The fiber is a potential resource for rural enterprise development for some high altitude pockets of the state and traditionally the plant fibre is used for making domestic products like ropes and sacks. Himalayan Nettle is an unconventional natural fiber with functional characteristics of shrink resistance, degree of pathogen and fire resistance and can blend nicely with other fibres. Most importantly, they generate mainly organic wastes and leave residues that are 100% biodegradable. The fabrics may potentially be reused or re-manufactured and can also be used as a source of cellulose feedstock for regenerated cellulosic products. Being naturally bio- degradable, the fibre can be composted if required. Though a lot of research activities and training are directed towards fibre extraction and processing techniques in different craft clusters villagers of different clusters of Uttarkashi, Chamoli and Bageshwar of Uttarakhand like retting and Degumming process, very little is been done to analyse the crucial properties of nettle fiber like shrinkage and wash fastness. These properties are very crucial to obtain desired quality of fibre for further processing of yarn making and weaving and in developing these fibers into fine saleable products. This research therefore is focused towards various on-field experiments which were focused on shrinkage properties conducted on cotton, nettle and cotton/nettle blended yarn samples. The objective of the study was to analyze the scope of the blended fiber for developing into wearable fabrics. For the study, after conducting the initial fiber length and fineness testing, cotton and nettle fibers were mixed in 60:40 ratio and five varieties of yarns were spun in open end spinning mill having yarn count of 3s, 5s, 6s, 7s and 8s. Samples of 100% Nettle 100% cotton fibers in 8s count were also developed for the study. All the six varieties of yarns were tested with shrinkage test and results were critically analyzed as per ASTM method D2259. It was observed that 100% Nettle has a least shrinkage of 3.36% while pure cotton has shrinkage approx. 13.6%. Yarns made of 100% Cotton exhibits four times more shrinkage than 100% Nettle. The results also show that cotton and Nettle blended yarn exhibit lower shrinkage than 100% cotton yarn. It was thus concluded that as the ratio of nettle increases in the samples, the shrinkage decreases in the samples. These results are very crucial for Uttarakhand people who want to commercially exploit the abundant nettle fiber for generating sustainable employment.Keywords: Himalayan nettle, sustainable, shrinkage, blending
Procedia PDF Downloads 2422338 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation
Procedia PDF Downloads 4402337 Design and Implementation of 2D Mesh Network on Chip Using VHDL
Authors: Boudjedra Abderrahim, Toumi Salah, Boutalbi Mostefa, Frihi Mohammed
Abstract:
Nowadays, using the advancement of technology in semiconductor device fabrication, many transistors can be integrated to a single chip (VLSI). Although the growth chip density potentially eases systems-on-chip (SoCs) integrating thousands of processing element (PE) such as memory, processor, interfaces cores, system complexity, high-performance interconnect and scalable on-chip communication architecture become most challenges for many digital and embedded system designers. Networks-on-chip (NoCs) becomes a new paradigm that makes possible integrating heterogeneous devices and allows many communication constraints and performances. In this paper, we are interested for good performance and low area for implementation and a behavioral modeling of network on chip mesh topology design using VHDL hardware description language with performance evaluation and FPGA implementation results.Keywords: design, implementation, communication system, network on chip, VHDL
Procedia PDF Downloads 3812336 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications
Authors: T. Gangadhararao, K. Krishna Kishore
Abstract:
Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code
Procedia PDF Downloads 4322335 Inspection of Railway Track Fastening Elements Using Artificial Vision
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux
Abstract:
In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network
Procedia PDF Downloads 4612334 Development of Pasta Production by Using of Hard and Soft Domestic Sorts of Wheat
Authors: A.N. Zhilkaidarov, G.K. Iskakova, V.Y. Chernyh
Abstract:
High-qualified and not-expensive products of daily usage have a big demand on food products’ market. Moreover, it is about independent and irreplaceable product as pasta. Pasta is a product, which represents itself the conserved dough from wheat flour made through special milling process. A wide assortment of the product and its pleasant taste properties allow to use pasta products in very different combinations with other food products. Pasta industry of Kazakhstan has large perspectives of development. There are many premises for it, which includes first an importance of pasta as a social product. Due to for its nutritional and energetically value pasta is the part of must have food. Besides that, the pasta production in Kazakhstan has traditional bases, and nowadays the market of this product develops rapidly as in quantity as well as in quality aspects. Moreover, one of the advantages of this branch is an economical aspect – pasta is the product of secondary processing, and therefore price for sailing is much higher as its own costs.Keywords: pasta, new wheat sorts, domesic sorts of wheat, macaronic flour
Procedia PDF Downloads 5292333 Extracting Actions with Improved Part of Speech Tagging for Social Networking Texts
Authors: Yassine Jamoussi, Ameni Youssfi, Henda Ben Ghezala
Abstract:
With the growing interest in social networking, the interaction of social actors evolved to a source of knowledge in which it becomes possible to perform context aware-reasoning. The information extraction from social networking especially Twitter and Facebook is one of the problems in this area. To extract text from social networking, we need several lexical features and large scale word clustering. We attempt to expand existing tokenizer and to develop our own tagger in order to support the incorrect words currently in existence in Facebook and Twitter. Our goal in this work is to benefit from the lexical features developed for Twitter and online conversational text in previous works, and to develop an extraction model for constructing a huge knowledge based on actionsKeywords: social networking, information extraction, part-of-speech tagging, natural language processing
Procedia PDF Downloads 3072332 The Challenges of Irrigated Tomato Production in Kano State, Nigeria
Authors: I. K. Adamu, J. O. Adefila
Abstract:
The paper examines the challenges of irrigated tomato growers in Kano State. Materials used for the study are sourced from newspapers, books, internet and field surveys. Questionnaires were also used to sample the opinion of the tomato farmers in the state. The purposive and snow ball sampling techniques were used to select knowledgeable individual farmers in the study areas. The sample size was based on a five percent (0.05) of the identified members of tomato farmers. Data analysis was achieved using cross-tabulation, percentage, and SWOT analysis. The study reveals that irrigated tomato farmers in Kano State faces a lot of challenges. The study offers some recommendations such as establishment of storage facilities on ground, establishment of processing industries in the state, and introduction of high yield varieties of tomato seeds instead of the outdated UC82B.Keywords: SWOT, irrigated tomato production, tomato farmers, Nigeria
Procedia PDF Downloads 3992331 Authentication Based on Hand Movement by Low Dimensional Space Representation
Authors: Reut Lanyado, David Mendlovic
Abstract:
Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.Keywords: authentication, feature extraction, hand recognition, security, signal processing
Procedia PDF Downloads 1312330 SciPaaS: a Scientific Execution Platform for the Cloud
Authors: Wesley H. Brewer, John C. Sanford
Abstract:
SciPaaS is a prototype development of an execution platform/middleware designed to make it easy for scientists to rapidly deploy their scientific applications (apps) to the cloud. It provides all the necessary infrastructure for running typical IXP (Input-eXecute-Plot) style apps, including: a web interface, post-processing and plotting capabilities, job scheduling, real-time monitoring of running jobs, and even a file/case manager. In this paper, first the system architecture is described and then is demonstrated for a two scientific applications: (1) a simple finite-difference solver of the inviscid Burger’s equation, and (2) Mendel’s Accountant—a forward-time population genetics simulation model. The implications of the prototype are discussed in terms of ease-of-use and deployment options, especially in cloud environments.Keywords: web-based simulation, cloud computing, Platform-as-a-Service (PaaS), rapid application development (RAD), population genetics
Procedia PDF Downloads 5922329 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Diagonal sparse matrix-vector multiplication is a well-studied topic in the fields of scientific computing and big data processing. However, when diagonal sparse matrices are stored in DIA format, there can be a significant number of padded zero elements and scattered points, which can lead to a degradation in the performance of the current DIA kernel. This can also lead to excessive consumption of computational and memory resources. In order to address these issues, the authors propose the DIA-Adaptive scheme and its kernel, which leverages the parallel instruction sets on MLU. The researchers analyze the effect of allocating a varying number of threads, clusters, and hardware architectures on the performance of SpMV using different formats. The experimental results indicate that the proposed DIA-Adaptive scheme performs well and offers excellent parallelism.Keywords: adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication
Procedia PDF Downloads 1372328 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 1392327 Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse
Authors: Leonel Lipa Cusi, Enrique Nestor Pasquel Carbajal, Laura Marina Navarro Alvarado, José Del Álamo Carazas
Abstract:
This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results.Keywords: ultrasonic, concrete, thickness, pulse echo, void
Procedia PDF Downloads 3382326 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris
Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca
Abstract:
Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum
Procedia PDF Downloads 2462325 Information Retrieval for Kafficho Language
Authors: Mareye Zeleke Mekonen
Abstract:
The Kafficho language has distinct issues in information retrieval because of its restricted resources and dearth of standardized methods. In this endeavor, with the cooperation and support of linguists and native speakers, we investigate the creation of information retrieval systems specifically designed for the Kafficho language. The Kafficho information retrieval system allows Kafficho speakers to access information easily in an efficient and effective way. Our objective is to conduct an information retrieval experiment using 220 Kafficho text files, including fifteen sample questions. Tokenization, normalization, stop word removal, stemming, and other data pre-processing chores, together with additional tasks like term weighting, were prerequisites for the vector space model to represent each page and a particular query. The three well-known measurement metrics we used for our word were Precision, Recall, and and F-measure, with values of 87%, 28%, and 35%, respectively. This demonstrates how well the Kaffiho information retrieval system performed well while utilizing the vector space paradigm.Keywords: Kafficho, information retrieval, stemming, vector space
Procedia PDF Downloads 592324 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation
Authors: O. Maklouf, Ahmed Abdulla
Abstract:
A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers are looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.Keywords: GPS, ParIMU, INS, Kalman filter
Procedia PDF Downloads 5172323 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques
Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail
Abstract:
Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation
Procedia PDF Downloads 1842322 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel
Authors: Tarek Litim, Ouahiba Taamallah
Abstract:
The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA
Procedia PDF Downloads 1962321 Implementation of a PDMS Microdevice for the Improved Purification of Circulating MicroRNAs
Authors: G. C. Santini, C. Potrich, L. Lunelli, L. Vanzetti, S. Marasso, M. Cocuzza, C. Pederzolli
Abstract:
The relevance of circulating miRNAs as non-invasive biomarkers for several pathologies is nowadays undoubtedly clear, as they have been found to have both diagnostic and prognostic value able to add fundamental information to patients’ clinical picture. The availability of these data, however, relies on a time-consuming process spanning from the sample collection and processing to the data analysis. In light of this, strategies which are able to ease this procedure are in high demand and considerable effort have been made in developing Lab-on-a-chip (LOC) devices able to speed up and standardise the bench work. In this context, a very promising polydimethylsiloxane (PDMS)-based microdevice which integrates the processing of the biological sample, i.e. purification of extracellular miRNAs, and reverse transcription was previously developed in our lab. In this study, we aimed at the improvement of the miRNA extraction performances of this micro device by increasing the ability of its surface to absorb extracellular miRNAs from biological samples. For this purpose, we focused on the modulation of two properties of the material: roughness and charge. PDMS surface roughness was modulated by casting with several templates (terminated with silicon oxide coated by a thin anti-adhesion aluminum layer), followed by a panel of curing conditions. Atomic force microscopy (AFM) was employed to estimate changes at the nanometric scale. To introduce modifications in surface charge we functionalized PDMS with different mixes of positively charged 3-aminopropyltrimethoxysilanes (APTMS) and neutral poly(ethylene glycol) silane (PEG). The surface chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) and the number of exposed primary amines was quantified with the reagent sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (s-SDTB). As our final end point, the adsorption rate of all these different conditions was assessed by fluorescence microscopy by incubating a synthetic fluorescently-labeled miRNA. Our preliminary analysis identified casting on thermally grown silicon oxide, followed by a curing step at 85°C for 1 hour, as the most efficient technique to obtain a PDMS surface roughness in the nanometric scaleable to trap miRNA. In addition, functionalisation with 0.1% APTMS and 0.9% PEG was found to be a necessary step to significantly increase the amount of microRNA adsorbed on the surface, therefore, available for further steps as on-chip reverse transcription. These findings show a substantial improvement in the extraction efficiency of our PDMS microdevice, ultimately leading to an important step forward in the development of an innovative, easy-to-use and integrated system for the direct purification of less abundant circulating microRNAs.Keywords: circulating miRNAs, diagnostics, Lab-on-a-chip, polydimethylsiloxane (PDMS)
Procedia PDF Downloads 3202320 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection
Authors: Nadia Ben Youssef, Aicha Bouzid
Abstract:
Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.Keywords: gradient, edge detection, color image, quaternion
Procedia PDF Downloads 2372319 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 3262318 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning
Abstract:
Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.Keywords: Construction learning, Corpus-based, Progressives, Prototype
Procedia PDF Downloads 1292317 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 1722316 Plagiarism Detection for Flowchart and Figures in Texts
Authors: Ahmadu Maidorawa, Idrissa Djibo, Muhammad Tella
Abstract:
This paper presents a method for detecting flow chart and figure plagiarism based on shape of image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets. Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offense that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide these checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts result in look holes that people can take advantage. That means people can plagiarize figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts.Keywords: flowchart, multimedia retrieval, figures similarity, image comparison, figure retrieval
Procedia PDF Downloads 4682315 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks
Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry
Abstract:
Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices
Procedia PDF Downloads 592314 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique
Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti
Abstract:
Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.Keywords: cordierite, infiltration technique, porous ceramics, sol-gel
Procedia PDF Downloads 2742313 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12
Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu
Abstract:
Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and microhardness) with different USP process parameters were measured. The research proposes that the radius of curvature of shot peened sheet increases with time and electric current decreasing, while it increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical microhardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.Keywords: USP forming, surface properties, radius of curvature, residual stress
Procedia PDF Downloads 5182312 Construal Level Perceptions of Environmental vs. Social Sustainability in Online Fashion Shopping Environments
Authors: Barbara Behre, Verolien Cauberghe, Dieneke Van de Sompel
Abstract:
Sustainable consumption is on the rise, yet it has still not entered the mainstream in several industries, such as the fashion industry. In online fashion contexts, sustainability cues have been used to signal the sustainable benefits of certain garments to promote sustainable consumption. These sustainable cues may focus on the ecological or social dimension of sustainability. Since sustainability, in general, relates to distant, abstract benefits, the current study aims to examine if and how psychological distance may mediate the effects of exposure to different sustainability cues on consumption outcomes. Following the framework of Construal Level Theory of Psychological Distance, reduced psychological distance renders the construal level more concrete, which may influence attitudes and subsequent behavior in situations like fashion shopping. Most studies investigated sustainability as a composite, failing to differentiate between ecological and societal aspects of sustainability. The few studies examining sustainability more in detail uncovered that environmental sustainability is rather perceived in abstract cognitive construal, whereas social sustainability is linked to concrete construal. However, the construal level affiliation of the sustainability dimensions likely is not universally applicable to different domains and stages of consumption, which further suggest a need to clarify the relationships between environmental and social sustainability dimensions and the construal level of psychological distance within fashion brand consumption. While psychological distance and construal level have been examined in the context of sustainability, these studies yielded mixed results. The inconsistent findings of past studies might be due to the context-dependence of psychological distance as inducing construal differently in diverse situations. Especially in a hedonic consumption context like online fashion shopping, the role of visual processing of information could determine behavioural outcomes as linked to situational construal. Given the influence of the mode of processing on psychological distance and construal level, the current study examines the moderating role of verbal versus non-verbal presentation of the sustainability cues. In a 3 (environmental sustainability vs. social sustainability vs. control) x 2 (non-verbal message vs. verbal message) between subjects experiment, the present study thus examines how consumers evaluate sustainable brands in online shopping contexts in terms of psychological distance and construal level, as well as the impact on brand attitudes and buying intentions. The results among 246 participants verify the differential impact of the sustainability dimensions on fashion brand purchase intent as mediated by construal level and perceived psychological distance. The ecological sustainability cue is perceived as more concrete, which might be explained by consumer bias induced by the predominance of pro-environmental sustainability messages. The verbal versus non-verbal presentation of the sustainability cue neither had a significant influence on distance perceptions and construal level nor on buying intentions. This study offers valuable contributions to the sustainable consumption literature, as well as a theoretical basis for construal-level framing as applied in sustainable fashion branding.Keywords: construal level theory, environmental vs social sustainability, online fashion shopping, sustainable fashion
Procedia PDF Downloads 1052311 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1442310 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 214